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Abstract

The notion of conceptual structure in cellular automata (CA)
rules that perform the density classification task (DCT) was
introduced by Marques-Pita et al. (2006). Here we investi-
gate the role of process-symmetry in CAs that solve the DCT,
in particular the idea of conceptual similarity, which defines
a novel search space for CA rules. We report on two new
highest-performing process symmetric rules for the DCT. We
further discuss how our results are relevant to understand,
control, and design the collective computation performed by
other networks of automata, such as those used to model, for
example, living systems.

Introduction

The intersection of biology and computer science has been
a fertile ground for some time. Indeed, Von Neumann was
a member of the mid-twentieth century Cybernetics group
(Heims, 1991), whose main focus was the understanding of
natural and artificial systems in terms of communication and
control processes. It is interesting to notice that most early
computer science developments were inspired by the mod-
els of cognition that orbited this group (e.g. seminal work by
McCulloch and Pitts, 1943). Since then, the need to under-
stand how biological systems are able to control and trans-
mit information throughout the huge number of components
that comprise them has only increased. Certainly, the study
of complex network dynamics has been the subject of a sub-
stantial body of literature in the last two decades. From pi-
oneering work on networks of automata (Kauffmann, 1969;
Derrida and Stauffer, 1986; Kauffmann, 1993) to more re-
cent systems biology models of gene regulation dynamics
(Mendoza and Alvarez-Buylla, 1998; Albert and Othmer,
2003; Espinosa-Soto et al., 2004; Kauffmann, 2003), it is
clear that to understand and control the biological organiza-
tion, it is useful to study the dynamics and robustness of
models based on complex networks of automata (Chaves
et al., 2005; Willadsen and Wiles, 2007).

There has been much progress in understanding the struc-
ture of natural networks—be it at the level of their scale-free
topology (see e.g. Barabási, 2002; Newman et al., 2006) or

of their more fine-grained motifs (Alon, 2007)—as well as
some progress on modeling specific biological systems as
networks of automata. But we are still to fully grasp how
the dynamics of complex networks can lead to collective
computation and how to harness them to perform specific
tasks (see e.g. Mitchell, 2006). Indeed, the need for a better
understanding of collective computation in complex natural
networks has been identified in many areas. For instance,
we know that the way plants adjust their stomatal apertures
for efficient gas exchanges on leaf surfaces is statistically
indistinguishable from the dynamics of automata that com-
pute (Peak et al., 2004). We also know that the high de-
gree of inter-connectivity in biochemical intracellular sig-
nal transduction networks, endows them with the capability
of emergent nontrivial classification—via collective compu-
tation (Helikar et al., 2008). Plenty more examples exist,
which are too numerous to list here.

Clearly, a novel method for describing and understand-
ing how networks collectively compute, would be wel-
comed. The work presented here is extremely promising
in that regard. The conceptual properties uncovered by
our “cognitively-inspired” algorithm provide a more com-
pact and intuitive way to understand how complex networks
perform the collective computation that they do. One way
to think about the conceptual redescriptions produced by
our algorithm is as “dynamical motifs”. Rather than find-
ing common structural network motifs (e.g. Alon, 2007),
our redescriptions uncover patterns in the dynamics of au-
tomata networks, here specifically the case of cellular au-
tomata. Moreover, our redescriptions allow us to understand
the global dynamic behavior of novel, high-level conceptual
observables built from these redescriptions.

In this paper, we focus on a known problem of emergent
computation in CA: the density classification task (DCT)
(Mitchell et al., 1996). Specifically, we investigate the role
of process symmetry, the main conceptual property shared
by the majority of CAs that perform the DCT, in (1) defining
conceptual spaces where rules with high performance can be
found; (2) obtaining more intuitive explanations of the be-
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havior of rules that perform the DCT; and (3) exploring the
process-symmetric vicinity of high performance asymmetric
rules. In forthcoming work, we will expand this approach to
study other discrete complex networks such as Boolean net-
works of automata

Cellular Automata

A cellular automaton (CA) consists of a regular lattice of N
cells. Each cell is in one of k allowed states at a given time
t. Let ω ∈ {0, 1, ..., k − 1} denote a possible state of a cell.
Let state ω = 0 be referred to as the quiescent state, and
any other state as an active state. Each cell is connected to
a number of neighbors. Let a local neighborhood configu-
ration (LNC) be denoted by µ, and its size by n. For each
LNC in a (n, k) CA an output state is assigned to each cell.
This defines a CA rule string, φ, the size of which is kn. In
binary CAs, where only two states are allowed(k = 2), it is
possible to classify individual cell state-updates in three cat-
egories: (1) preservations, where a cell does not change its
state in the next time instance t + 1; (2) generations, state-
updates in which the cell goes from the quiescent to the ac-
tive state; and (3) annihilations, state-updates where the cell
goes from the active to the quiescent state. The Initial Con-
figuration (IC) of states of a CA lattice is typically random.
The execution of a CA for a number M of discrete time
steps, from a given IC, is represented as the set Θ containing
M + 1 lattice state configurations.

The Density Classification Task (DCT)

The Density Classification Task (DCT) is one of the most
studied examples of collective computation in cellular au-
tomata. The goal is to find a binary CA rule that can best
classify the majority state in the randomized IC. If the ma-
jority of cells in the IC are in the quiescent (active) state,
after a number of time steps M , the lattice should converge
to a homogeneous state where every cell is in the quiescent
(active) state. Since the outcome could be undecidable in
lattices with even number of cells (N), this task is only ap-
plicable to lattices with an odd number of cells. Devising
CA rules that perform this task is not trivial, because cells in
a CA lattice update their states based only on local neighbor-
hood information. However, in this particular task, it is re-
quired that information be transferred across time and space
in order to achieve a correct global classification. The defi-
nition of the DCT used in our studies is the same as the one
by Mitchell et al. (1993).

The nine highest-performing 1-dimensional CA rules that
perform the DCT were analyzed by Marques-Pita et al.
(2006). The goal of that analysis was to determine whether
there is conceptual structure in these rules, and in that
case, to investigate the possible conceptual similarity among

them. These explorations were supported by a cognitively-
inspired method, Aitana (Marques-Pita, 2006). In essence,
Aitana takes as input a CA rule in its look-up table form,
and outputs the same rule but redescribed in a more com-
pact abstraction. Specifically, the output is a set of schemata
that can be used (for example) to reason about the con-
ceptual structure concealed in the look-up table of the in-
put rule. Three of these nine rules have been produced
by human engineering: φGKL (Gacs et al., 1978; Gon-
zaga de Sá and Maes, 1992), φDavis95 and φDas95 (An-
dre et al., 1996); three were learned with genetic algorithms
φDMC (Das et al., 1994) or coevolution methods φCOE1 and
φCOE2 (Juillé and Pollack, 1998). Finally, three of the rules
were learned with genetic programming or gene expression
programming: φGP1995 (Andre et al., 1996), φGEP1 and
φGEP2 (Ferreira, 2001).

Marques-Pita et al. (2006) have shown that there is indeed
conceptual structure in these CA rules. All of the studied
CAs were redescribed in more compact schemata that made
explicit certain conceptual properties most of these CAs
have in common. Here we studied one of these properties
(process-symmetry) in more detail. The next section sum-
marizes the basics of Aitana’s representational redescription
architecture, and the conceptual properties found in the stud-
ied CAs that perform the DCT.

Aitana: Conceptual Representations of CA

Aitana is largely based on a framework for cognitive de-
velopment in humans: the Representational Redescription
Model developed by Karmiloff-Smith (1992), and the Con-
ceptual Spaces framework proposed by Gärdenfors (2000).
There are a number of (recurrent) phases in Aitana’s algo-
rithm: (1) Behavioral Mastery, during which CAs that per-
form some specific collective computation are learned us-
ing, for example, genetic algorithms or coevolution. The
learned rules are assumed to be in a representational format
we call implicit (conceptual structure is not explicit). (2)
Representational Redescription Phase I takes as input the
implicit representations (CA look-up tables) and attempts to
compress them into explicit-1 (E1) schemata by exploiting
structural regularities within the input rules. (3) Phase II
(and beyond) look for ways to further compress E1 repre-
sentations, for example by looking at how groups of cells
change together, and how more complex schemata are capa-
ble of generating regular patterns in the dynamics of the CA.
The focus in this paper is on Phase I redescription.

E1 representations are produced by modules in Aitana.
Here we focus on the Wildcard module. The CA rules stud-
ied were redescribed with the this module, introduced in the
next section.
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The Wildcard Module

This module uses regularities in the set of entries—one for
each possible LNC—of a CA’s look-up table, in order to
produce E1 representations captured by wildcard schemata.
These schemata are defined in the same way as the look-up
table entries for each LNC of a CA rule, but allowing an ex-
tra symbol to replace the state of one or more cells within
them. This new symbol is denoted by “#”. When it ap-
pears in a E1 schema it means that in the place where it
appears, any of the possible k states is accepted. The idea of
using wildcards in representational structures was first pro-
posed by Holland et al. (1986), when introducing Classifier
Systems. The wildcard redescriptions used here are Process-
specific, i.e. they do not allow a wildcard symbol in the place
of an updating cell in a schema. This makes it possible for
them to describe processes in the CA rule unambiguously.
For example, a generation, schema {#, #, #, 0, 1,#, 1}
prescribes that a cell in state ω = 0, with immediate-right
and end-right neighbors in state ω = 1 updates its state to
ω = 1 regardless of the state of the other neighbors.

The implementation of the wildcard module in Aitana
consists of a simple McCulloch and Pitts neural network. In
this assimilation network, input units represent each look-
up table entry (one for each LNC), and ouput units represent
all the possible schemata available to redescribe segments of
the input rule (see Marques-Pita, 2006, for details).

Assimilation and Accommodation

Phase I redescription in Aitana depends on two interrelated
mechanisms, assimilation and accommodation1. During
Phase I, the units in the input layer of an assimilation net-
work are activated to reflect the output states in the input
CA rule to be processed. The firing of these units spreads,
thus activating other units across the network. When some
unit in the network (representing a E1 schema) has incom-
ing excitatory fibers above a threshold it fires. This firing
signals that the schema represented by the unit becomes an
E1 redescription of the lower level units that caused its acti-
vation. When this happens, inhibitory signals are sent back
to those lower level units so that they stop firing (since they
have been redescribed). At the end of assimilation, the units
that remain firing represent the set of wildcard schemata re-
describing the input CA rule. Once the process of assim-
ilation has been completed, Aitana will try to “force” the
assimilation of any (wildcard-free) look-up table entry that
was not redescribed i.e. any input unit that is still firing. This
corresponds to the accommodation process implemented in
Aitana (see Marques-Pita, 2006, for further details).

1These two processes are inspired in those defined by Piaget in
his theory of Constructivism (see e.g. Piaget, 1952, 1955)

Conceptual properties of CAs for the DCT

One of the main novel findings reported in Marques-Pita
et al. (2006) is the fact that most rules that perform the
density classification task are process-symmetric. Process
symmetry for binary CA rules is defined as a bijective map-
ping between the members of the only two possible sets of
schemata prescribing state changes: generation processes,
which refer to a cell state change from ω = 0 to ω = 1,
and annihilation processes which refer to the reverse state
change.

Using the concept of process symmetry, one can easily
define a function that converts a generation into an annihi-
lation process, and vice versa. Such a function of E1 re-
descriptions, transforms a schema s into its corresponding
process-symmetric schema s′ by (1) reversing the elements
in s using a mirror function M(s), and (2) exchanging ones
for zeros, and zeros for ones (leaving wildcards untouched),
using a negation function N(s). Thus, in every process
symmetric CA rule, given the set S = {s1, s2, ..., sz} of
all schemata si prescribing a state-change process, the ele-
ments of the set of schemata prescribing the converse pro-
cess S′ = {s′1, s′2, ..., s′z} can be found by applying the bi-
jective mapping between processes defined by the compo-
sition s′i = (M ◦ N)(si). This property is illustrated in
Figure 1, where the E1 schemata of the process symmetric
rule φGP1995 (Andre et al., 1996) are shown.

!GP1995

{#, #, #, 0, 1, #, 1}

{#, #, 1, 0, #, #, 1}

{1, #, #, 0, #, #, 1}

{0, #, 0, 1, #, #, #}

{0, #, #, 1, 0, #, #}

{0, #, #, 1, #, #, 0}

RULE Generation Annihilation

Figure 1: E1 schemata prescribing state changes for
φGP1995. Any annihilation (right column) can be obtained
by reversing the corresponding generation schema (to the
left), and exchanging zeros for ones, and ones for zeros.

Six out of the nine rules analyzed by Marques-Pita et al.
were found to be process-symmetric. The remaining three,
φCOE1 and φCOE2 and φDMC are not.

It is interesting to note that the three non process-
symmetric rules were discovered via evolutionary algo-
rithms (GAs and coevolutionary search) which apply vari-
ation to genetic encodings of the look-up tables of CAs.
Therefore, genotype variation in these evolutionary algo-
rithms operates at the low level of the bits of the look-up
table—what we referred to as the implicit representation of a
CA. In contrast, the other forms of search of design that lead
to the other six (process-symmetric) rules, while not look-
ing explicitly for process symmetry, were based on mecha-
nisms and reasoning trading in the higher-level behavior and
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structure of the CA—what we refer to as the explicit repre-
sentation of a CA. Marques-Pita et al. have also determined
that it is possible to define conceptual similarity between the
process symmetric CA rules for the DCT. For example, the
rule φGP1995 can be derived from φGKL. Moreover, the best
process-symmetric rule known for this task (at the time) was
found via conceptual transformations: φMM401

2 with per-
formance P105

149 ≈ 0.833. However, the performance of this
rule is still below the performance of the best CA rule for
the DCT, namely φCOE2, with P105

149 ≈ 0.86.

The 4-Wildcard Process-Symmetric Space

Starting with the conceptual similarities previously observed
between φGKL and φGP1995, we now report a search of the
“conceptual space” where these two CA rules can be found:
the space of process-symmetric binary CA rules with neigh-
borhood size n = 7, where all state-change schemata have
four wildcards. A form of evolutionary search was used
to evaluate rules in this space as follows: the search starts
with a population of sixty-four different process-symmetric
rules containing only 4-wildcard schemata; the generation
and annihilation schema sets for an individual were allowed
to have any number of schemata in the range between two
and eight; crossover operators were not defined; a muta-
tion operator was set, allowing the removal or addition of
up to two randomly chosen 4-wildcard schemata (repetitions
not allowed), as long as a minimum of two schemata are kept
in each schema set; in every generation the fitness of each
member of the population is evaluated against 104 ICs, keep-
ing the top 25% rules (elite) for the next generation without
modification; offspring are generated by choosing a random
member of the elite, and applying the mutation operator un-
til completing the population size with different CA rules; a
run consisted of 500 generations, and the search was exe-
cuted for 8 runs. There are 60 possible 4-wildcard process-
symmetric schemata-pairs. Thus, our search space contains
approximately 3 × 109 rules defined by generation and an-
nihilation schema sets of size between 2 and 8.

Our search found one rule with better performance than
φMM401. This rule, φMM0711

4 has P105

149 ≈ 0.8428. The
state-change schema sets for this rule are shown in Figure
2. Even though this search resulted in an improvement, the
performance gap between the best process-symmetric rule,
φMM0711 and φCOE2 is still close to 2%. Is it possible then,
that a process-symmetric rule exists “hidden” in the concep-
tually “messy” φCOE2?

2In inverse lexicographical hexadecimal format, φMM401 is
ffaaffa8ffaaffa8f0aa00a800aa00a8

3The measure P105

149 refers to the proportion of correct classifi-
cations in 105 ICs of length 149

4In inverse lexicographical hexadecimal format, φMM0711 is
faffba88faffbaf8fa00ba880a000a88

!MM0711

{#, #, 0, 0, #, 1, 1}

{1, #, #, 0, #, 1, 1}

{1, 0, #, 0, 1, #, #}

{1, #, 1, 0, #, #, #}

{0, 0, #, 1, 1, #, #}

{0, 0, #, 1, #, #, 0}

{#, #, 0, 1, #, 1, 0}

{#, #, #, 1, 0, #, 0}

RULE Generation Annihilation

Figure 2: E1 schemata prescribing state changes for the CA
rule φMM0711. This CA is process-symmetric.

Process-Symmetry in φCOE2

Figure 3 shows the state-change schema sets for φCOE2.
The performance of this rule is P 105

149 ≈ 0.86. We tested this
rule on two sets of 105 ICs, one with majority ω = 0, the
other with majority ω = 1. Samples were taken from bino-
mial dist. centered around 0.5 (most difficult cases to clas-
sify). The performances were, respectively, P 105

149 ≈ 0.83
and P 105

149 ≈ 0.89. Thus, even though on average this is
the best CA rule for the DCT, it performs much better when
there is a majority of “1’s” in the ICs.

!COE2

g1 {1, 0, 1, 0, #, #, #}

g2 {1, 0, #, 0, #, 1, 1}

g3 {1, 1, #, 0, 1, #, #}

g4 {1, #, 1, 0, 1, #, #}

g5 {1, #, 1, 0, #, 0, #}

g6 {1, #, #, 0, 1, 1, #}

g7 {1, #, #, 0, 1, #, 1}

g8 {#, 0, 0, 0, 1, 0, 1}

g9 {#, 0, 1, 0, 0, 1, #}

g10 {#, 0, #, 0, 0, 1, 1}

g11 {#, 1, 1, 0, 1, #, 0}

g12 {#, 1, 1, 0, #, 0, #}

a1 {0, 0, 1, 1, 1, 1, #}

a2 {0, 0, #, 1, #, 1, 0}

a3 {0, 1, 0, 1, 1, #, #}

a4 {0, #, 0, 1, #, #, 0}

a5 {1, 0, 0, 1, #, 0, #}

a6 {#, 0, 0, 1, #, #, 0}

a7 {#, #, 0, 1, 1, 0, #}

a8 {#, #, 0, 1, #, 0, 0}

a9 {#, #, #, 1, 0, #, 0}

RULE Generation Annihilation

Figure 3: E1 schemata prescribing state changes for φCOE2.
This is the highest-performing rule for the DCT. φCOE2 is
not process-symmetric.

We claim that this divergence in behavior is due to the fact
that φCOE2 is not process-symmetric. Evaluation of split
performance on the ten best rules for the DCT supports this
hypothesis (see Table 1). The difference between the two bi-
ased performance measures for the non-process-symmetric
rules is one or two orders of magnitude larger than for the
process-symmetric rules. This indicates that process sym-
metry seems to lead to more balanced rules—those that re-
spond equally well to both types of of problem.

It is then reasonable to ask: Is there a process-symmetric
rule in the conceptual vicinity of φCOE2, whose perfor-
mance is as good (or higher) than the performance φCOE2?
To answer this question we pursued a number of tests. First,
we looked at the CA rule resulting from keeping all anni-
hilations in φCOE2, and using only their process-symmetric
generations. The performance of that rule was P 105

149 ≈ 0.73.
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!
GKL

0.8135

!
Davis95

0.8170

!
Das95

0.8214

!
GP1995

0.8223

!
DMC

0.8439

!
COE1

0.8283

!
COE2

0.8337

!
GEP1

0.8162

!
GEP2

0.8201

!
MM0711

0.8428

0.8143

0.8183

0.8210

0.8245

0.7024

0.8742

0.888

0.8173

0.8242

0.8429

P10
5

149
M"0P10

5

149
M"1

0.0008

0.0013

0.0004

0.0022

0.1415

0.0459

0.0543

0.0011

0.0041

0.0001

P. DIFF.

Table 1: Split performances of the ten best DCT rules.
Darker rows correspond to process-symmetric rules; white
rows refer to non-process-symmetric rules. For the latter,
there is a significant difference in performance: φDMC is
better at classifying cases where state 0 is in the majority;
φCOE1 and φCOE2 are considerably better at solving the
problem when state 1 is in the majority. The difference be-
tween the split performance measures is one to two orders
of magnitude larger for the non-process-symmetric rules.

A second test was the reverse of the first one: keeping
all generations of φCOE2, and using only their process-
symmetric annihilations. The resulting rule has a perfor-
mance P 105

149 ≈ 0.47.

For the next test, we looked at the degree of process sym-
metry already existing in φCOE2. To find this we used
the matrix-form representation of φCOE shown in Figure
4. Each column contains each of the 128 LNCs for a one-
dimensional binary CA rule and neighborhood radius three.
These LNCs are not arranged in lexicographical order, in-
stead they are arranged as process-symmetric pairs: the first
and last LNCs are process-symmetric, the second, and next
to last are also process-symmetric and so on, until the two
LNCs in the center are also process-symmetric. Each row
corresponds to the E1 (wildcard) state-changing schemata
for φCOE2. The first nine rows correspond to the annihila-
tion schemata, and the subsequent ones the twelve genera-
tion schemata for φCOE2.

In any of the first nine rows, a shaded-cell represents two
things: (1) that the LNC in that column is an annihilation;
and (2) that the LNC is part of the E1 schema labeled in
the row where it appears. The twelve rows for generation
schemata are reversed. This makes it simple to inspect visu-
ally what process-symmetric LNCs are present in the rule,
which is the case when for a given column, there is, at least,
one cell shaded in one of the first nine rows (an active anni-
hilation), and at least one cell shaded in one of the bottom
nine rows (an active generation). Let the schemata×LNC

binary matrix representation in Figure 4 be denoted by A,
where all shaded elements in the figure represent 1s and the
rest are 0s. In the figure the lighter colored matrix elements
are used to distinguish annihilation processes from genera-
tion processes, which are shown in a darker color.

Given the ordering of elements in the columns of Fig-
ure 4, if a generation row is isolated, and then reversed,
the result can be matched against any of the annihilation
rows to calculate the total degree of process symmetry be-
tween the two schemata represented in the two rows. A total
match means that the original generation schema is process-
symmetric with the matched annihilation schema. A partial
match indicates a degree of process symmetry. This par-
tial match can be used by Aitana’s accommodation mecha-
nism to force the highly process-symmetric pair into a fully
process-symmetric one, keeping the modified representation
only if there is no loss of performance.

More concretely, the degree of process symmetry exist-
ing between two schemata Sg and Sa prescribing opposite
processes (a generation schema, and an annihilation respec-
tively) is calculated as follows:

1. Pick rows Sg and Sa from matrix A such that Sg corre-
sponds to a generation and Sa to an annihilation.

2. Reverse one of the rows (e.g. Sa). This makes it possi-
ble to compare each LNC (the columns) with its process-
symmetric pair, by looking at the ith element of each of
the two row vectors.

3. Calculate the degree of process symmetry as:

2× Sg · Sa

|Sg| + |Sa|

where, the dot product of binary vectors, Sg · Sa is the
number of component-matches; and |S| is the number of
ones in a binary vector.5

All the generation rows were matched against all the an-
nihilation rows in matrix A, recording the proportion of
matches found. Table 2 shows the results of this matching
procedure (only highest matches shown). The darker rows
correspond to schema pairs that are fully process-symmetric.
The first three light gray rows (with matching score 66%)
show an interesting, almost complete process symmetry sub-
set, involving generation schemata g1, g4 and g5, and anni-
hilation schema a9.

Using the accommodation mechanism in Aitana, we
“generalized” the schemata g1, g4 and g5 into the more
general process symmetric pair of a9 (that encompasses

5While |x| is the notation typically used for cardinality of sets,
here, we use it to represent the 1-norm, more commonly denoted
by ||x||1.
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a3

a5

a7

a9

g9
g10
g11
g12

Figure 4: E1 processes for φCOE2, without the preservations. Here, the generation rows have been reversed, so that it becomes
much easier to determine what LNCs do not have their process-symmetric LNC active. The dotted vertical lines show these
LNCs. Each of these state-change prescriptions were removed in φCOE2clean .

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

Generation
schemata

a9

a2

a8

a9

a9

a6

a4

a3

a2

a1

Annihilation
schemata

66%

100%

100%

66%

66%

100%

100%

66%

25%

66%

Matching 
score

g11 a5 50%

g12 a9 33%

Table 2: Degree of process symmetry amongst all the gener-
ation and annihilation schemata in φCOE2. Gray rows indi-
cate full process symmetry, pink rows indicate a high degree
of process symmetry

the three of them), and tested the resulting CA rule. We
also “specialized” by breaking a9 into the three process-
symmetric schemata of g1, g4 and g5, with performance ,
P 105

149 < 0.6 in both cases.

Still working with the degree of process-symmetry in
φCOE2, it is possible to extract a matrix representation A′,
containing only those LNC process-symmetric pairs in A. In
other words, each column in A′ will be exactly as in A, as
long as the column contains 1s for at least one annihilation
and one generation row, otherwise the column is all 0s (the
latter is the case for all columns marked with dotted lines in
Figure 4). We will refer to the rule represented by the ma-
trix A′ as φCOE2−clean—the CA rule that preserves all the
process symmetry in φCOE2. The “orphan” LNCs removed
from A are shown in Figure 5 (white background). Their
process-symmetric pairs are in the same Figure (gray back-
ground). We will refer to this set of LNC pairs as R.

The last test to be reported consisted in evaluating the CA
rules derived from (1) taking φCOE2−clean as base (each
time); (2) adding to it a number of process symmetric pairs
from R to it; and (3) evaluating the resulting CA rule. This
set contains all CA rules that are the same as φCOE2−clean,
but adding one of the twelve pairs in R; it also contains all
the rules that are as φCOE2−clean, including combinations
of two pairs from R (66 rules), and so on. The total number
of CA rules derived in this way is 40966.

The performance of the 4096 rules is shown in Figure 6.
Each column shows the performance of the subsets of rules
adding one pair of LNCs from R, subsets adding combina-
tions of two pairs, and so on. Note that the median perfor-
mance in each subset decreases for rules containing more
pairs of LNCs from R. However, the performance of the
best CA rules in each subset increases for all subsets includ-
ing up to six LNC pairs, and then decrease.

One of the tested CAs, containing six LNC pairs added
to φCOE2−clean, is the best process-symmetric CA for the
DCT with P 105

149 ≈ 0.85. The schemata for this CA,
φMM0802, are shown in Figure 7. φMM0802, has a per-
formance that is very close to that of the second highest-
performing rule known for the DCT, φCOE1 (see Marques-
Pita et al., 2006). However, φMM0802 is the highest-
performing CA for split performance for the DCT—which
means that it classifies correctly the two types of IC it can
encounter (majority 1s or majority 0s).

6Note that each of the rules tested comes from adding a particu-
lar combination of pairs each time to the original φCOE2−clean, as
opposed to adding pairs of LNCs cumulatively to φCOE2−clean.

Artificial Life XI 2008  395 



{0, 1, 1, 0, 1, 0, 1}

{0, 1, 1, 0, 1, 0, 0}

{0, 1, 1, 0, 0, 0, 1}

{0, 1, 1, 0, 0, 0, 0}

{0, 0, 1, 0, 0, 1, 1}

{0, 0, 1, 0, 0, 1, 0}

{0, 1, 0, 1, 0, 0, 1}
{1, 1, 0, 1, 0, 0, 1}
{0, 1, 1, 1, 0, 0, 1}
{1, 1, 1, 1, 0, 0, 1}
{0, 0, 1, 1, 0, 1, 1}
{1, 0, 1, 1, 0, 1, 1}

Generation Annihilation

{0, 1, 0, 0, 1, 1, 1}
{1, 1, 1, 0, 0, 1, 1}
{1, 1, 1, 0, 0, 1, 0}
{0, 1, 0, 0, 1, 1, 0}
{0, 1, 0, 0, 1, 0, 1}
{0, 1, 0, 0, 1, 0, 0}

{0, 0, 0, 1, 1, 0, 1}

{0, 0, 1, 1, 0, 0, 0}

{1, 0, 1, 1, 0, 0, 0}

{1, 0, 0, 1, 1, 0, 1}

{0, 1, 0, 1, 1, 0, 1}

{1, 1, 0, 1, 1, 0, 1}

Figure 5: The set R of twelve LNCs in φCOE2 (white back-
ground) for which their corresponding process-symmetric
LNCs are preservations in the original CA rule (italics).
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Process-symmetric tested sets

Figure 6: Performances of the 4096 process-symmetric CAs
in the immediate conceptual vicinity of φCOE2. The best
specimen CA is φCOE2clean plus one of the combinations
of 6 process-symmetric pairs from R.

Conclusions and Discussion

Besides the two new best process-symmetric CA rules for
the DCT, perhaps the most important conclusion from this
work is concerned with the fact that representational re-
description gives us a new method to relate the local inter-
actions of automata in networks, to the dynamic patterns of
collective computation of the network as a whole. Indeed,
this constitutes an unexpected advance. When working with
implicit CA rules and genetic algorithms, Mitchell et al.
(1993) noted that there is no geometry in the space of CA
rules represented as look-up state transition tables. Specif-
ically, there was no way of knowing the effect of changing
one output in the rule table on its ability to perform a specific
collective computation. However, using the conceptually re-
described search spaces we explored here, this is clearly not
the case. Conceptual manipulations of CAs in this space re-
sult in CAs with similar dynamics—although not necessar-
ily always high performance (Marques-Pita et al., 2006). We

!MM0802

 {1, 0, 1, 0, #, #, #}

 {1, 0, #, 0, #, 1, 1}

 {1, 1, #, 0, 1, #, #}

 {1, #, 1, 0, 1, #, #}

 {1, #, 1, 0, #, 0, #}

 {1, #, #, 0, 1, 1, #}

 {1, #, #, 0, 1, #, 1}

 {#, 0, 0, 0, 0, 1, 1}

 {#, 1, 0, 0, 1, #, #}

 {#, 1, #, 0, 1, 0, #}

 {#, 1, #, 0, 1, #, 0}

 {#, #, 0, 0, 1, 0, 1}

 {0, 0, 1, 1, 1, 1, #}

 {0, 0, #, 1, #, 1, 0}

 {0, 1, 0, 1, 1, #, #}

 {0, #, 0, 1, #, #, 0}

 {1, #, 0, 1, #, 0, #}

 {#, 0, 0, 1, #, #, 0}

 {#, 1, 0, 1, #, 0, #}

 {#, 1, #, 1, 0, #, 0}

 {#, #, 0, 1, 0, #, 0}

 {#, #, 0, 1, 1, 0, #}

 {#, #, 0, 1, #, 0, 0}

 {#, #, #, 1, 0, 1, 0}

RULE Generation Annihilation

Figure 7: Schemata prescribing state changes for φMM0802,
the best process-symmetric rule for the DCT.

are not claiming process-symmetry is the important discov-
ery per se. Instead, the result we consider to be an important
advance is the discovery of conceptual structure in a form
of complex network—since, by representing concepts (e.g.
process-symmetry), it becomes possible to reason about col-
lective computation in new, less perplexing ways.

Here we showed that the ability to redescribe the dynam-
ics of automata networks into a form that is both easier to
understand and to search for new robust behaviors, was very
useful for the DCT and CA rules at large. Our results in-
dicate that there seems to exist conceptual structure in the
dynamics of networks of automata that perform collective
computation. But it should be emphasized that our method-
ology is not applicable only to CAs and the DCT; it is appli-
cable the study of other complex networks of automata. We
are currently exploring the conceptual structure in biochem-
ical networks modeled using Boolean networks. If we can
understand the dynamics of, say, a gene regulation network
as a form of computation and we uncover the dynamical mo-
tifs responsible for that computation, not only do we gain
a greater insight about the function of the network, but we
can also discover similar network configurations that can be
more robust, or those that lead to alternate behaviors more
easily. This could prove useful in understanding phyloge-
netic differences, or differences from wild-type phenotypes.
Thus, while here we only present results for the DCT in CA,
the approach is quite relevant for both Artificial Life and
Computational Biology.
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