Differential coordinates
for local mesh morphing
and deformation

Marc Alexa

Technische Universitit Darmstadt, GRIS,
Rundeturmstr. 6, 64283 Darmstadt, Germany
E-mail: alexa@gris.informatik.tu-darmstadt.de

Published online: 14 February 2003
© Springer-Verlag 2003

Mesh vertices are usually represented with
absolute coordinates. In some applications,
this leads to problems for local operations
because of global misalignment. We inves-
tigate the idea of describing mesh geometry
in a differential way. These differential co-
ordinates describe local properties of the ge-
ometry rather than the absolute position in
space. The main application discussed here
is the insertion of shape features from one
mesh into another, given the meshes have
the same connectivity. We regard this as lo-
cal control over mesh morphing. Differential
coordinates also prove useful for free-form
modeling of meshes.

Key words: Meshes — Morphing — Local
frames — Free form deformation

The Visual Computer (2003) 19:105-114
Digital Object Identifier (DOI) 10.1007/s00371-002-0180-0

1 Introduction

Meshes have become a widespread and popular rep-
resentation of models in computer graphics. A fun-
damental modeling operation is to change the local
shape of a mesh. Here, we consider two ways of
altering the mesh geometry: first, mesh morphing
adapted to modify the shape only locally; and sec-
ond, free-form deformation.

Mesh morphing, typically, aims at gradually trans-
forming one given mesh into another. In this work,
we describe techniques to add space—time controls to
the morph, so as to morph only parts of the meshes or
different features at different instances of time.

Mesh morphing is commonly understood as a three
step process [2]. The first two steps result in one
mesh connectivity with two geometries attached to
the vertices. Using this description it should be possi-
ble to change only parts of the geometry from source
to target. This enables a user to insert features from
one mesh into another.

Free-form deformation allows users to freely trans-
form parts of a shape. We believe that an easy way to
control the deformation is to specify only some scat-
tered vertices, while the general shape of the mesh
stays as close as possible to the original, however,
given the additional constraints.

In both instances, absolute Euclidean coordinates
cause problems. For local mesh morphing the prob-
lem is due to the fact that corresponding features
might not have the same position in space and, thus,
interpolation of absolute coordinates could lead to
undesirable effects. This problem is illustrated in
Fig. 1. The shapes on the left are the source and target
geometry of one mesh. The idea is to locally change
the geometry of the baby’s face so that the nose takes
the shape of the boy’s. Locally interpolating vertex
coordinates leads to the shape depicted middle right,
which is clearly not usable. Note that the faces are
overall aligned in space and that the misalignment of
the noses results from different relative positions in
the faces.

For free-form deformation, it would be desirable
that coordinates capture the local shape rather than
global position. This is because deformations typi-
cally change the global shape. If coordinates were
local, they would not be affected by global deforma-
tions and, thus, they would be useful in solving the
fitting problem posed by the user’s contraints.

For these reasons, we propose differential coordi-
nates, which describe the relation of vertices to their
local neighborhood. This allows inserting shape fea-
tures from one mesh into another or placing global

106 M. Alexa: Differential coordinates for local mesh morphing and deformation

98

methods presented here

X

Fig. 1. Given a mesh with two geometries so that corresponding features (eyes, ears, nose, mouth, etc.) are represented by
the same vertices, if one feature (in this example the nose) is morphed towards the target geometry in absolute coordinates,
different positions in space lead to undesirable effects. The shape on the right shows a more pleasing result achieved with the

constraints on some mesh vertices while simply fit-
ting the differential coordinates.

2 Local mesh morphing framework

A mesh M is described by the connectivity K of its
vertices, edges, and faces and geometric positions V
of the vertices. The geometric realization ¢y of the
mesh maps {V, K} to the set of all points comprising
the mesh and, thus, describes the shape of the object
represented.

Given two meshes My and M, the goal of clas-
sical mesh morphing is to produce a family of
meshes M(7), t € [0, 1] so that ¢(My) = (M (0))
and ¢(M;) = ¢(M(1)). The general idea for achiev-
ing this goal is to generate one mesh topology that
can be deformed to the shapes of the source and
target shapes: M () = {V(?), K}. To generate this
family of shapes, three steps are necessary:

1. Finding a correspondence between the meshes.
More specifically, computing maps vy, 11 so that
Yo(Vo) € ¢p(M1) and ¥ (V1) € ¢(Mo), yielding
a barycentric coordinate for each vertex with re-
spect to a simplex in the other mesh. This step
is typically performed by using 2D parameteri-
zations of the meshes. Particularly important is
the alignment of automatically detected or user-
specified features of the meshes.

2. Generating a new, consistent mesh topology K
together with two geometric positions V(0), V(1)
for each vertex so that the shapes of the original
meshes are reproduced. This is typically done so
that both vertex sets are contained in the new ver-
tex set, both edge sets are contained in the new

edge set, and new vertices are generated where
edges from different meshes cross.

3. For classical mesh morphing, the goal in this step
is to create paths V(7), t €]0, 1[for the vertices.
In our context, however, we intend to compute
vertex positions from the original geometric po-
sitions V(0), V(1), where ¢ varies among the ver-
tices.

In the following, we briefly discuss each of the
above-mentioned steps. For the first two, recent work
is reported; for the third, basic approaches are ex-
plained. A more detailed state-of-the-art approach
can be found in [2].

2.1 Correspondence of shapes

Finding a 2D parameterization of the vertex-edge
graphs of the input meshes results in a correspon-
dence between the surfaces. We distinguish the pa-
rameterization of genus 0 meshes in a suitable pa-
rameter domain and the isomorphic dissection of ar-
bitrary meshes into patches homeomorphic to a disk,
which are parameterized independently in the plane.
Several techniques for computing the paramteriza-
tions of topological disks [8,9,31] and topologi-
cal spheres [1,5,14,18,20,28] exist. Embedding
topological disks is important for morphing tech-
niques that generate isomorphic dissections of sev-
eral meshes [4,7,12, 15,21, 32] with the help of the
user.

Feature alignment is important to yield pleasing
morphing results. Features could be either selected
by the user or shape features (such as curvature
and normals). Specifically, most dissection methods
force the user to select corresponding features on

M. Alexa: Differential coordinates for local mesh morphing and deformation 107

the shapes and allow for fine-grained control. Point-
to-point correspondence can also be achieved with
warping methods [1, 6, 32].

2.2 Representation mesh

Given the correspondence information generated in
the first step, a mesh is to be produced that contains
vertices, edges, and faces from both meshes. This
is done by either overlaying the meshes in the pa-
rameter domain or by generating a multiresolution
representation.

If the parameter domain is the plane, the overlay
problem is known as planar map overlay, and sev-
eral algorithms from the computational geometry
literature are applicable. For non-planar parameter
domains, works on morphing offer special solu-
tions [1, 18].

Multiresolution models (e.g. [22]) have recently
been advocated in the literature [21, 25] for the gen-
eration of morphable models. The idea is to remesh
the shape starting from an irregular coarse base mesh
with regular connectivity. Thus, the mesh topology is
given by the refinement operator while the geometry
is given by the original meshes.

2.3 Classical vertex paths

After the computation of one mesh topology K and
two mesh geometries represented by vertex coordi-
nates V(0) and V(1), it remains to compute vertex
coordinates for the intermediate shapes. For a global
transformation, a set of vertex coordinates V(7),t €
10, I[has to be generated, where ¢ is mentally
connected to time and sometimes called transition
parameter.

A simple choice is linear interpolation [12, 18, 32].
A rigid [5, 6] or affine [1] transform prior to linear
vertex interpolation yields better results.

A more general solution is to interpolate an intrinsic
description of the boundary. This approach has been
successfully applied to polygons [26]. However, the
extension to meshes is difficult [29].

Skeleton-based shape interpolation suggests that rea-
sonable vertex paths cannot be found by just ana-
lyzing the boundary of a shape [27]. However, the
extension to 3D is yet to come. Another way of tak-
ing the interior of a shape into account is to gener-
ate isomorphic simplicial complexes of the shapes
and compose optimal simplex morphs to yield vertex
paths [3].

2.4 Spatially non-uniform transition states

In this work, we introduce the idea of local morph
control to mesh morphing. Local morph control is
well known in image morphing as transition con-
trol. Defining the transition of each pixel can be done
very similarly to warping the images; for example,
the transition could be specified for only few points
and scattered-data interpolation techniques are used
to calculate transition information for all points of
the images [23].

Local control requires describing the transition
with more than a single scalar . A general so-
lution for the mesh setting is to assign a transi-
tion parameter to each vertex. We call the vector
of per-vertex transition parameters fransition state
T. If the per-vertex transition parameter is applied
to a vertex representation, 7 has to be a diago-
nal matrix containing the parameters as diagonal
elements.

The idea of the transition state is to apply each
transition parameter to the vertex representation in-
dependently. Linear interpolation of absolute vertex
coordinates would be represented as (I — T)V(0) +
TV(1), yet this would lead to the problems already
mentioned and depicted in Fig. 1. From the tech-
niques for path generation only [3] seems to gener-
ate a shape representation suited for spatially non-
uniform interpolation (namely, affine transforms per
simplex). However, this approach tends to be numer-
ically difficult to handle for large meshes.

For the special case of implementing one feature
from one mesh into another, Kanai et al. [16] at-
tach an affine transform to the feature. However,
if more than one feature is present and some fea-
tures overlap, this is not possible anymore. Here,
we want the shape to be completely defined by the
transition state (and not by the definition of a fea-
ture), as this might be an interesting description for
shapes.

2.5 More than two meshes

The conceptual extension of the framework to more
shapes is straightforward. Given meshes M; =
(V;, K;), acommon topology K together with vertex
sets V(e;) is established. The vertex sets form a base
of a space, which is reflected by using canonical base
vectors e; as indices. A morphed shape (V(s), K) is
represented by a vector s = (59, 51, . ..), reflecting
the shares of the meshes M, My, ...

108 M. Alexa: Differential coordinates for local mesh morphing and deformation

Not all techniques presented in this framework are
equally suited to being extended to more meshes.
The correspondence procedure discussed in Sect. 2.1
seems to be relatively easy to extend. All meshes
are embedded in the given parameter domain, which
leads to barycentric representation of the original
vertices. If each set of original vertices V; needs to
be mapped to all other meshes M ;, i # j, the com-
plexity would grow quadratically with the number of
meshes. However, this is not necessary if a remesh-
ing strategy is used to generate a consistent mesh
topology (see Sect. 2.2, last paragraph). This pro-
cedure generates the same set of vertices over all
shapes, thus, the complexity is linear to the number
of meshes times the number of vertices used in the
remesh, which is the best we can expect. So, the best
way to generate the set {(V(e;), K} is to embed all
meshes in a common parameter domain (spherical
or piecewise linear) and then remesh to the desired
accuracy.

The transition state description now extends to com-
pute combinations of several vertex vectors. Global
linear vertex combination is easily extended:

V(s) =) siV(e) (1)

The extension of transition states, where each ver-
tex has its own transition parameter, leads to a vec-
tor of matrices; that is, each scalar s; is replaced by
a matrix ;.

3 Mesh deformation approach

Mesh deformation, as it is viewed here, is simply
another point of view of the framework described
above. For local morphing, intrinsic constraints
should be used; while for free-form deformation, we
use explicit constraints.

More specifically, we wish the user to specify the ab-
solute position of several mesh vertices. We use the
differential representation of the mesh to compute
a global least-squares fit constrained to the user spec-
ified vertices.

Current mesh deformation techniques typically use
multiresolution modeling techniques [8, 13,19, 24,
33]. The current level controls the effect of modify-
ing the position of a particular vertex. Modifications
on a coarse level affect large regions of the shape;
while modifications on a detailed level change the
shape only locally.

In our approach, the region of influence is implic-
itly defined by the set of constrained vertices. Each
constraint is exactly satisfied, which means that the
influenced region could be easily defined as the set of
non-constrained vertices.

4 Differential representation
of a mesh

The main idea of this work is to represent vertex
coordinates with respect to their neighbors in the
mesh. Given a vertex and a neighborhood N (i),
the position should be described relative to the po-
sitions of vertices in this neighborhood. Here, we
mostly consider the neighborhood -V (i) to be a one-
neighborhood ring, i.e. N (i) = {j|(i, j) € K} (see
Fig. 2). Nevertheless, the techniques presented are
generally applicable to any shape of sufficiently
large neighborhood.

Further, the representation of a vertex should be lin-
ear in the absolute coordinates. This is because both
the transformation from absolute to relative coordi-
nates, and vice versa, should be numerically stable
to compute. A linear mapping leads to solution of
linear systems for each of the transforms, which is,
compared to other possibilities, the simplest possible
solution.

The relative representation aims at making the shape
of the mesh invariant to translation or, ideally, in-
variant under affine transforms. If a vertex were rep-
resented in the affine space of its neighbors, invari-
ance under affine transforms would trivially follow.
Floater and Gotsman have shown how to use such
representations to morph planar triangulations [10].
The extension to triangulations in R* is difficult
because vertices of the neighborhood are not nec-
essarily affinely independent in R3. We introduce
a translation-invariant scheme and briefly elaborate
on the affinely independent scheme in the following
sections.

4.1 Laplacian representation

A simple scheme that achieves invariance under
translation works as follows: Let v; be the vertex po-
sition to be represented. Compute the center of mass
of the neighbors

Vi=) :

L NG

Vi, (2)

M. Alexa: Differential coordinates for local mesh morphing and deformation 109

a

centroid of its neighbors

Fig. 2. A vertex (black) and its neighborhood ring. In Laplacian coordinates a vertex is represented by the difference to the

b

and let the new representation be the difference of
this center of mass to the original position:

Wi = Vi—vi. (3)

For an illustration assuming A (i) to be a one-
neighborhood see Fig. 2. Note that this representa-
tion is robust in the sense that it does not suffer from
degeneracies in the input points. In particular, the
neighbors of v; might be in non-convex positions,
coplanar, collinear, or even collapsed to one point.
Their center of mass is always defined and, thus, the
new representation.

If we write all vertices as a vector, the forward trans-
formation (from absolute to relative coordinates) can
be represented in matrix form. Let A be the adja-
cency matrix of the mesh and D be a diagonal ma-
trix with d;; = 1/|N (i)|. The transform is then rep-
resented by L = I — DA. Note that L is a Laplacian
of the mesh [30]. This is an important observation as
it generalizes the approach to shape representations
other than meshes, such as parametric or implicit
functions.

The backward transformation (from relative to ab-
solute coordinates) is, by construction, not unique.
It should be uniquely determined up to a transla-
tion. This means, L € R™*™ should have rank m — 1,
which is indeed so. Note that DA is a stochastic as
well as a normal matrix. A stochastic matrix has an
eigenvalue of 1. In addition, the eigenvectors of nor-
mal matrices form a basis of full rank, meaning that
all eigenvalues have multiplicity 1. It follows that
DA has exactly one eigenvalue of 1 and, thus, L has
exactly one eigenvalue of 0.

4.2 Affine independent representation

Representing a vertex v; with respect to its neigh-
borhood N (i) so that the representation is invariant
under affine transforms is straightforward. We have
to solve

vi=) wi)v,)
JEN (D)

so that

Z w;(j)=1. 5)

JEN (D)

This could be rewritten into one linear system us-
ing homogenous coordinates. The system is usually
overdetermined, so we might additionally try to min-
imize the sum of squared weights w;(j). Neverthe-
less, the vertices in N (i) might not form a basis
of R?; in which case, no solution exists. A simple
way to solve the system in any case is SVD [11].
This would automatically minimize the squares of
the weights in the overdetermined case, as well as
providing the best possible answer in the case where
no exact solution exists. In this way, one could define
the forward transformation.

However, if one neighborhood V (i) is not a base of
IR3, this transform loses information about the shape.
In this case the necessary displacement could be
added using a Laplacian coordinate. We have exper-
imented with this idea and found it numerically dif-
ficult to solve. The problem is to differentiate clearly
between cases of degeneration and usable configura-
tions. The problem is delicate because local degrada-
tion has global effects.

110

For this reason, we decided to use the simpler but
more stable Laplacian scheme, which is not invariant
under rotation, scaling, and shearing. Yet, it proved
sufficient for the applications intended here.

4.3 Solving for absolute coordinates

Solving the equation LV = W for V is not possible
in a naive way for two reasons. First, L is singu-
lar; and second, typical meshes will induce matrix
dimensions that make the use of explicit techniques
prohibitive.

The first problem is easy to overcome. It was already
shown that the solution is specified up to a transla-
tion. This means fixing one arbitrary vertex will lead
to a linear system of equations with full rank.

A practical solution of the resulting linear system
should account for the following conditions:

e L is very large and sparse, which prohibits ex-
plicit matrix techniques.

e The equation LV = W has to be solved three
times, i.e. for the x, y, and z vectors.

e In practice, good approximate solutions are known
for V, as morphing changes the shape gradually
and smoothly from one state to another. Know-
ing good approximate solutions calls for iterative
matrix methods.

e For free-form modeling, a least-squares fit is re-
quired.

Iterative schemes like Jacobi or Gauss—Seidel iter-
ation have the advantage that they are easily im-
plemented on the existing mesh data structures. In
addition, they also work stably in the case of least-
squares fitting.

5 Application to mesh morphing

The main idea of this work is to morph by linearly
interpolating Laplacian coordinates rather than ab-
solute coordinates. Since Laplacian coordinates are
linear in absolute coordinates, morphing the whole
shape (i.e. all vertices have the same transition pa-
rameter) will be the same in absolute and Laplacian
coordinates. Yet, if the desired transitions are differ-
ent for subsets of vertices, interpolating Laplacian
coordinates yields more reasonable results.

More precisely, the approach works as follows.
Given a mesh topology K and several geometries
V;. The topology defines a forward transform L

M. Alexa: Differential coordinates for local mesh morphing and deformation

which allows computing Laplacian coordinates W;
for each geometry. A transition state described by
a set of transition state matrices 7; defines the trans-
formed geometry V' by combining the Laplacian
coordinates according to the transition state and then
solving for absolute coordinates:

v (Z T,w,) . ©

In the following, we apply this approach to several
examples, where morphable meshes have been gen-
erated with the techniques described in [1]. For sim-
plicity in the following discussion, we assume to
morph only between two shapes, so a single matrix
T is enough to describe the factors 7y = (I — T') and
Ty =T. A morph, or transition, would be defined
as matrices 7' changing over time. In practice, one
would define several key frames in terms of matri-
ces. Interpolation of key frames is done in matrix
space as interpolation in absolute coordinates has to
be avoided.

Obviously, it is impossible to specify transition ma-
trices by hand. We either need a user interface or
automatic methods.

5.1 GUI for defining transition states

The basic requirement for a GUI is to make it easy
to define a region of interest (ROI). A ROI is a part
of the shape’s boundary, for which the transition state
will be modified. Modification is performed relative
to the current overall transition state of the shape.
We have found it very straightforward to specify
a ROI by two rings of mesh edges, where the outer
ring bounds a region which contains the inner ring.
These two rings divide the mesh into three parts. The
region inside the inner ring is subject to the modifi-
cations defined by the user, while the region outside
the outer ring stays unchanged. The region between
the rings smoothly adapts between changed and un-
changed region and could be empty.

The boundaries could be chosen by “drawing” on the
shape. In our implementation, we allow the user to
pick a vertex as the center of interest and to specify
two radii which define the rings. The rings are found
as sets of vertices with the specified distance us-
ing Dijktstra’s algorithm starting from the center of
interest.

To quantify the necessary modifications to the per-
vertex transition parameters, we define a distance

M. Alexa: Differential coordinates for local mesh morphing and deformation

111

o [+ ~ @

e | e | e | P

Plelple

piIPIPLIR

(N At
SRNRRRRRERRERRE

_;P JP {ﬁ ’ﬁ

glele e

AN AR (A} A
AR R RN RN RRRRRER

rm
L.

S

&

\ g

S
~

(AT
LFENRENRR

Y
o
£l

'
SERERRR

Fl
f

fr. e -

F ?

1\ |
SENNRNE AENENEN

4
al
*

L) At
SERNRRN RARNRRE

[
RARERRE

Fig. 3. A morph sequence from an egg to a model of a giraffe generated from several transition states. Transitions states were
defined using ROIs, where each ROI corresponds to either the tail, one of the legs, the neck including the head, or the body.
Eight transition states were defined, letting the different parts of the body pop out one after the other

value d, which is O inside the inner boundary, 1 out-
side the outer boundary, and represents the distance
from the boundaries between them. Again, Dijkstra’s
algorithm is used to compute the distances.

Assume the user specifies a new transition state T for
the ROI. The new overall transition state 7" is defined
based on the current transition state 7" as
T'=1—-d)T +dT. (7)
In a typical modification process, the user selects
several ROIs and changes their respective transition
states one after the other.

This technique was used for generating a morph se-
quence from the shape of an egg to the shape of
a giraffe (see Fig. 3). The idea was to let parts of the
body pop out of the egg one after the other. This was
achieved by defining ROIs for the different parts of
the body and using them to specify transition states.
A smooth transition sequence was produce by inter-
polating the key transition states.

An explicit example of modeling using spatial morph
control is depicted in Fig. 4. The intent was to model
Pegasus, i.e. a horse with wings. One easily finds
polyhedral models of horses and animals with wings.

Using ROIs around the wings it is easy to define
a transition state which yields the desired result.

In these examples, morphing is performed between
rather different shapes. An interesting application
arises from locally morphing among different ver-
sion of the same shape. In particular, think of differ-
ent versions representing only parts of the spectrum
of the mesh. The eigenvectors of the Laplacian L
form a basis, which is the equivalent to a Fourier
basis of a mesh [17]. This basis could be exploited
to define several band-limited versions of the shape.
Locally morphing among these shapes has the effect
of alocal spectral filter.

5.2 Spatially dependent transition states

Instead of defining the transition state of the shape
explicitly using ROIs, the transition state could be
defined implicitly. In particular, the transition state
might be a function of absolute coordinates. This
makes several interesting and important effects pos-
sible, e.g. a plane cutting the shape into parts with
different transition states.

The definition of a transition state from absolute co-
ordinates would involve a function that maps points

112 M. Alexa: Differential coordinates for local mesh morphing and deformation

5

Fig. 4. Using spatial control for modeling. Pegasus is modeled by morphing between models which comprise its features.
Local morph control is used to define a transition state so that only the wings of the duck appear on the horse
Fig. 5. Defining transition states using spatial constraints. Here, a plane is used to split the shape into two parts corresponding

to one of the two source shapes

in R to weights defining how to combine Lapla-
cian coordinates in this point. However, using Lapla-
cian coordinates, the global positioning of the shapes
is lost. We, therefore, define that the source shapes
as well as the generated shape have their centers of
mass at the origin of R3. Nevertheless, in the gen-
eral case, the system of equations to be solved will be
non-linear.

We resort to a simple heuristic to define a transition
state. The absolute coordinates of vertices for each
of the source shapes define a transition state. These
transition states are averaged to yield the final transi-
tion state.

This definition has the advantage that smooth
changes of the spatial distribution lead to smooth
changes in the shape. For example, assume the user
wants to move a plane through a shape so that the two
parts correspond to two source shapes. The heuristic
given above assures that moving the plane will grow
one region and shrink the other, as desired.

Several examples of defining transition states from
absolute coordinates are shown in Fig. 5. A mor-
phable model of a cow/pig is cut by a plane in two
positions. Rather than a sequence, several models are
presented showing that spatial morph control could
be used for modeling. One can imagine how many

different creatures could be modeled with virtually
no effort using this approach.

5.3 Automatic transition sequences

The basic idea is to start the transition at one or
several points of the shape and then to “grow” re-
gions representing the target shape until the shape is
“covered”. In this process, the graph representing the
mesh can be exploited.

Nice effects result from “flooding” the mesh, i.e.
traversing the graph breadth-first and setting each
visited vertex to its target coordinate.

Spatial effects can be achieved as was described in
the previous section.

6 Application to free-form modeling

As has been mentioned, the idea for free-form
modeling using differential coordinates is to least-
squares fit the original representation given a set of
constraints in terms of absolute vertex coordinates.
Given a mesh (K, V), this defines the forward trans-
form L and, thus, the Laplacian representation W.
We assume the user constrains a set of vertices v;.

M. Alexa: Differential coordinates for local mesh morphing and deformation 113

229

Fig. 6. Using Laplacian coordinates for free-form modeling. The model of a boy’s face is deformed. First, just the tip of
the nose is displaced. By defining a set of free vertices, which are relaxed to least-squares fit their Laplacian coordinates,
different parts of the face could be affected by the displacement

The idea of a least-squares fit V' is to minimize the
squares of actual Laplacian coordinates; that is,

(LV' —W)? ®)

is minimized, which is computed by setting the gra-
dient over the free vertices to 0. This leads to a linear
system in the free vertices. In practice, we use, again,
a relaxation method to solve for the solution vector,
however, with the constrained vertices unchanged.
In order to specify fixed vertices, we found it conve-
nient to use ROIs, again defined by an inner and outer
ring. Vertices outside the outer ring are fixed to their
original position. Vertices inside the inner boundary
can be moved by the user. The remaining vertices
are free and will be computed using the linear least-
squares approach.

An examples is depicted in Fig. 6. In the face of
a young boy the nose tip is displaced. The remaining
vertices are relaxed to approximately fit their Lapla-
cian coordinates using varying sets of free vertices to
achieve different effects.

7 Conclusions

We have demonstrated the use of differential mesh
coordinates. The representation eases local mesh
modeling tasks. Specifically, Laplacian coordinates
are introduced, which seem to be well suited for
the task of modeling. The advantages of Laplacian
coordinates are that they are independent of transfor-
mations of the shape and are rigorously defined (i.e.
tolerate degeneracies in the mesh).

However, Laplacian coordinates are sensitive to scal-
ing and rotation of the shape. This could be a prob-
lem if corresponding regions of shapes have different

size or orientation despite the fact that shapes are
overall reasonably aligned. A representation of co-
ordinates as an affine sum of neighboring vertices
would be insensitive to affine transforms, however,
has be proven to be numerically difficult to handle.
In the future, we will investigate this problem and try
devise an affine invariant representation scheme.

Acknowledgements. Thanks to Daniel Cohen-Or, Craig Gotsman, Jarek
Rossignac, Luis Velho for their stimulating work and helpful discus-
sions.

References

1. Alexa M (2000) Merging polyhedral shapes with scattered
features. Vis Comput 16(1):26-37

2. Alexa M (2002) Recent advances in mesh morphing. Com-
put Graph Forum 21(2):173-196

3. Alexa M, Cohen-Or D, Levin D (2000) As-rigid-as-possible
shape interpolation. In: Proceedings of SIGGRAPH 2000.
ACM SIGGRAPH, New York, pp 157-164

4. Bao H, Peng Q (1998) Interactive 3D morphing. Comput
Graph Forum 17(3):23-30

5. Cohen-Or D, Carmel E (1998) Warp-guided object-space
morphing. Vis Comput 13(9-10):465-478

6. Cohen-Or D, Solomovici A, Levin D (1998) Three-
dimensional distance field metamorphosis. ACM Trans
Graph 17(2):116-141

7. DeCarlo D, Gallier J (1996) Topological evolution of
surfaces. In: Proceddings of Graphics Interface '96, Cana-
dian Information Processing Society/Canadian Human-
Computer Communications Society, pp 194-203

8. Eck M, DeRose T, Duchamp T, Hoppe H, Lounsbery M,
Stuetzle W (1995) Multiresolution analysis of arbitrary
meshes. In: Proceedings of SIGGRAPH 95. ACM SIG-
GRAPH, New York, pp 173-182

9. Floater MS (1997) Parametrization and smooth approxima-
tion of surface triangulations. Comput Aided Geom Des
14(3):231-250

10. Floater MS, Gotsman C (1999) How to morph tilings injec-
tively. J Comput Appl Math 101:117-129

114

11.

20.

21.

22.

23.

24.

M. Alexa: Differential coordinates for local mesh morphing and deformation

Golub GH, Van Loan CF (1989) Matrix computations, 2nd
ed. Johns Hopkins series in the mathematical sciences,
vol 3. Johns Hopkins University Press, Baltimore, Md.

. Gregory A, State A, Lin M, Manocha D, Livingston M

(1998) Feature-based surface decomposition for correspon-
dence and morphing between polyhedra. In: Computer Ani-
mation "98, pp 64-71

. Guskov I, Sweldens W, Schroder P (1999) Multiresolu-

tion signal processing for meshes. In: Proceedings of SIG-
GRAPH 99. ACM SIGGRAPH, New York, pp 325-334

. Kanai T, Suzuki H, Kimura F (1998) Three-dimensional

geometric metamorphosis based on harmonic maps. Vis
Comput 14(4):166-176

. Kanai T, Suzuki H, Kimura F Metamorphosis of arbitrary

triangular meshes. IEEE Comput Graph Appl 20(2):62-75

. Kanai T, Suzuki H, Mitani J, Kimura F (1999) Interac-

tive mesh fusion based on local 3D metamorphosis. In:
Graphics Interface 99, Canadian Information Processing
Society/Canadian Human-Computer Communications So-
ciety, pp 148-156

. Karni Z, Gotsman C (2000) Spectral compression of mesh

geometry. In: Proceedings of SIGGRAPH 2000. ACM SIG-
GRAPH, New York, pp 279-286

. Kent JR, Carlson WE, Parent RE (1992) Shape transforma-

tion for polyhedral objects. Comput Graph (Proceedings of
SIGGRAPH 92) 26(2):47-54

. Kobbelt L, Campagna S, Vorsatz J, Seidel H-P (1998) In-

teractive multi-resolution modeling on arbitrary meshes. In:
Proceedings of SIGGRAPH 98. ACM SIGGRAPH, New
York, pp 105-114

Lazarus F, Verroust A (1997) Metamorphosis of cylinder-
like objects. J Vis Comput Anim 8(3):131-146

Lee A, Dobkin D, Sweldens W, Schroder P (1999) Mul-
tiresolution mesh morphing. In: Proceedings of SIG-
GRAPH 99. ACM SIGGRAPH, New York, pp 343-350
Lee AWF, Sweldens W, Schroder P, Cowsar L, Dobkin D
(1998) Maps: multiresolution adaptive parameterization of
surfaces. In: Proceedings of SIGGRAPH 98. ACM SIG-
GRAPH, New York, pp 95-104

Lee S-Y, Chwa K-Y, Shin SY, Wolberg G (1995) Image
metamorphosis using snakes and free-form deformations.
In: Proceedings of SIGGRAPH 95. ACM SIGGRAPH,
New York, pp 439-448

Lounsbery M, DeRose TD, Warren J (1997) Multireso-
lution analysis for surfaces of arbitrary topological type.
ACM Trans Graph 16(1):34-73

25.

26.

217.

28.

29.

30.

31.

32.

33.

Praun E, Sweldens W, Schroder P (2001) Consistent mesh
parameterizations. In: Proceedings of SIGGRAPH 2001.
ACM SIGGRAPH, New York, pp 179-184

Sederberg TW, Gao P, Wang G, Mu H (1993) 2D shape
blending: An intrinsic solution to the vertex path prob-
lem. In: Proceedings of SIGGRAPH 93. ACM SIGGRAPH,
New York, pp 15-18

Shapira M, Rappoport A (1995) Shape blending using
the star-skeleton representation. IEEE Comput Graph Appl
15(2):44-50

Shapiro A, Tal A (1998) Polyhedron realization for shape
transformation. Vis Comput 14(8-9):429-444

Sun YM, Wang W, Chin FYL (1997) Interpolating polyhe-
dral models using intrinsic shape parameters. J Vis Comput
Anim 8(2):81-96

Taubin G (1995) A signal processing approach to fair sur-
face design. In: Proceedings of SIGGRAPH 95. ACM SIG-
GRAPH, New York, pp 351-358

Tutte WT (1963) How to draw a graph. Proc Lond Math
Soc 13:743-768

Zockler M, Stalling D, Hege H-C (2000) Fast and intu-
itive generation of geometric shape transitions. Vis Comput
16(5):241-253

Zorin D, Schroder P, Sweldens W (1997) Interactive mul-
tiresolution mesh editing. In: Proceedings of SIGGRAPH
97. ACM SIGGRAPH, New York, pp 259-268

MARC ALEXA leads the
project group 3D graphics com-
puting within GRIS, Technische
Universitdt Darmstadt. He re-
ceived his MS and PhD degrees
in computer science with hon-
ors from TU Darmstadt. His
research interests include shape
modeling, transformation, and
animation, as well as conversa-
tional user interfaces and infor-
mation visualization.

