
Edit this. Download. Other published documents...

NFS with gory details
10 seconds ago by admin

NFS with gory details

Emmanuel Thomé1, 2009
1CACAO, bât. A. INRIA Nancy Grand-Est, 615 rue du jardin botanique, 54602

Villers-lès-Nancy Cedex, France

This worksheet is a draft of a complete example run of (G)NFS, illustrating most
difficulties which typically arise in this algorithm. It goes beyond the presentations
typically found, which generally restrict to the «simplified» case where some
complications of real-life GNFS are carefully avoided. This worksheet takes the
opposite approach. We want to illustrate how NFS works when nearly all bad things
occur:

non monic defining polynomials (on both sides) ;
maximal order of the number field not equal to the order ℤ[f α] ;
unit group of rank ≥ 1 ;
a non-trivial 2-part of the class group.

Note yet that it's sometimes not possible to comprehensively pinpoint all the
difficulties with a single example. The list of further topics at the end of this
worksheet provides a list of directions which are not illustrated in this worksheet.

Setting up the number to factor and
the polynomials

Z=Integers()
ZP.<x>=PolynomialRing(Z)

We'd like to do an attempt to factor something not completely ridiculous, so let's
define a function to decide whether a candidate modulus is worth a try.

def number_is_ok_for_nfs(n):
 if not n.is_squarefree():
 return false
 f=n.factor()

d

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

1 of 24 07/24/09 15:01

 if len(f) != 2:
 return false
 if min([log(x[0])/log(n) for x in f]) > 0.4:
 return true
 return false

Now some code to pick a polynomial pair at random. Given a constrained leading
coefficient for the algebraic polynomial, find a polynomial pair of appropriate
skewness for a number having roughly the requested number of decimal digits.

def flog(x):
 return float(log(float(x)))

def fexp(x):
 return float(exp(float(x)))

def random_nfs_poly_pair(d,lc,nd):
 # d is the degree, nd the number of decimal digits of the integer
to factor.
 # lc is the leading coefficient.
 # returns f, g, and the skewness s
 logm=nd*flog(10)/(d+1)
 logs=(nd*flog(10)-(d+1)*abs(flog(lc)))*2/d/(d+1)
 if logs < 0:
 print "Argh, I prefer positive log-skewness (got %d). Increase
nd or decrease lc" % logs
 cf=[lc]
 s=int(fexp(logs))
 b=abs(lc)
 for i in range(1,d+1):
 b *= s
 cf.append(randint(-b,b))
 cf.reverse()
 b=int(fexp(logm)/sqrt(s))
 cg=[]
 cg.append(randint(-b,b))
 b *= s
 cg.append(randint(-b,b))
 cg.reverse()
 return ZP(cf),ZP(cg),s

Iterate the previous function until we get something reasonable.

def number_field_is_nasty_enough(f):
 t0=cputime()
 lc=f.leading_coefficient()
 d=f.degree()

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

2 of 24 07/24/09 15:01

 f_monic=lc^(d-1)*f(x/lc)
 K.<ah>=NumberField(f_monic)
 nr=sum([u[1] for u in f.real_root_intervals()])
 assert((d-nr) % 2 == 0)
 ns = (d-nr) / 2
 unit_rank = nr + ns - 1
 if unit_rank < 1:
 print "not good (small unit rank (%d)), try again [%.2f]" %
(U.rank(),cputime()-t0)
 return false
 # It's a pity, but we have no way of interrupting this computation
(which internally
 # does something which is much akin to nfs, by the way). We would
like to use for
 # instance alarm(), but that won't work because we're outside
python when crunching.
 h=K.class_number(proof=False)
 if h == 1:
 print "not good (principal, %s), try again [%.2f]" % (f,
cputime()-t0)
 return false
 if h % 2 != 0:
 print "not good (no 2 in h), try again [%.2f]" %
(cputime()-t0)
 return false
 return true

Polynomials with many roots mod small primes yield more relations, so we compute
a rough measure of this fact. This measure can be much improved.

def poly_score(f):
 score=0
 for p in prime_range(200):
 __KP.<z>=PolynomialRing(GF(p))
 score += (1-gcd(__KP(f),z^p-z).degree())*flog(p)/(p-1)
 return score

def random_setup_we_like(d,lc,ndigits):
ntries=0
while true:
 f,g,s=random_nfs_poly_pair(d,lc,ndigits)
 ntries+=1
 if ntries % 200 == 0:
 print "%d..." % ntries
 n=f.resultant(g)
 if n < 0:
 n=-n

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

3 of 24 07/24/09 15:01

 g=-g
 ok = true
 ok = ok and number_is_ok_for_nfs(n)
 ok = ok and f.is_irreducible()
 ok = ok and number_field_is_nasty_enough(f)
 if ok:
 print "ok %s\n" % repr(f)
 break
return f,g,s,n

ndigits=9
lc=15
d=3

This is a means to create a new data set. Don't necessarily evaluate this cell, there's
another one below with a pre-cooked setup.

Evaluate either this one or the next one
best_score = 1000
best=()
try:
 while true:
 f,g,s,n=random_setup_we_like(d,lc,ndigits)
 score=poly_score(f)
 if (score < best_score):
 print "%s --> %.2f" % (f, score)
 if best_score == 1000:
 alarm(10)
 best_score = score
 best = (f,g,s,n)
except KeyboardInterrupt:
 print "ok, had enough"
f,g,s,n=best
m=g.roots(Rationals())[0][0]
f,g,s,n,factor(n),poly_score(f)

ok 15*x^3 + 47*x^2 + 60*x + 555

15*x^3 + 47*x^2 + 60*x + 555 --> 1.16
not good (principal, 15*x^3 - 19*x^2 - 188*x + 152), try again
[0.01]
not good (principal, 15*x^3 + 9*x^2 - 345*x + 922), try again [0.80]
ok 15*x^3 - 22*x^2 + 18*x + 128

15*x^3 - 22*x^2 + 18*x + 128 --> 1.08
not good (no 2 in h), try again [0.01]
not good (principal, 15*x^3 - 57*x^2 - 252*x + 977), try again

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

4 of 24 07/24/09 15:01

[0.10]
not good (principal, 15*x^3 + 43*x^2 - 191*x + 204), try again
[0.20]
not good (principal, 15*x^3 - 15*x^2 + 310*x - 1407), try again
[1.07]
200...
not good (no 2 in h), try again [1.60]
not good (principal, 15*x^3 + 74*x^2 - 363*x - 1111), try again
[0.04]
ok 15*x^3 - 52*x^2 + 235*x - 1151

not good (principal, 15*x^3 + 53*x^2 - 55*x + 1354), try again
[2.60]
ok, had enough
(15*x^3 - 22*x^2 + 18*x + 128, 31*x + 319, 5, 558032201, 6563 *
85027, 1.0787679153049718)

We have here some reference polynomial which is quite good ; it also helps
reproducibility...

f,g,s,n=15*x^3 - 2*x^2 + 131*x - 366, -44*x + 127, 5, 30338281
m=g.roots(Rationals())[0][0]
f,g,s,n,factor(n),poly_score(f)

(15*x^3 - 2*x^2 + 131*x - 366, -44*x + 127, 5, 30338281, 2039 *
14879, -0.98084273158689239)

Definition of the number field

The number field itself, and associated objects

Now the number field. The root α of f is not an algebraic integer because f is not
monic. In sage, we have to give a monic defining polynomial for the number field,
thus we work with the one generated by α, denoted ah, which is defined as
α α. This one is an algebraic integer.

f_monic=lc^(f.degree()-1)*f(x/lc)
K.<ah>=NumberField(f_monic)
alpha=ah/lc

We are interested in the maximal order in K (a.k.a the ring of integers). Note that
there is no reason for this to be equal to the order generated by α. The maximal

order may be larger (the first easiest illustration of this being ℚ(), whose

maximal order is ℤ[e], in which the order ℤ[] has index 2).

OK=K.maximal_order()

ˆ
ˆ = fd

ˆ
√−3

2iπ/3 √−3

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

5 of 24 07/24/09 15:01

OK_matrix=matrix([g_.vector() for g_ in OK.basis()])
OK.basis()

 [1, 2/15*ah^2 + 1/15*ah, 1/2*ah^2]

EK=K.order(ah)
EK.index_in(OK)

 30
Now because we've set it as obscure constraints above, this example has all the
gory stuff happening:

U=K.unit_group(); U

Unit group with structure C2 x Z of Number Field in ah with defining
polynomial x^3 - 22*x^2 + 270*x + 28800

H=K.class_group(); H

Class group of order 2 with structure C2 of Number Field in ah with
defining polynomial x^3 - 22*x^2 + 270*x + 28800

Relation collection
We now consider the relation collection. The first step is to settle on a factor base.
Therefore we have to build the list of rational primes (easy), as well as the list of
algebraic primes. We are going to concentrate first and foremost on «easy» prime
ideals: those which are unramified, and which yield a quotient of the ring of
integers which is a prime field. Those are by far the most commonly encountered.
But it's not the whole story, unfortunately...

B=200
rprimes=prime_range(B)
Also need all prime ideals.
Although refinements _are_ possible, we'll take it easy and flag
annoyances as ``to be
handled later'', even though they can be handled systematically.
aprimes=[]
for p in rprimes:
 fp=PolynomialRing(GF(p),'z')(f)
 if fp.degree() == d:
 for u in fp.roots():
 if u[1] == 1:
 aprimes.append((p,Integers()(u[0])))
 # typical way to handle projective roots:
 # aprimes.append((p,p))
 # However one can have a double projective root which interacts
badly with a non-projective one...

def ipr_ideal(c):
 p,r=c

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

6 of 24 07/24/09 15:01

 if r < p:
 return OK.ideal([p,ah-lc*r])
 else:
 return OK.ideal([p,ah])

print "We need at least %d relations" % (len(rprimes)+len(aprimes))

 We need at least 87 relations

We are going to consider candidate elements of the form a α. The number of
such elements to consider is chosen by us. Let's settle on an arbitrary value, say a
coupe of thousands. The proper rectangle for looking for pairs is controlled by the
skewness parameter s.

sieve_space=2^15
SA=int(sqrt(sieve_space/s/2))
print "Looking for pairs in the rectangle [0,%d] x [-%d*%s,%d*%d]\n"
% (SA,s,SA,s,SA)

 Looking for pairs in the rectangle [0,57] x [-5*57,5*57]
Now, how do we detect that a pair (a,b) is satisfyingly smooth ? We simply consider
the homogenized polynomials F, obtained from f, , and check their values.

def F(a,b):
 Z=Integers()
 za=Z(a)
 zb=Z(b)
 return Z(zb^f.degree()*f(za/zb))
def G(a,b):
 Z=Integers()
 za=Z(a)
 zb=Z(b)
 return Integers()(zb^g.degree()*g(za/zb))
def is_smooth(k,b):
 fc=k.factor()
 if len(fc) == 0: return true,fc
 t=max([u[0] for u in fc]) <= b
 return t, fc

Notice though that this does not exactly match the norm, as we would expect.
Because α is not an algebraic integer, again. The polynomial

is equal to f , not simply f . Analogously, the norm of (a α), which is defined as

, equals b f (a/b). So the thing we're looking at is not

exactly the norm. It's however reasonably close.

(3-5*alpha).norm(),F(3,5)

 (3353/3, 16765)
Let's walk through our complete rectangle, seeking for smooth pairs. Of course, we

− b

G g

∏σ∈Gal(K/Q) X(− ασ)
1
fd

− b

∏σ∈Gal(K/Q) a α(− b σ) 1
fd

deg f

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

7 of 24 07/24/09 15:01

avoid trivial cases such as when the greatest common divisor of a and b is
non-trivial. Such cases would yield spurious relations.

smooth_pairs=[]

for a in range(0,SA+1):
 for b in range(-SA*s,SA*s+1):
 if a == 0 or b == 0 or gcd(a,b) != 1:
 continue
 alg=F(a,b)
 rat=G(a,b)
 if rat == 0:
 continue
 ok,falg=is_smooth(alg,B)
 if ok:
 ok,frat=is_smooth(rat,B)
 if ok:
 smooth_pairs.append((Z(a),Z(b)))
print "Found %d smooth pairs" % len(smooth_pairs)

 Found 128 smooth pairs

Making sense out of a relation

Now we're going to look more precisely into a particular smooth pair, and try to
make some sense out of it.

a,b=smooth_pairs[randrange(len(smooth_pairs))]
a,b

 (17, -122)
Let us be done with the rational side first, because it is so easy. We have factored
G(a,), which is equal to g a m) (recall that m is the rational root of g). So

we may safely write the complete factorization of the rational number a m,
including the denominator m and a unit.

_,fr=is_smooth(G(a,b),B)
factor((a-b*m)*g[1]),fr

 (-1 * 3 * 67 * 191, -1 * 3 * 67 * 191)
Now on to the algebraic side. We've been told that the only thing which really
matters is the soundness of the factorization into prime ideals, so we're going to
precisely aim at that. The thing we have computed, and asserted to be smooth, is
the factorization of F (a,).
_,fa=is_smooth(F(a,b),B)
fa

 -1 * 101 * 103 * 139 * 157
The ideal we want to work with (on the algebraic side) is:

b 1 * (− b
− b

b

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

8 of 24 07/24/09 15:01

Iab=OK.fractional_ideal(a-b*alpha)
Iab.norm(),(a-b*alpha).norm()

 (227024669/15, -227024669/15)
Note that this ideal is not integral. It's however a property of the ring of integers
that whether we speak of the norm of (a α) or the norm of the ideal I , it's

the same thing. Since the factorization of the ideal I carries over multiplicatively

to the norm, a first task is to properly break up the factorization of the norm. Let us
mention (again) that our integer value F (a,) does not correspond to the norm of
(a α). We've seen that the leading coefficient comes into play and makes for
the difference between the two. So this is at least one of the things to take into
account if one wants to write down a sensible factorization for the ideal generated
by (a α).
factor((a-b*alpha).norm())

 -1 * 3^-1 * 5^-1 * 101 * 103 * 139 * 157

It is now time to introduce the handy ideal J , which is good at accounting for the
defect of integrality in the ideals considered. It is defined as the inverse of the
(fractional) ideal generated by 1 and α. The ideal J is an integral ideal, and a nice
set of generators can be written.

JJ=OK.fractional_ideal([1,alpha])
J=OK.ideal([f.quo_rem(x^k)[0](alpha) for k in range(1,d+1)])
J*JJ

 Fractional ideal (1)

It turns out that J , although not a prime ideal by itself, appears in just about every
relation, because it is the denominator (or, more accurately, the denominator of
the ideal factorization is a divisor of J). So multiplying by J is guaranteed to yield an
integral ideal.

(Iab*J).is_integral(),factor((Iab*J).norm())

 (True, 101 * 103 * 139 * 157)

We've therefore recovered exactly the thing computed by the expression F (a,).
def indices_for_normal_ideal_factorization(a,b):
 _,fa=is_smooth(F(a,b),B)
 Iab=OK.fractional_ideal(a-b*alpha)
 # We're now going to obtain the factorization into prime ideals.
It's very important
 # at this point that we know our ideal is integral. Because it
means that when we have
 # chopped off everything from the norm, we have indeed a unit
ideal (an ideal of norm 1
 # may differ from the unit ideal).

− b a,b

a,b

b
− b

− b

b

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

9 of 24 07/24/09 15:01

 # The easy part: unramified ideals of residue class degree 1 (the
ones which made it into our
 # algebraic factor base). It's quite simple to chase them.
 I_remaining=Iab*J
 i_indices=[]
 j=0
 for f in fa:
 p=f[0]
 e=f[1]
 while j < len(aprimes) and aprimes[j][0] < p:
 j += 1
 if (j == len(aprimes)):
 # exhausted the primes list
 break
 while e > 0 and j < len(aprimes) and aprimes[j][0] == p:
 r = aprimes[j][1]
 # Consider the ideal generated by p and alpha-r/lc -- or
in fact something better.
 # we consider the ideal generated by p and ah-r, which is
equal in most cases, and
 # which is always integral while the former isn't. This
ideal has norm p. If p divides the
 # leading coefficient lc, then the two ideals differ, and
their quotient is part of
 # the factorization of the ideal J.
 Ipr=ipr_ideal(aprimes[j])
 # Note that in the construction of aprimes, we've made
sure that r is a _simple_ root.
 assert Ipr.is_prime()
 if r < p:
 # on the projective line, we have the root (r:1). So
check whether a/b==r this way:
 check = a - r * b
 else:
 # Now it's (1:0). So we check this way:
 check = b
 if check % p == 0:
 # Note that this ideal may be principal, so if we try
to display this natively,
 # we might get a fairly huge generator, which we don't
really care about...
 # print "Found ideal generated by %s (mult. %d)" %
(repr(aprimes[j]), e)
 assert valuation(I_remaining,Ipr) == e
 I_remaining /= Ipr^e
 i_indices.append((j,e))
 e = 0

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

10 of 24 07/24/09 15:01

 j+=1
 # It might be that we don't go through the previous loop at
all. It means that no
 # well-behaving ideal correspond to this norm (most likely p
ramifies completely).
 return i_indices,I_remaining

i_indices,I_rem=indices_for_normal_ideal_factorization(a,b)

So, do we catch everything this way ? No, we don't (as expected). The ideal I
has non-trivial norm (sometimes, not always) thus is non trivial.

I_rem.norm().factor()

 1
Part of the nasty stuff shows up at this point. Some ideals are simply not
expressable in our easy form above. Fortunately these are rare. The following code
calls for quite a bit of computer algebra baggage on the software side. We'll see
later on that it's completely possible to forget about it using characters, so we'll be
satisfied with employing a big machinery for our illustrative purpose.

special_ideals=[]
disc=f_monic.discriminant()
for p in primes(1,B):
 if valuation(disc,p) > 0:
 for u in factor(OK.ideal(p)):
 special_ideals.append(u[0])
if u[0].norm() > p or u[1] > 1:
special_ideals.append(u[0])
else:
Another possibility. The ``root'' of the number
field polynomial may not
uniquely identify _this_ ideal.
rf=u[0].residue_field()
FP_.<z>=PolynomialRing(rf)
fmp=FP_(f_monic);
if valuation(fmp,z-rf(ah)) > 1:
special_ideals.append(u[0])

for i in special_ideals:
 print "Special ideal of norm %d, residue class degree %d,
ramification index %d" \
 %
(i.norm(),i.residue_class_degree(),i.ramification_index())

Special ideal of norm 2, residue class degree 1, ramification index
2
Special ideal of norm 2, residue class degree 1, ramification index

rem

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

11 of 24 07/24/09 15:01

1
Special ideal of norm 3, residue class degree 1, ramification index
1
Special ideal of norm 3, residue class degree 1, ramification index
1
Special ideal of norm 3, residue class degree 1, ramification index
1
Special ideal of norm 25, residue class degree 2, ramification index
1
Special ideal of norm 5, residue class degree 1, ramification index
1

We now build a routine for killing the remaining part in the ideal factorization.
Again, deciding on the valuation of an ideal at such a nasty prime ideal is not trivial
(see Cohen's book for instance), but in the end it won't even be needed so we don't
care too much.

def extra_indices_for_ideal_factorization(a,b,I):
 I_rem = I
 res=[]
 for i in range(len(special_ideals)):
 s=special_ideals[i]
 if I_rem.norm() % s.norm() == 0:
 v=valuation(I_rem,s)
 if v >= 1:
 res.append((i,v))
 I_rem /= s^v
 if not I_rem.is_trivial():
 print "Failed while trying to factor completely %s" %
repr((a,b))
 assert false
 return res

s_indices=extra_indices_for_ideal_factorization(a,b,I_rem)

This time, we can do the check:

Iab == 1/J * \
 prod([special_ideals[j[0]]^j[1] for j in s_indices]) * \
 prod([ipr_ideal(aprimes[j[0]])^j[1] for j in i_indices])

 True
We've finally got it !

Building a matrix

Now we need to fit the pieces together and build a matrix so that an element of the
nullspace can be obtained.

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

12 of 24 07/24/09 15:01

def matrix_row(a,b):
 row=[]
 i_indices, I_rem = indices_for_normal_ideal_factorization(a,b)
 s_indices=extra_indices_for_ideal_factorization(a,b,I_rem)
 fr=G(a,b).factor()
 # 0 : occurence of g_1 in the rational factorization (always)
 row.append(0)
 c = 1
 # 1 : rational unit
 if fr.unit() != 1: row.append(1)
 c = 2
 # 2..2+len(rprimes)-1 : rational primes
 for p in fr:
 if p[1] % 2 == 1:
 row.append(c+rprimes.index(p[0]))
 c += len(rprimes)
 # [c] : occurence of J (always)
 row.append(c)
 c+=1
 # [c..c+len(special_ideals)[: special ideals
 for j in s_indices:
 if j[1] % 2 == 1:
 row.append(c + j[0])
 c += len(special_ideals)
 for j in i_indices:
 if j[1] % 2 == 1:
 row.append(c + j[0])
 return row

matrix_row(a,b)

 [0, 2, 4, 10, 14, 48, 57, 58, 64, 66, 102]

ncols=len(rprimes)+2+len(aprimes)+1+len(special_ideals)
nrows=len(smooth_pairs)
mat=Matrix(GF(2),nrows,ncols)
for i in range(len(smooth_pairs)):
 a,b=smooth_pairs[i]
 row = matrix_row(a,b)
 for j in row:
 mat[i,j]=1
 if (i + 1) % 10 == 0:
 print "Done %d rows out of %d " % (i+1,nrows)

Done 10 rows out of 215
Done 20 rows out of 215
Done 30 rows out of 215
Done 40 rows out of 215

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

13 of 24 07/24/09 15:01

Done 50 rows out of 215
Done 60 rows out of 215
Done 70 rows out of 215
Done 80 rows out of 215
Done 90 rows out of 215
Done 100 rows out of 215
Done 110 rows out of 215
Done 120 rows out of 215
Done 130 rows out of 215
Done 140 rows out of 215
Done 150 rows out of 215
Done 160 rows out of 215
Done 170 rows out of 215
Done 180 rows out of 215
Done 190 rows out of 215
Done 200 rows out of 215
Done 210 rows out of 215

Solving the linear system
There isn't much to say here. We compute combinations which make all exponents
in the ideal factorizations look even.
One trick though. By choosing elements (a α) as appearing either on the
numberator or denominator of the final combination (instead of not having a
fraction like that), we reduce the average valuation of ideals which appear in the
factorization.
Note that element pairs which are built this way are already enough to provide a
square on the rational side. On the algebraic side, the odds of getting a square are
thin of course.

ker=mat.kernel()
def elements_from_kernel(kbasis):
 elems=[]
 ntr=0
 nta=0
 for vv in kbasis:
 elem_r=1
 elem_a=K(1)
 for i in range(nrows):
 if vv[i] > 0:
 a,b=smooth_pairs[i]
 e=(-1)^i
 elem_a *= (a - b * alpha)^e
 elem_r *= (a - b * m)^e
 elems.append((elem_r,elem_a))

i − bi

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

14 of 24 07/24/09 15:01

 if elem_r.is_square(): ntr += 1
 if elem_a.is_square(): nta += 1
 print "We obtain a square with probabilities %.2f and %.2f,
respectively" \
 % (float(ntr/len(kbasis)),float(nta/len(kbasis)))
 return elems
elems=elements_from_kernel(ker.basis())
eta=2^len(H.elementary_divisors())
ur=U.rank()

print "2-part of the class number: %d ; unit rank: %d ; " % (eta,ur)
print "--> on the alg. side, we expect a probability 1/(%d*2^%d) =
%.2f" \
 % (eta,ur,float(1/(eta*2^ur)))

We obtain a square with probabilities 1.00 and 0.11, respectively
2-part of the class number: 4 ; unit rank: 1 ;
--> on the alg. side, we expect a probability 1/(4*2^1) = 0.12

We've given above an indication of what the theory says. The obstruction comes
from the groups U/U and H/H (the latter being written additively sometimes,

H/2H means the same). These are isomorphic to ℤ/2ℤ (the 1 part
accounting for torsion units which always contain ±1), and to ℤ/2ℤ , where
η is exactly the number of parts of the decomposition of the finite abelian group H
into cyclic parts. Note that η is not the 2-valuation of the class number !
Now above, there's apparently a glitch, because the torsion part of the unit groups
does not seem to be taken into account. This is because it's in probably already
covered by the rational character sign(a m). At least it's what occurs in this
case, because if the rational character is dropped by zeroing out the column of
index one in the matrix, then the squareness probability drops on the algebraic
side. It's also possible that this is a coincidence.

Back to our kernel. In case our matrix has a large kernel, we restrict our attention
to the first few elements.

elems=[elems[i] for i in range(min(20,len(elems)))]

So, let's start with some of these. As mentioned, we already have a square on the
rational side.

elem_r,elem_a=elems[1]
elem_r.sqrt(),elem_a.is_square()

 (13094053879365794764/279212704488875885000553, False)
We don't expect to have a square on the algebraic side. However the ideal
generated by the algebraic element is a square ideal, as can be seen by inspecting
its valuations.

Ie=OK.fractional_ideal(elem_a)

2 2

()(1+rank(U))

{ } ()η

− b

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

15 of 24 07/24/09 15:01

fIe=Ie.factor()
[v[1] for v in fIe]

[-2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 8, 4, -2, 2, 6, 4, 4, -2, 2,
4, -2, -2, -4, 4, -4, -2]

We're eager to consider the square root of this ideal. Unfortunately sage (pari)
won't let us do that, because it insists on fetching a principal generator whenever it
encounters a principal ideal. We don't care about this, so we have to resort to
building the product by hand. The following is quite standard stuff for ideal
arithmetic, see Cohen's book for instance.

A=matrix(ZZ,3,3,[0,0,1,0,1,0,1,0,0])
def matrix_gens(gg):
 return matrix(ZZ,matrix(sum([[(e*g).vector() for g in OK.gens()]
for e in gg],[]))*OK_matrix^-1)
def ideal_hnf_inner(MI):
 return A*matrix([u for u in list((MI*A).hermite_form()*A) if not
u.is_zero()])
def ideal_hnf(I):
 ## note note note ; we expect the number of generators to be kept
reasonably
 ## small. We don't try to call gens_reduced, fearing a possible
penalty...
 MI=matrix_gens(I.gens())
 return ideal_hnf_inner(MI)
def ideal_gens_from_hnf(MI):
 return [sum([r[j]*OK.basis()[j] for j in range(d)]) for r in
MI.rows()]
def ideal_hnf_product(MI,MJ):
 gI=ideal_gens_from_hnf(MI)
 gJ=ideal_gens_from_hnf(MJ)
 gIJ=[gi*gj for gi in gI for gj in gJ]
 MIJ=matrix_gens(gIJ)
 return ideal_hnf_inner(MIJ)
def ideal_hnf_product_mixed(MI,J):
 gI=ideal_gens_from_hnf(MI)
 gJ=J.gens()
 gIJ=[gi*gj for gi in gI for gj in gJ]
 MIJ=matrix_gens(gIJ)
 return ideal_hnf_inner(MIJ)
def ideal_hnf_pow(I,e):
 gI=I.gens()
 MI=matrix_gens(gI)
 h=ideal_hnf_inner(MI)
 gh=ideal_gens_from_hnf(h)
 b=list(e.binary())
 b.reverse()
 assert b.pop() == '1'

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

16 of 24 07/24/09 15:01

 while len(b)>0:
 h=ideal_hnf_inner(matrix_gens([gi*gj for gi in gh for gj in
gh]))
 gh=ideal_gens_from_hnf(h)
 if b.pop() == '1':
 h=ideal_hnf_inner(matrix_gens([gi*gj for gi in gh for gj
in gI]))
 gh=ideal_gens_from_hnf(h)
 return h
def product_of_many_ideals_quick(list_of_ideals):
 h=identity_matrix(d)
 for t in list_of_ideals: h=ideal_hnf_product_mixed(h,t)
 return OK.ideal(ideal_gens_from_hnf(h))
See cohen page 203 for this one
def ideal_inverse_hnf(M):
 T=matrix(ZZ,[[(OK.basis()[i]*OK.basis()[j]).trace() for j in
range(d)]for i in range(d)])
 Idiff=ideal_hnf(K.different())
 mul=abs(M.determinant()*K.discriminant())
 I2=matrix(ZZ,A*(T*M.transpose())^-1*mul*A).hermite_form()*A
 hprod=ideal_hnf_product(I2,Idiff)
 g=gcd([hprod[i,j] for i in range(hprod.nrows()) for j in
range(hprod.ncols())])
 hprod/=g
 mul/=g
 #I3=ideal_hnf_product_mixed(hprod,Iden)
 return hprod,mul
def fold_ideal_factorization(fac):
 hn=identity_matrix(d)
 hd=identity_matrix(d)
 for t in fac:
 e=t[1]
 I=t[0]
 h=ideal_hnf_pow(I,abs(e))
h=ideal_hnf_inner(matrix_gens((I^abs(e)).gens_reduced()))
 if e > 0:
 hn=ideal_hnf_product(hn,h)
 else:
 hd=ideal_hnf_product(hd,h)
 hD,D=ideal_inverse_hnf(hd)
 h=ideal_hnf_product(hn,hD)
 return h/D

Our routine compares quite well to what sage does for doing the same (or does not,
for that matter, since it actually doesn't even terminate).

time hs=fold_ideal_factorization([(v[0],ZZ(v[1]/2)) for v in fIe])

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

17 of 24 07/24/09 15:01

hs.determinant() == sqrt(Ie.norm())

Time: CPU 1.56 s, Wall: 1.57 s
True

From the ideal in hermite normal form, we recover the ideal itself, and we can
check that its factorization matches what we expect.

time Is=OK.fractional_ideal(ideal_gens_from_hnf(hs))
list(Is.factor()) == [(v[0],v[1]/2) for v in fIe]

Time: CPU 0.01 s, Wall: 0.01 s
True

Note that it is (in full generality) not a principal ideal. This is clearly an obstruction
to obtaining an element which plays the role of a square root on the algebraic side.

Is.is_principal()

 *** Warning: precision too low for generators, not given.
False

Is

Fractional ideal (390748466042751600,
1/4114352758925708354005943698810*ah^2 +
16379577112972169690324727211303/4114352758925708354005943698810*ah
-
964448882968285166056313114480777908711674927/6744840588402800580337\
612621)

However, since we have several element pairs to choose from, let's try to see what
happens if we do combinations. We first compute a set of ideals corresponding to
element pairs.

sqrt_ideals=[]
t0=cputime()
for e in elems:
 elem_r,elem_a=e
 Ie=OK.fractional_ideal(elem_a)
 fIe=Ie.factor()
 h=fold_ideal_factorization([(v[0],ZZ(v[1]/2)) for v in fIe])
 Is=OK.fractional_ideal(ideal_gens_from_hnf(h))
 sqrt_ideals.append(Is)
 print "%d, %.2f" % (len(sqrt_ideals),cputime()-t0)
 # we have Is^2 == OK.fractional_ideal(elem_a)

1, 1.79
2, 3.36
3, 5.23
4, 6.62
5, 8.17
6, 10.07
7, 12.00
8, 13.27

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

18 of 24 07/24/09 15:01

9, 14.76
10, 16.42
11, 18.42
12, 20.06
13, 21.48
14, 22.93
15, 24.34
16, 26.29
17, 27.82
18, 29.37
19, 31.13
20, 32.72

[I.is_principal() for I in sqrt_ideals]

 *** Warning: precision too low for generators, not given.
[True, False, False, False, False, True, False, False, False, False,
True, False, False, False, False, False, True, False, False, False]

Some of them are principal, but in a few cases that's even too much luck because
the reason is that the generator we have for the corresponding square ideal is
already a square itself...

[(i,elems[i][1].is_square()) for i in range(len(sqrt_ideals)) if
sqrt_ideals[i].is_principal()]

 [(0, True), (5, False), (10, True), (16, True)]
So we may look at the element of index five, because it seems that there's only one
miracle happening in this case, not two (principality and squareness). Another
interesting option is to look at quotients.

[(I/sqrt_ideals[1]).is_principal() for I in sqrt_ideals]

*** Warning: precision too low for generators, not given.
Traceback (click to the left for traceback)
...
sage.libs.pari.gen.PariError: impossible (44)

I0=sqrt_ideals[0]; e0=elems[0][1]
I1=sqrt_ideals[1]; e1=elems[1][1]
I2=sqrt_ideals[2]; e2=elems[2][1]

Here we have something interesting. We have overcome the principality
obstruction, but the unit obstruction remains.

(I2/I1).is_principal(),(e2/e1).is_square()

*** Warning: precision too low for generators, not given.
Traceback (click to the left for traceback)
...
sage.libs.pari.gen.PariError: impossible (44)

(I2/I1)^2 == OK.fractional_ideal(e2/e1)

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

19 of 24 07/24/09 15:01

 True

The big question is now «how far is e /e from being a square ?». As we see, it's
not a matter of torsion units here.

(e2/e1).is_square()

 False

(-e2/e1).is_square()

 False
The unit group has rank one, so there's an extra generator. Try it.

qu=(U.gens()[1]*e2/e1)
Does not work because pari asks for 8 gigs of memory...
qu.is_square()

Since sage cannot answer the question above, we code a quick squareness test.
It's actually very similar to what we're going to do with characters soon !

def looks_like_a_square(v):
 for z in prime_range(10^4,10^4+100):
 Ip=OK.ideal(random_prime(1000)).factor()[0][0]
 if not Ip.residue_field()(v).is_square():
 return false
 return true

looks_like_a_square(qu)

 True
Good. We have illustrated the fact that precisely because of units, we don't have a
square.

Killing obstructions
As one knows, obstructions are easily killed by characters. Characters are just
measures of squareness in arbitrary quotient rings. For computational ease, it is
customary to select quotients of some special shape to do the computation, but
from the theoretical point of view, just about any quotient of the ring of integers
does the trick (any ? yes, any, even when the norm is a factor base prime. One just
have to take care of valuations as well, so there's slightly more work).

ncharacters=10
pr=prime_range(10^4,10^4 * 2)
fields=[OK.ideal(pr[randrange(len(pr))]).factor()
[0][0].residue_field() for i in range(ncharacters)]

charmat=Matrix(GF(2),nrows,ncharacters)
for i in range(len(smooth_pairs)):

2 1

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

20 of 24 07/24/09 15:01

 a,b=smooth_pairs[i]
 v=a-b*alpha
 for j in range(ncharacters):
 if not fields[j](v).is_square():
 charmat[i,j]=1
 if (i + 1) % 10 == 0:
 print "Done %d rows out of %d " % (i+1,nrows)

Done 10 rows out of 215
Done 20 rows out of 215
Done 30 rows out of 215
Done 40 rows out of 215
Done 50 rows out of 215
Done 60 rows out of 215
Done 70 rows out of 215
Done 80 rows out of 215
Done 90 rows out of 215
Done 100 rows out of 215
Done 110 rows out of 215
Done 120 rows out of 215
Done 130 rows out of 215
Done 140 rows out of 215
Done 150 rows out of 215
Done 160 rows out of 215
Done 170 rows out of 215
Done 180 rows out of 215
Done 190 rows out of 215
Done 200 rows out of 215
Done 210 rows out of 215

We can now compute the characters corresponding to the kernel elements we
have obtained so far.

mat2=matrix(ker.basis())*charmat

Note that we recover in this way that elements indexed 0,10,16 really look like
squares, but that it's not true for the element of index 5.

for i in [0,10,16]: print mat2[i]
print mat2[5]

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 1, 1, 1, 0, 0, 0, 1, 0)

We also note that e /e not being a square is visible by inspecting characters:

mat2[2]-mat2[1]

 (0, 0, 1, 1, 1, 0, 0, 0, 1, 0)

2 1

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

21 of 24 07/24/09 15:01

It's trivial to compute the second kernel -- i.e. How our kernel elements must be
combined to cancel all characters.

ker2=mat2.kernel()

The first kernel element doesn't tell us much, since we've been lucky and element
e has all the required nice properties happening by chance. But other elements
give interesting combinations.

ker2.basis()[1]

(0, 1, 0,
0, 0,
0, 0,
0, 0,
0, 1, 1,
0)

So in replacement for our «old» kernel, we'd better use this one, which has all
characters cancelled.

ker_combined=(matrix(ker2.basis())*matrix(ker.basis())).rows()

ker_combined[1]

(0, 1, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,
1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0,
0, 1, 0, 1, 0, 0, 0, 0, 1)

elems_combined=elements_from_kernel(ker_combined)

 We obtain a square with probabilities 1.00 and 1.00, respectively

It's now much, much better !
Pick now an element. Not all will yield non-trivial gcds, of course, but this one will.

elem_r,elem_a=elems_combined[8]

Make sure that the theory still looks right here. Notice that as far as sage is
concerned, the number field is generated by the algebraic integer α α, not by

α. So when writing down an element as a polynomial, it is going to map to ℤ/nℤ
by sending α to f m.

Integers(n)(elem_r) == Integers(n)(elem_a.polynomial()(m*lc))

0

ˆ = fd

ˆ d

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

22 of 24 07/24/09 15:01

 True
We have squares -- or more accurately, we suspect so because all our characters
are zero. So let's compute square roots ! This computation is not always easy in
general (to start with, computing the product is hard). Fortunately, with this toy
example nothing gets too large, so it's doable and we don't have to work.

sr=elem_r.sqrt()
sa=elem_a.sqrt()
sa

13321915579498781960881/124875584949375*ah^2 +
23405097322454192764337/8325038996625*ah +
2574306632825664331098/9098403275

And now, hope to get a non-trivial factor. Getting 1 or n here means bad luck.

gcd(n,(sa.polynomial()(m*lc)-sr) % n)

 14879

n.factor()

 2039 * 14879
That's it.

Further topics
The list of things which could be detailed as a follow-up to this text is endless. In
particular, we have skipped the following interesting points:

Polynomial selection and evaluation of relation yield
Lattice sieving
Projective roots
Sieving with powers
How to cope with most «special ideals» so that the list of ideals we don't
handle gets smaller.
How to cope with all ideals.
How we can avoid having to compute the maximal order.
Computing characters with any ideal.
How the square root computation can be done the smart way.
How the square root computation can be done the bovine way.
In how far SNFS (the special Number Field Sieve) is likely to provide harder
situations (large torsion unit group, non-generic Galois group, weird
ramification patterns...
And so on...

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

23 of 24 07/24/09 15:01

NFS with gory details (Sage) http://localhost:8001/home/pub/0/

24 of 24 07/24/09 15:01

