THE HOMOTOPY GROUPS OF TMF

AKHIL MATHEW

1. INTRODUCTION
The previous talks of this seminar have built up to the following theorem:

Theorem 1 (“TMF theorem”). Let M_; be the moduli stack of stableﬂ elliptic curves. There is a
functor

O (AffSh, )P — Al

el
from the (affine) étale site of M—; to E-rings, with the following properties:
e For every affine étale map SpecR — M, O'P(SpecR) is an even-periodic E-algebra with
a functorial isomorphism (0P (SpecR)) ~ R.
e For every map SpecR — M_j; classifying a generalized elliptic curve C' — SpecR, there is a
functorial isomorphism

Spf (0"°?(SpecR)° (CP*)) ~ C

between the formal group of O%P(SpecR) and the formal group Cof C (that is, the formal
completion of C along the zero section with its natural group structure).

e The functor Q%P is a sheaf for the étale topology and extends to a sheaf of E.,-rings on the
étale site of M.

Let Mpg be the moduli stack of formal groups. In particular, if M; — Mpg is the map which
assigns to an elliptic curve its formal group, then we have an isomorphism of sheaves

otor {0 if 4 is odd
T, =

w2 if i is even ’
where w is the Lie algebra bundle on M, which is pulled back from Mp¢. (Strictly speaking, m; Otop
is only a sheaf for affine étales; in general we should take its sheafification.) We get this because of
even periodicity. (A useful reference is [AHS01].)
One defines
Tmf = I'(M_;, orer).

In other words, Tmf is defined as the homotopy limit of the various elliptic spectra O™P(R) for affine
schemes SpecR étale over M_;; — thus Tmf maps canonically to any such, and was initially supposed
to be the “universal” elliptic cohomology theory. There are other spectra that deserve the name
“topological modular forms”: for instance, there is the periodic version

TMF = I['(My;, O*P)
obtained by taking global sections over the smooth locus, and the connective version
tmf = 750(Tmf).

A consequence of this definition is that one has a descent spectral sequence (a special case of the
spectral sequence for a cosimplicial spectrum)

H (Mm, T (OtOp)) — 7rj_iTmf,
which we can also write as

Hi(Mm, wj) - 7T2j_iTmf.

Date: December 17, 2012.
n other words, one allows a nodal singularity away from the point at infinity.
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The goal of this talk is to explain how to use this spectral sequence to compute 7, Tmf, in outline.
We'll start by describing the calculation of H i(Mm, w’) (actually, we’ll do this for the moduli stack of
smooth elliptic curves, so really for TMF), using a series of “algebraic Bockstein spectral sequences.”
Then, we’ll explain how (at the prime 3) we can get differentials in the spectral sequence. Mostly, the
notes will follow [Bau08] and [Rez07]. Another useful survey is [HenQ7].

2. A WORD FROM OUR SPONSOR

1. The derived stack BZ/2. I'd like to start by doing a toy example where there isn’t too much
actual computation involved, but which highlights some of the global features of what happens for
Tmf. Let’s consider KO-theory. On the one hand, KO-theory is a cohomology theory going back
to the 1950s and 60s with a beautiful geometric description in terms of real vector bundles and Bott
periodicity. On the other hand, K O-theory is something that you can describe purely as a homotopy
theorist.

Namely, consider K-theory K. This is an even-periodic F..-ring associated to the multiplicative
formal group G It comes with an automorphism

v K- K
associated to the automorphism of Gy, given by inversion, or by complex conjugation of vector bundles.
This gives a Z/2-action on K. One has:

KO = (K)"/2,
Therefore, there is a homotopy fixed-point spectral sequence that computes 7, KO (in terms of 7, K).
Aside. The Z/2-action on K-theory goes back, in some form, to [Ati66]. The “Real” K R-theory of

Atiyah is the equivariant cohomology theory (on Z/2-spaces) represented by K.

The existence of the Z/2-action is a consequence of the Hopkins-Miller theorem, for instance, applied
to Morava E-theory F; at each prime. Recall that Fy = IA(p is p-completed K-theory and Hopkins-
Miller gives E; the structure of an E.-ring with a Z/2-action coming from the Adams operation W~1
(actually, a Z-action from all the Adams operations).

We can recover integral K-theory via an arithmetic square

—" 3

|

Kq —— (Hp IA{p)Q

We have a Z/2-action on [ [, I?p from Hopkins-Miller, and this gives one on (Hp I?p)(@ by functori-
ality. Since F-algebras over Q are described as cdgas and Kg is the formal cdga Q[u*!] with |u| = 2,
we get a Z/2-action on Kg sending v — —u. The map Kg — (Hp IA(p)Q is a map of F..-rings with a

Z/2-action, by choosing an explicit model over Q. This allows us to build K from the Hopkins-Miller
theorem as an E.-ring with a Z/2-action, via the above fiber product.

We can also say this in similar terms as for Tmf. Namely, just as we obtain Tmf from the
moduli stack of elliptic curves and their formal groups, we can obtain KO from the moduli stack of
one-dimensional tori (i.e., algebraic groups that become G,, after sufficient base-change) and their
associated formal groups. The moduli stack of tori is precisely BZ/2 since the automorphism group
of the torus G, is Z/2. In particular, we get a morphism of stacks

BZ/2 = Mpg
which, equivalently, comes from the Z/2-equivariant formal group G-
Theorem 2 (“BZ/2 theorem”). There is a functor
O (Afiyy)" — Alg
with the properties:
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FI1GURE 1. The FEs-page for the “descent” spectral sequence for KO-theory

e For every affine étale SpecR — BZ/2, O™P(SpecR) is an even-periodic E.-algebra with a
functorial isomorphism my(O™P(SpecR)) ~ R.

e For every étale map SpecR — BZ/2 classifying a one-dimensional torus G — SpecR, there is
a functorial isomorphism

Spf (0P (SpecR)°(CP>)) ~ G

between the formal group of O%P(SpecR) and the formal group G of G.
e The functor QP is a sheaf for the étale topology and extends to a sheaf of E..-rings on BZ/2.

One then has:
KO =T(BZ/2,0"P),

and one can study the associated descent spectral sequence — it is exactly the homotopy fixed-point
spectral sequence.

Aside. The “BZ/2 theorem” is a consequence of the fact that complex K-theory is an E..-ring with
a Z/2-action given by complex conjugation, together with the “topological invariance of the étale site”
for Eo-rings. See [LN12].

2. The descent spectral sequence. What does this spectral sequence look like? It is
HYBZ/2,w’) = ma;_iKO,

where w is the “Lie algebra” line bundle on BZ/2 (i.e., the sign representation of Z/2). So to get

the Fs-page, we need to know the Z/2-cohomology of the trivial representation (over Z), and the

7 /2-cohomology of the sign representation. The former is the cohomology of RP*, and the latter is

easy to work out, since the cohomology of Z/2 with coefficients in any representation is 2-periodic.

The result is displayed in Figure 1. The squares denote copies of Z and the dots denote copies of Z/2.
In other words, the Fs-page can be described algebraically as the bigraded algebra

ZIt )/ 2n), Il = (L,1), [t] = (4,0).
In order to get the differentials, we’ll need to compare it with the ANSS for the sphere:

Proposition 3. The above spectral sequence is the K-local Adams-Novikov spectral sequence for KO.
In particular, it receives a map from the classical ANSS for the sphere S°, and the representative Hopf
map 71 € m1(S°) goes to the class called 7.

This isn’t obvious, and seems to require some non-formal input. In order to check that something
is a valid resolution for the K-local Adams spectral sequence, we need to know, for example, that

K.KO — K.K

is an injection. It isn’t clear what K, KO is or how we might compute it. In fact, it turns out that one
can run the homotopy fixed-point spectral sequence as K @ KO = (K@ K )}LZ/ 2 (where the Z/2-action
is on the second factor) — a priori this would only be obvious if K were a finite spectrum. The
calculus of stacks lets you organize this nicely.
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FI1GURE 2. The differentials in the “descent” spectral sequence for K O-theory

However, one can produce a map from the ANSS of the sphere to the descent spectral sequence
without it, which is actually what we need right now. Namely, the homotopy fixed point spectral
sequence comes from the cosimplicial object

N
K== I .-
z/2 Z/2XZ)2
whose totalization is KO. It suffices to work with the associated semicosimplicial object by a cofinality

argument: the semisimplicial category is cofinal in the simplex category (see §6.5 of [Lur09]).

Warning 1. Actually, I don’t think that the argument here identifying the ANSS with the fixed point
spectral sequence is correct. To be updated.

The ANSS comes from the cosimplicial, or even semicosimplicial, object

MU = MU®*3
and we can produce a map of semicosimplicial objects, which corresponds on homotopy groups to the
map of Hopf algebroids

(MU., MU.MU) - (K., [[ K.)
z/2
realizing the map of stacks
BZ/2 — Mpg.

(In fact, in the homotopy category, we can promote everything to a map of cosimplicial things quite
directly.)

This provides the desired map of spectral sequences. An explicit algebraic calculation in the cobar
construction can be used to verify that n comes from the Hopf map as desired.

Aside. It is probably possible to produce the map directly as a map of cosimplicial spectra, but I am
not quite sure how to do this, unless we know that KO — K is a Galois extension (see below).

Consequently, since n* = 0 in the stable stems, n* = 0 € 7,(KO) and a differential must kill n*.
This forces:

Proposition 4. The first differential is d3, and d3(t) = 3.

In figure 2, we display the differentials in the descent spectral sequence. For dimensional reasons,
the spectral sequence collapses at E4 and we get the homotopy groups familiar from Bott periodicity:

KO = Z[n, a, 5Y/(2n,7°, o® = 4P),
where « is represented by [2¢] and 3 by [t?] where t is as in the E, page.

3. General features of the ss. Let’s note some of the general features of this spectral sequence,
which will carry over to the one for tmf:

e The F5 term (which was the cohomology of some stack, and here of the group Z/2) had
infinite towers and non-nilpotent elements. This isn’t too surprising: the cohomology of a
finite group is always infinite.
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e Although the (Bott) periodicity element 5 in degree 2 does not even make it to the FEs-
page of the spectral sequence, 82 is in Es, and 8% lives all the way till E. In particular, a
sufficiently high power of the even periodicity element 3 survives, and KO exhibits periodicity
(of a longer nature). This holds for any homotopy fixed-point spectrum of a Landweber-
exact, even-periodic ring spectrum under a finite group action. For instance, TMF is 576-fold
periodic.

e Most importantly, the spectral sequence degenerates at a finite stage with a flat vanishing
line. One can see this as follows: there is a pro-spectrum coming from the cosimplicial tower
that computes K"%2/2; however, this pro-spectrum turns out to be a constant pro-spectrum.
This implies the desired claim.

e In particular, for any (possibly infinite) spectrum X, one has:

(K@ X)"/? ~ KO® X.

Therefore, for any spectrum X, one has a descent spectral sequence that computes KO, X.

Let us sketch proofs of some of these assertions.
Proposition 5. The pro-spectrum associated to the cosimplicial object

Y . —
Fix*(z/2,K): K= [[K= [[ K.
7/2 Z/2XZ/2
(which computes homotopy fixed points) is constant. In particular, for any spectrum X, the natural
map KO ® X — (K ® X)"?/2 is an equivalence.

The two statements are equivalent: the pro-spectrum associated to the cosimplicial object Fix*(Z/2, K)
can be identified with the functor X — (K ® X)"?/2 on spectra.

Proof. One can deduce this as a general consequence of the nilpotence theorem and its associated
consequences (in particular, the Hopkins-Ravenel smashing theorem [Rav92]), and then prove an
analog for TMF. Something like this is apparently “well-known” to the experts but I don’t know of
a source—ask me after the talk if you're curious.

Here is a simple direct argument: consider the collection of finite spectra X such that Fix*(Z/2, K)®
X is constant as a pro-object (i.e., equivalent to the constant pro-object given by its homotopy inverse
limit). This is a thick subcategory: that is, it is closed under finite limits and colimits and retracts;
we want to show that it contains S°. The “theorem of Reg Wood” KO ® ©2CP? = K can be proved
by observing that we have an equivalence of spectra acted upon by Z/2:

KoY 2CP’P~KaK

where the Z/2-action on the latter is by flipping the factors. To check this, compute K*((C]P’Z) with
its Z/2-action.

The associated homotopy fixed point cosimplicial object for K ® X~2CP? is therefore constant: it
is a split cosimplicial object. So our thick subcategory contains ¥ ~2CP?. Now a thick subcategory of
finite spectra containing ¥ 2CP? contains the sphere. The thick subcategory theorem ([HS98]) tells
us that it contains S°F |

Corollary 1. The map KO — K is a faithful Galois extension (in the sense of [Rog08g]).

Sketch of the proof of Proposition 8. The homotopy fixed-point (or descent) spectral sequence for
K O-theory comes from the following cosimplicial resolution of K O-theory:

) . -
Fix*(2/2,K): K= [[K= [[ K.
7./2 7./2X7)2
The canonical Adams resolution for KO is obtained from the “Amitsur complex” which runs

Am(K)*: K = K925

2It’s fun to show that a thick subcategory containing 3 ~2CP? contains the sphere directly from n* = 0; this illustrates
what nilpotence has to do with thick subcategories (and is a prototype for the general Hopkins-Smith result).
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by tensoring with KO. We don’t have to use this one, though. The defining property of the resolution
for the K-ASS is that the associated cosimplicial object obtained by applying K,-homology is split
(which is true) and resolves K, (KO) (which can be checked from the homotopy fixed point spectral
sequence for K, (KO)).

O

There are analogs of all this for TMF. Localized at a prime p, the moduli stack of smooth elliptic
curves admits finite étale Galois covers by affine schemes (given by the moduli of elliptic curves with
a level N structure, for p4 N) and N not too small. The associated elliptic spectrum may be written
TMF(N) for “topological modular forms of level N,” and we have

TMF = (TMF(N))hGL2(Z/NZ)

These too are Galois covers.
But maybe it’s time to start actually talking about TMF.

3. CUBIC CURVES AND THE WEIERSTRASS HOPF ALGEBROID

Let’s now discuss the spectral sequence
H (M, w®) = m9;_;TMF

for computing TMF. The input data is the moduli stack M,;; and its cohomology, so we need a way
of computing that — this will be a lot more difficult than for KO. It’s easier to start with the moduli
stack of cubic curves. The basic and handy reference for this, and for integral modular forms, is
[Del75].

Definition 1. A cubic curve over a scheme S is a morphism p : X — S with a section e : S — X
such that Zariski locally on S, X is given by an equation in P%

y2 +a1xy = 4 a2m2 + asx + ag

with e : § — X the line at co.
(Equivalently, p is a proper, flat morphism with a section contained in the smooth locus, whose
fibers are geometrically integral curves of arithmetic genus one.)

There is a natural moduli stack M,,; of cubic curves. The moduli stack of smooth elliptic curves
M.,y is cut out by the nonvanishing of the discriminant A € H%(M_.;,w!?). In particular, to compute
H*(M.y,w®), we can compute H(M,;,w®) and invert A. So we’ll start with this.

Aside. In fact, there is a morphism M., — Mpqg, and a spectral sequence
Hi(Mcub, (.dj) — ng_itmf;

this is the Adams-Novikov spectral sequence for tmf. I haven’t been able to find in the literature a
good explanation of this that doesn’t already rely on computations in Tmf. In [Bau0§|, this is used
to work out m.tmf directly.

In order to compute the cohomology of M,,;, we can use a presentation of M., by a Hopf algebroid.
Strictly speaking, we note that M., has a G,,-torsor M, over it, given by the moduli stack of cubic
curves together with a trivialization of the Lie algebra. (This G,,-torsor is equivalent to a line bundle,
namely w.) The cohomology of the tensor powers of w on M., is equivalent to the cohomology of the
structure sheaf on M ;.

Aside. In general, a G,,-action on something serves to record a grading. It’s therefore safe to pass
to a G,-torsor over a stack (or scheme) to compute cohomology.

In order to compute the cohomology of M_ ;, consider the map
SpecZlay, az, a3, aq,ag] = M2,
classifying the Weierstrass elliptic curve

y2 +a1zxy = 3+ a2x2 + asx + ag
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over T' = SpecZlay, as, ag, as, agl, together with the trivialization —x/y of the tangent space. This
turns out to be a faithfully flat cover, and it is G,,,-equivariant if we grade things so that

|| =4, |y|=6, |a;]=2i.

In fact, we can recover the moduli stack M? , from the simplicial scheme

cub
=7 TS
: 3 XMz?ub =1

Since the diagonal of M, is affine, this is a simplicial object in affine schemes. In fact, it is a groupoid
object: that is, it is a Hopf algebroid. Let’s describe it.

The scheme T' x pre T classifies the universal isomorphism between Weierstrass curves (respecting
the trivialization of the tangent space). The universal such isomorphism is given by

(1) r—=x+r
(2) Yy + s+,
where

Ir| =4, |[s|=2, |[t|=6.
It follows that
T xpe , T = SpecZlay, az, as, as, ag][r, s, 1],

and the moduli stack M7, can be presented by the following Hopf algebroid.

Definition 2. The Weierstrass Hopf algebroid (A,T") keeps track of Weierstrass equations and
isomorphisms between them. Here

A:Z[a17af27a37a47a6]5 F:A[T‘,S,t],

the right unit is given by

(3) nr(a1) = ay + 2s

(4) nr(az) = as — say + 3r — 52

(5) nr(as) = az +ra; + 2t

(6) nr(as) = ag — sas + 2asr — (t +78)a; + 3r2 — 2st
(7) nr(as) = ag + ras + ras + r — tag — t2 — rta;
The coproduct is given by the composition law for isomorphisms; thus

(8) Alr)=rel+1er

(9) A(s)=s®@14+1®7

(10) A)=t®@1+t®@1+s®T.

The grading has already been specified above.

Given a Hopf algebroid, there is a cobar complex which one can use to compute its cohomology.
Unfortunately, the Weierstrass Hopf algebroid is rather unwieldy, with a whole bunch of free variables.
It’s more efficient to localize at a prime and then use simpler presentations of the stack. (Analogy: to
compute with the ANSS, it’s easier to use BP than MU.)

Example 1. When we invert 6, the moduli stack of cubics becomes very simple. By completing the
square and the cube, we can put any cubic in the form

y? =23 + Az + B.
The only isomorphisms between cubics in this form over a Z[1/6]-algebra come from the G,,-action:

that is, y — vy and x — u?x. Tt follows that
cup1/6] = SpecZ[1/6][A, B],

cub

so there is no higher cohomology when 6 is inverted (a fact which would not be obvious from the
Weierstrass Hopf algebroid).
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In particular, the descent spectral sequence degenerates with the terms concentrated on the bottom
line; the homotopy groups of TMF when 6 is inverted are given simply by Z[1/6][A, B, A~!] where A
is the discriminant.

4. THE MODULI STACK M ., AT p =3

The Weierstrass Hopf algebroid described in the previous section is one way of presenting M.
It is the groupoid object one gets from the faithfully flat cover SpecZla1, as, as, a4, ag] — M2,,. The
key insight is that the specific Hopf algebroid is not as important as the stack, and the stack can be
presented at a specific prime (the interesting ones are p = 2,p = 3) in simpler ways. Henceforth, we
will focus on the prime 3, and by M., or M7, we will tacitly mean the localization at 3.

For example, consider the Weierstrass equation

y2 +ai1xy + a3y = 2+ a2:172 + a4 + ag.

When we have inverted 2, we can “complete the square” to eliminate a; and az. After a faithfully
flat base change, we can perform a translation in x to eliminate ag. This motivates, though does not
quite prove:

Proposition 6. The map SpecZs)|az, as] — M, classifying the cubic curve

y2 =3 + a2x2 —+ aqx

3 ]
is a flat cover of M_,;.

What we have shown is that the map is a cover: any map to M¢, , lifts, fppflocally, to SpecZs)[asz, as].
In particular, the map of stacks is surjective. To check flatness, we consider a map SpecR — M},
classifying a cubic curve, and consider the fiber product

SpecZsy[az, as] X e, SpecR.

If SpecR — M_ , classifies a Weierstrass equation, the above fiber product is the universal change
of coordinates that makes its aj,as,ag vanish. One can directly compute this to be a finite, flat
R-algebra.

Example 2. For example, if R = Z)laz, a4] itself, then we find
SpecZs)[ag, as] X are,, SpecZs)laz, as] = Zs)[az, as, 7]/ (r + agr® + aqr).

This states that the isomorphisms of Weierstrass equations with a; = ag = ag = 0 are precisely given
by z-translations by elements r satisfying the above cubic: this is easy to check by playing with the
equations themselves.

This calculation tells us something important:
Proposition 7. SpecZs[az, as] — MZ,, is a finite flat cover of rank three.

We thus obtain a more economical Hopf algebroid for computing H*(M?,

o> ). The associated
unnormalized cobar complex begins

Zzylaz, as) """ Ligylaz, ad[r]/(r® + aor® + apr) — ...

This is much more sensible. (Actually, can get something even smaller if we used the normalized cobar
complex.)

Aside. There are a host of covers of the moduli stack of elliptic curves which come from “moduli of
elliptic curves with some level structure.” The particular cover here comes from the moduli stack of
elliptic curves together with a nonzero point of order 2 (and a trivialization of the Lie algebra). It
isn’t obvious, though, that what we get actually extends to a three-fold cover of the moduli stack of
cubic curves.

Let’s just set down the formulas for this Hopf algebroid.
(11) nr(az) = az + 3r
(12) nr(as) = ay + 2azr + 32
(13) Alry=rel+ler.
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5. THE BOCKSTEIN SPECTRAL SEQUENCE

1. The general setup. At the prime 3, we now have a sensible Hopf algebroid (A,T") for calculating
the cohomology of M_,,. Still, it will be convenient to employ a further collection of spectral sequences
to compute H*(MZ,,, O). These spectral sequences are “algebraic Bockstein spectral sequences” and
were apparently first developed by Miller and Novikov for computing the Fs-page of the Adams-
Novikov spectral sequence.

To set this up, let (A4,T) be a graded, connected Hopf algebroid, presenting a stack X. Let © € A,
be an invariant, homogeneous element: ng(x) = x. Then the ideal (x) is invariant, and cuts out a
closed substack of the stack associated to (A,T"). The Bockstein spectral sequence uses the (x)-adic
filtration to give rise to a spectral sequence starting from the cohomology of the stack cut out by (z)
to the cohomology of the whole stack.

Theorem 8 (Miller-Novikov). There is a multiplicative spectral sequence
Hj o) r) (A (), T/ (2))[t] = H*(A,T),
where we use H*(A,T') to refer to H*(X,w®*) for X the stack presented by (4,T).

For example, if z = p is a prime number, then this is the classical Bockstein spectral sequence from
mod p cohomology to Z,-cohomology. To obtain the spectral sequence, consider the cosimplicial ring

A=TST oAl ..
—

whose cohomology computes H*(A,T") (via the cobar complex). Give it the z-adic filtration to get
a filtered cosimplicial ring. The associated graded is the cobar complex for the Hopf algebroid
(A/(x),T'/(z)), and the spectral sequence we get is the spectral sequence for a filtered chain com-
plex. In particular, we can work out the differentials by looking at the boundary maps in the cobar
complex (they are Bocksteins and higher Bocksteins).

In many cases, when there is a grading and when we are dealing with connected objects, the
convergence is very good. If x has positive degree, for example, the filtration we get is a finite
filtration in each degree, and we have strong convergence.

2. Filtering M. In the Hopf algebroid (A,T) = (Zs)|az, as], Z)[az, as, r]/ (1 + agr® + ayr)), we
note the sequence of invariant ideals

Il = (3)7 -[2 = (370'2)7 I3 = (3,@2,@4).

These correspond to the closed substacks cut out by 3, the Hasse invariant vy, and then vo. (All that is
left at the end is the “cuspidal” cubic y? = 3, whose formal group is the additive one.) The strategy
is to compute the cohomology of these closed substacks, starting from the smallest and working one’s
way up, using the Bockstein spectral sequence. The differentials in the Bockstein spectral sequence
are Bocksteins and come from a known filtration of the cobar complex, so they can be calculated
explicitly.

First, though, let’s note some general features of what we should get about the cohomology:

e The stack Mg, admits a three-fold flat cover by an affine scheme. Consequently, the only
torsion in the cohomology can be of order three.
e The global sections of Opse  are called integral modular forms (localized at 3)E| The ring of

integral modular forms can be calculated ([Del75]) to be isomorphic to
Zlcy, co, A/ (c3 — & = 1728A),

where A is the discriminant and cg4, cg are certain modular forms. One can explicitly write
(see [Del7h]) formulas for these.

3VVhy “modular forms”? A modular form of weight 2k in the classical sense of the word can be described as a
function from the space of lattices in C to C satisfying certain holomorphicity and homogeneity conditions. But an
elliptic curve over C with a trivialization of its tangent space is the same thing as a lattice. So a modular form in the
classical sense can be identified as a function from elliptic curves equipped with a trivialization of the Lie algebra to C
satisfying certain holomorphicity and homogeneity conditions. These conditions are encoded algebraically here.
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FiGURE 3. The cohomology of Bag, with Adams indexing
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FIGURE 4. The BSS for the cohomology of (4/12,1'/15)

o There has to be nontrivial cohomology of M2 , (or tmf would be rather uninteresting). One
can see this by noting the existence of a “mod 3” modular form (the Hasse invariant) which
is not liftable to characteristic zero. (By contrast, for primes p > 3, the Hasse invariant is

liftable to characteristic zero, via the Eisenstein series E,_1.)

3. Let’s start by computing the cohomology of the Hopf algebroid (A/I3,T'/I3). This is the moduli
stack of cubic curves with additive reduction — i.e., whose formal group is locally isomorphic to the
additive one. As a Hopf algebroid, this is

(Z/3.Z/3[r]/(r*)),
where r is primitive. In other words, it is the classifying stack of the group scheme asg.
Using a minimal resolution, one computes the cohomology of this stack:

Proposition 9. The cohomology ring of Bas (as presented by the above Hopf algebroid) is Z/3[c, 8]/ (a?)
where:

e a € H%* is represented by [r] in the cobar complex.
e 3 € H%1? is represented by [r2|r] — [r|r?] in the cobar complex, and 8 = {(«, a, a).

The result is displayed in Figure 3. In all diagrams, we use Adams indezxing: the spot (s,t) refers
to H®s Tt

Note that a and S are defined in terms of r and rely only on the fact that r is primitive; thus
they lift to the cohomology of M7, (which means that the Bockstein differentials exiting them are
all trivial in future BSSes).

4. Let’s now work our way up to the cohomology of (A/I5,I'/I5). To get here, we use the Bockstein
spectral sequence. To get the Bockstein spectral sequence, we just add a free variable a4 to the picture
we got in the previous section. This is displayed in Figure 4.

The Bockstein spectral sequence starts with this picture. All the differentials go up by one and to
the left by one, which sounds at first strange except that the BSS actually has a trigrading that I am
ignoring. In any event, the fact that «, 8 lift as cohomology classes (they lift all the way to M?,;)
means that the BSS degenerates. We find:

Proposition 10. The cohomology ring of (A/I5,T'/I3) (as presented by the above Hopf algebroid) is
7/3[c, B, a4]/(a?) where:
e a € H'* is represented by [r] in the cobar complex.
e (3 € H?*'2 is represented by [r?|r] — [r|r?] in the cobar complex, and 3 = («, a, o).
e a; € H%® is represented by a4 in the cobar complex (i.e., it is an invariant element of the
ground ring).
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FIGURE 5. The BSS for the cohomology of (A4/I1,T'/I;) after the first round of differentials

And so the picture of the BSS is the picture of the cohomology.

5. Let’s now continue our way up to the cohomology of (A/I;,I'/I;). The passage to here is the
hard part.

We start with the diagram of the cohomology of (A/I3,T'/I5), and adjoin a free variable ay in
position (4,0). This time, there are differentials:

e As before, «, § are permanent cycles that survive the BSS.
e However, now a4 is not a permanent cycle. Looking at the boundary of a4 in the cobar
complex shows that the Bockstein differential has

ag — 2a90,

since « is represented by [r] in the cobar complex. The spectral sequence is multiplicative, so
that determines the first page of differentials in the BSS.

In particular, we can enumerate the cycles and boundaries:

e The cycles are the subring generated by as, @, 3, asc, a3, aj.

e The boundaries are the ideal (in the ring of cycles!) generated by asa and asasc = d(a?).

While a4 does not survive, aay does, and represents a class in the next page denoted [aay]. Also,
a3 does, thanks to the power of the Frobenius.

We display in Figure 5 what happens after the first round of BSS differentials. We observe that
as[aas] = 0 but [ca?] generates a free Z/3[az]-module summand. The whole thing is periodic with
a3].

Now let’s try to consider the second round of differentials. The question is where [a}] and [aa}] go.

e [aay] is represented in the cobar complex by a4[r]. The cobar boundary of this is
2as[r|r].

Therefore, if we consider a4[r] — as[r?], then this is equal to a4[r] modulo terms of positive
as-filtration, and is an honest cycle mod 3. It follows that [aay] is a cycle.

e By contrast, [aa?] is no longer a cycle. This is represented in the cobar complex by a3[r], and
the cobar boundary of this is (nr(a?) — nr(a?))[r] or

((ai — (ag + 2a27’)2) [r] = —agay[r|r] — a3[r?|r].

Let’s try to modify this by another cocycle of positive (aq)-filtration to get something
whose boundary has even smaller (as)-filtration, and hope that this calculation doesn’t have
too many sign errors. Namely, observe that

d(agays[r?]) = 2a3[r|r?] + 2aza4[r|r] = —(a3[r|r?] + asaslr|r]),
and therefore
d(ai[r] — asaalr®]) = a3 ([r[r?] = [r*|r]) -

Unwinding the definition of the spectral sequence, this means that the higher Bockstein on

[a?] is hitting precisely a3 /3.
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FIGURE 6. The BSS for the cohomology of (A/I;,T'/I;) after the second round of
differentials (and the final thing)
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FIGURE 7. The cohomology of M.,; at 3

e It is easy to see that aj can go nowhere, since there is nothing for it to kill. In fact, as[aa?]
is the only option, and we have just seen that it is not a cycle.

In other words, (since [a3] is a permanent cycle in the BSS) we find that [a}a] is a permanent cycle

for n=0,1 mod 3, while at n = 2 is kills a38.
This means in the spectral sequence, the ideal a2/ is now killed, and it is displayed in Figure 6.
There are no more differentials. Observe that there is a periodicity with period [a}].

6. In the previous section, we computed the cohomology of (A/(3),T'/(3)), and found that it was
generated by classes as, a, 3, [aay], [a3]. Here [aa4], o had square zero, and a3 = 0.

Now we have to run a final Bockstein spectral sequence to get the cohomology of (A,T"). The
Bockstein spectral sequence is really trigraded, with multiplication by 3 jutting out of the page and
giving an infinite cube spectral sequence. We won’t draw that. Suffice it to say:

e «, 3 are known to be permanent cycles.

e d(az) = 3a.

o d([aay]) = £35 or otherwise 8 would have order more than three (which is impossible, as we
saw); of course, this can be checked in the cobar complex too.

e [aj] is, for dimensional reasons, a permanent cycle.

Observe that a3 survives, as does a3.

The final output of the spectral sequence is displayed above in Figure 7. Here, modulo signs, a3 is
represented by cy, a3 by cg (mod something divisible by 3), and aj is represented by A.

Theorem 11. The cohomology of M_,; is given by

Z(?)) [Oé, 57647667 A]/Ia
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where [ is the ideal generated by the relations

(14) 30=38=0

(15) a® =0

(16) caa=c4ff =cga=cgB =0
(17) ey —c2 =1728A,

The last statement is a known result about integral modular forms. We note in particular that the
cohomology exhibits a A-periodicity (by contrast, if we invert ¢4, we get nothing in higher cohomol-

ogy).

6. THE HOMOTOPY GROUPS OF TMF

In the previous section, we computed the cohomology groups of M, at 3. We find as a result that
the Es-page of the descent spectral sequence for TMF is given by

Z(?)) [Oé, 63 C4, Cq, Ail]/I,

where [ is the ideal generated by the same relations. In this section, we will determine the differentials
in the spectral sequence (called the elliptic spectral sequence by [Bau08]) and thus describe 7. TMF.
It will turn out that the entire spectral sequence is a consequence of a single differential, which will
come out of the homotopy groups of spheres.

Proposition 12. ¢4, cg are permanent cycles in the elliptic spectral sequence at p = 3 (that is, they
survive to elements in 7, TMF). Ditto for «, 3.

Proof. By comparison with the ANSS at p = 3, « is in the image of the Hurewicz homomorphism
(under the class in the homotopy groups of spheres usually called «). We get 8 = («, «, «) since the
same relation is true in m,(S).

To see that c4,cs are permanent cycles, we first show that they are in the image of the transfer
from the three-fold cover of M,y given by (SpecZ(g) [az, a4][A_1]) /G,. To see this, we may pass to
the 6-fold Galois cover of M,y by imposing a full level 2 structure (i.e., a choice of two distinct nonzero
points of order two on an elliptic curve). This gives a Galois cover

My 2] = Moy

which is Galois with group Ss. The claim is that ¢4, cg are in the image of the transfer (trace) from
this 6-fold cover; this is equivalent to the statement about the 3-fold cover as we are localized at 3.
This follows from the next lemma since cy4, cg kill the torsion in the cohomology of the moduli stack.
Once one sets up an appropriate topological theory of the transfer (trace maps) for E.-rings, this
proposition should be a corollary of the algebraic observation just made, because cq4, cg arise in the

image of the transfer from “topological modular forms of level 2.”
O

Lemma 13. Let M be a Z3)[S3]-module. Let € M; then = € M*S3 is a norm if and only if z8 = 0
where 3 € H?(S3;Z3)) is a certain 3-torsion element.

Proof. We can replace S3 by the cyclic group Cs. In this case, given 2 € H(Cs, M), to say that x is
a norm is to say that & maps to zero in the Tate cohomology H°(Cs, M). The Tate cohomology of C3
with any coefficients is periodic with periodicity operator given by 3 € H?(C3,Z) = H?(Ss; Zzy). O

In Figure 8, we display the elliptic spectral sequence. The ideal in the zero-line generated by ¢y, cg
is not shown, because these are permanent cycles by the above proposition and they annihilate the
torsion of the spectral sequence. Instead of writing «, we use a line of slope 1/3 to indicate that two
classes are connected by a multiple of «.

Proposition 14. The first differential in the spectral sequence is a ds5, and

d5(A) = :I:ﬂza.
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FI1GURE 10. The elliptic spectral sequence at p = 3 after ds

Proof. There are no differentials before ds for dimensional reasons. One knows that 32 = 0 in the
homotopy groups of spheres; this is the “Toda relation” ([Tod68]) and must therefore hold in TMF as
well. In particular, a differential must kill 83« in the elliptic spectral sequence. The only possibilities
for elements which can kill 82« are already visible in the spectral sequence, and we get

ds(AB) = +33a.
This forces the desired differential. O

To recap:

e The survivors of this spectral sequence include «, 3, [3A], b = [aA], ¢ = [@A?], A3, and in fact
are the ring generated by these.
e We have the relations a3? = 0 and AB%a = 0. 3% = 0 and [3A] kills all the torsion.
Figure 10 displays the elliptic spectral sequence after the ds differential; we observe that this forces
af? =0 € 7, (TMF) rather than simply up to higher filtration (in fact, there is nothing in the column
that used to be 5%, even from towers starting at other powers of A). Observe that there is now a
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FIGURE 11. The dy in the elliptic spectral sequence at p = 3

periodicity generated by A2 rather than A. We are not done, though. The powers of 3 continue,
while we know that § is nilpotent in 7.(TMF): in fact, the spectral sequence should degenerate at a
finite stage with a horizontal vanishing line, which we certainly do not have right now.

However, if we play with Massey products, we can say a few things. First, let’s recall the equation

B = <a7a:a>

which is already valid in the homotopy groups of spheres, and which we saw in the cohomology of the
moduli stack of elliptic curves. Consider that

8% =B (a,a,a) C (BPa,a,0).
Since a3 is nullhomotopic in 7, TMF, we find that (in 7. TMF) that
B® € (0,a, @) = amy; TMF.

In particular, since 3% € m, TMF is nonzero (clearly it is a permanent cycle and nothing can kill it in
the spectral sequence), we find that there is a nonzero class in w97 TMF such that when multiplied by
a, it gives B3. This class must have filtration lower than 53 and a look at the spectral sequence now
shows:

Proposition 15. The class b is a permanent cycle and converges to an element of wo;TMF with
ba = 3% (at least modulo terms of higher filtration).

In fact, we will see that there are no terms of higher filtration. For now, we just need to know that
b survives.

The transfer argument showed that 3A and 3A? survive in the spectral sequence. If A3 supports
a differential, we know that at least it is a very long differential (certainly not until djg).

The next order of business is ¢. We have

B° = 32B% (o, a, ) € (aff, a,af?) = (0,a,0) = 0.
Therefore, something must kill 3°. The only possibility is that
dg(C) = iﬂs.

We draw the ninth differential next:
After dg, there is room for no more differentials. We conclude with the desired computation:

Theorem 16. We have

7T*T‘l\/IF(?)) = Z(?)) [647 Ce [SAL [3A2]7 Ai37 a, B, b}/']
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FIGURE 12. The homotopy groups of TMF (at p = 3)

where J is the ideal generated by the relations

(18) ¢y — c2 = 576[34]

(19) [3A)% = 3[3A7)

(20) 3a=338=3b=0

(21) a[3A] = a[3A%) = B[3A] = B[3A%] =0
(22) af®=p"=0

(23) caae = cyff = cab=cga = cgB = cgb =10
(24)

Once again, we find that the spectral sequence degenerates at a finite stage (at F1¢) with a horizontal
vanishing line. Let SpecR — M, be an étale cover (localized at 3, as always). Then we can form a
simplicial diagram

. ESpecR X M., SpecR = SpecR
and consequently a cosimplicial diagram in F.,-rings

O'P(SpecR) = O"P(SpecR X )., SpecR) 3 e

whose homotopy limit is, by definition, TMF. The descent spectral sequence is the homotopy spectral
sequence for this cosimplicial F.-rings. However, the degeneration of the descent ss at a finite stage
with a horizontal vanishing line reflects the fact that the seemingly infinite homotopy limit here is
really a finite one. The pro-object associated to the Tot tower is a constant pro-object. Moreover,
TMF exhibits its own periodicity, here of order 72 (when localized at 3).

We remark that there are maps

1,.8° = T, TMF — MF,[A™Y]

where M F, = H*(Meyup, w®*) is the ring of integral modular forms. The first map is the Hurewicz
homomorphism and the second map is the edge homomorphism in the descent spectral sequence.
Surprisingly, most of the torsion in m, TMF (at 3, at least) comes from 7,S°, and the torsion-free part
is still pretty close to M F,. This perhaps justifies the name “topological modular forms.”

7. FURTHER REMARKS

1. p = 2. At the prime 2, the calculation is handled somewhat similarly, at least in outline. However,
the details are much more complicated. Rather than a two-fold cover of the moduli stack of cubics,
one has to use an eight-fold cover (given by a elliptic curves with a I'1(3) structure) to compute the
Hopf algebroid cohomology. Then, when computing 7, TMF, the modular forms ¢4, cg support quite
a few differentials, too—mot just A. For inspiration, see [Hop0§].

In short, both the computation of the cohomology of the stack and the differentials is far more
complicated, but it is worked out in [Bau08].
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2. The classical Adams spectral sequence. It is also possible to compute 7, tmf using the classical
Adams spectral sequence. Namely, it is known that

H*(tmf;Z/2) ~ A/ As,

where A is the (mod 2) Steenrod algebra and Az C A is the 64-dimensional subalgebra generated by
Sq',Sq?,Sq*. The “change-of-rings isomorphism” enables one to calculate the Eo-page of the classical
ASS for tmf(y) via

Extiiz (Z)2,Z2)2) = ms_stmf ().
This is a more complicated analog of the fact that
H*(b0s 2,/2) = A/ [ Ay,

from which one can compute m,.bo as in chapter 3 of [Rav86]. Computing Ext over Asg is much more
complicated than making the computations for bo, and the ASS for tmf is a mess.

Aside. Tt is not possible to have spectra whose cohomology is A//A,, for n > 2. This is a consequence
of the solution to the Hopf invariant one problem.

Aside. It was initially (incorrectly) believed that there was no spectrum with the cohomology A4// As.

At the prime 3, the cohomology of tmf is not cyclic over the Steenrod algebra, but one can still
run the ASS. See [Beh).

As far as T know, to prove such things (or in general anything about tmf) requires some prior
knowledge about the homotopy groups of Tmf—that is, I don’t think you can get away from the
Adams-Novikov (or descent) spectral sequence for Tmf.

3. The ANSS for tmf. The ANSS for tmf is well-understood. Recall that the ANSS runs
EXt?V’[tU*MU(MU*y MU*tmf) — Wtfstmf.

It is known that the Eo-page of this spectral sequence is isomorphic to H*( My, w®7). More is true:
the Hopf algebroid

(MU, tmf, MU,(MU ® tmf))

presents a stack equivalent to the moduli stack M., of pointed cubic curves. This result is used in
[Bau0g].

There is an analog of this result, too, for KO-theory. The ANSS for bo can be described using the
moduli stack of “quadratic equations and translations.”

I know a rather convoluted argument for this result, but it too relies on computations in 7, Tmf
(specifically, the existence of a “gap theorem”) in the homotopy groups. Does anyone know how to
prove this directly? Please enlighten me!

4. Duality. Given the homotopy groups of tmf (computed using the ASS or ANSS above), one can
work out the homotopy groups of TMF via TMF = tmf[A~!]. Obtaining the homotopy groups of
Tmf is more subtle. The following result enables us to do so:

Theorem 17 (Stojanoska [Sto12]). The Anderson dual of Tmf is ¥?! Tmf.
The result does not immediately tell us how to compute, for instance, w_; Tmf. However, we have:
Theorem 18 (Gap theorem). m;Tmf =0 for —21 < ¢ < 0.

It would be interesting if there were a way to prove this result directly from duality. The compu-
tations done above are sufficient to prove the gap theorem at p = 3, though.
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