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In these lecture notes I will try to summarize some recent advances in the new area of study
known as string topology. This subject was initiated in the beautiful paper of Chas and Sullivan [3],
and has attracted the attention of many mathematicians over the last few years. In its most basic
form, string topology is the study of differential and algebraic topological properties of paths and
loops in a manifold.

Throughout this note Mn will denote a closed, n-dimensional, oriented manifold. LM will denote
the free loop space,

LM = Map(S1,M).

For D1, D2 ⊂ M closed submanifolds, PM (D1, D2)) will denote the space of paths in M that start
at D1 and end at D2,

PM (D1, D2)) = {γ : [0, 1]→M, γ(0) ∈ D1, γ(1) ∈ D2}.

The paths and loops we consider will always be assumed to be piecewise smooth. Such spaces of
paths and loops are well known to be infinite dimensional manifolds, and roughly speaking, string
topology is the study of the intersection theory in these manifolds.

Recall that for closed, oriented manifolds, there is an intersection pairing,

Hr(M)×Hs(M)→ Hr+s−n(M)

which is defined to be Poincare dual to the cup product,

Hn−r(M)×Hn−s(M) ∪−→ H2n−r−s(M).

The geometric significance of this pairing is that if the homology classes are represented by sub-
manifolds, P r and Qs with transverse intersection, then the image of the intersection pairing is
represented by the geometric intersection, P ∩Q.
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The remarkable result of Chas and Sullivan says that even without Poincare duality, there is an
intersection type product

µ : Hp(LM)×Hq(LM) −→ Hp+q−n(LM)

that is compatible with both the intersection product on H∗(M) via the map ev : LM → M

(γ → γ(0)), and with the Pontrjagin product in H∗(ΩM).

The construction of this pairing involves consideration of the diagram,

LM
γ←−Map(8,M) e−→ LM × LM. (1)

Here Map(8,M) is the mapping space from the figure 8 to M , which can be viewed as the subspace
of LM × LM consisting of those pairs of loops that agree at the basepoint. γ : Map(8,M)→ LM

is the map on mapping spaces induced by the pinch map S1 → S1 ∨ S1.
Chas and Sullivan constructed this pairing by studying intersections of chains in loop spaces. A

more homotopy theoretic viewpoint was taken by Cohen and Jones in [5] who viewed e : Map(8,M)→
LM × LM as an embedding, and showed there is a tubular neighborhood homeomorphic to a nor-
mal given by the pullback bundle, ev∗(TM), where ev : LM →M is the evaluation map mentioned
above. They then constructed a Pontrjagin-Thom collapse map whose target is the Thom space of
the normal bundle, τe : LM ×LM →Map(8,M)ev∗(TM). Computing τe in homology and applying
the Thom isomorphism defines an “umkehr map”,

e! : H∗(LM × LM)→ H∗−n(Map(8,M)).

The Chas-Sullivan loop product is defined to be the composition

µ∗ = γ∗ ◦ e! : H∗(LM × LM)→ H∗−n(Map(8,M))→ H∗−n(LM).

Notice that the umkehr map e! can be defined for a generalized homology theory h∗ whenever one
has a Thom isomorphism of the tangent bundle, TM , which is to say a generalized homology theory
h∗ for which the representing spectrum is a ring spectrum, and which supports an orientation of M .

By twisting the Pontrjagin-Thom construction by the virtual bundle −TM , one obtains a map
of spectra,

τe : LM−TM ∧ LM−TM →Map(8,M)ev∗(−TM),

where LM−TM is the Thom spectrum of the pullback of the virtual bundle ev∗(−TM). Now we
can compose, to obtain a multiplication

LM−TM ∧ LM−TM τe−→Map(8,M)ev∗0 (−TM) γ−→ LM−TM .

The following was proved by Cohen and Jones in [5].
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Theorem 1. Let M be a closed manifold, then LM−TM is a ring spectrum. If M is orientable the
ring structure on LM−TM induces the Chas-Sullivan loop product on H∗(LM) by applying homology
and the Thom isomorphism.

The ring structure on the spectrum LM−TM was also observed by Dwyer and Miller using
different methods.

In [4], Cohen and Godin generalized the loop product in the following way. Observe that the
figure 8 is homotopy equivalent to the pair of pants surface P , which we think of as a genus 0
cobordism between two circles and one circle.

Figure 1: Pair of pants P

Furthermore, diagram 1 is homotopic to the diagram of mapping spaces,

LM
ρout←−−−Map(P,M)

ρin−−→ (LM)2

where ρin and ρout are restriction maps to the “incoming” and “outgoing” boundary components of
the surface P . So the loop product can be viewed as a composition,

µ = µP = (ρout)∗ ◦ (ρin)! : (H∗(LM))⊗2 → H∗(Map(P,M))

→ H∗(LM)

where using the figure 8 to replace the surface P can be viewed as a technical device that allows one
to define the umkehr map (ρin)!.

In general if one considers a surface of genus g, viewed as a cobordism from p incoming circles
to q outgoing circles, Σg,p+q, one gets a similar diagram

(LM)q ρout←−−−Map(Σg,p+q,M)
ρin−−→ (LM)p.
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p circles
q circles

Figure 2: Σg,p+q

In [4] Cohen and Godin used the theory of “fat” or “ribbon” graphs to represent surfaces as developed
by Harer, Penner, and Strebel [11], [12], [14], in order to define Pontrjagin-Thom maps,

τΣg,p+q : (LM)p →Map(Σg,p+q,M)ν(Σg,p+q)

where ν(Σg,p+q) is the appropriately defined normal bundle of ρin. By applying (perhaps generalized)
homology and the Thom isomorphism, they defined the umkehr map,

(ρin)! : H∗((LM)p)→ H∗+χ(Σg,p+q)·n(Map(Σg,p+q,M)),

where χ(Σg,p+q) = 2 − 2g − p − q is the Euler characteristic. Cohen and Godin then defined the
string topology operation to be the composition,

µΣg,p+q
= ρout ◦ (ρin)! : H∗((LM)p)→ H∗+χ(Σg,p+q)·n(Map(Σg,p+q,M))→ H∗+χ(Σg,p+q)·n((LM)q).

They proved that these operations respect gluing of surfaces,

µΣ1#Σ2 = µΣ2 ◦ µΣ1

where Σ1#Σ2 is the glued surface as in figure 3 below.
The coherence of these operations are summarized in the following theorem.

Theorem 2. (Cohen-Godin [4]) Let h∗ be any multiplicative generalized homology theory that sup-
ports an orientation of M . Then the assignment

Σg,p+q −→ µΣg,p+q
: h∗((LM)p)→ h∗((LM)q)

4



p circles
q circles

r circles

Figure 3: Σ1#Σ2

is a positive boundary topological quantum field theory. “Positive boundary” refers to the fact that
the number of outgoing boundary components, q, must be positive.

A theory with open strings was initiated by Sullivan [15] and developed further by A. Ramirez
[13] and by Harrelson [10]. In this setting one has a collection of submanifolds, Di ⊂M , referred to
as “D-branes”. This theory studies intersections in the path spaces PM (Di, Dj).
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Figure 4: open-closed cobordism

A theory with D-branes involves “open-closed cobordisms” which are cobordisms between com-
pact one dimensional manifolds whose boundary is partitioned into 3 parts:

1. Incoming circles and intervals
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2. Outgoing circles and intervals

3. The rest is the “free boundary” which is itself a cobordism between the boundary of the
incoming and boundary of the outgoing intervals. Each connected component of the “free
boundary” is labelled by a D-brane. See figure 4.

In a topological field theory with D-branes, one associates to each boundary circle a vector space
VS1 , (in our case VS1 = H∗(LM)) and to an interval whose endpoints are labeled by Di, Dj , one
associates a vector space VDi,Dj

(in our case VDi,Dj
= H∗(PM (Di, Dj))).

To an open-closed cobordism as above, one associates an operation from the tensor product of
these vector spaces corresponding to the incoming boundaries to the tensor product of the vector
spaces corresponding to the outgoing boundaries. Of course these operations have to respect the
relevant gluing of open-closed cobordisms.

By developing a theory of fat graphs that encode the open-closed boundary data, Ramirez was
able to prove that there are string topology operations that form a positive boundary, topological
quantum field theory with D-branes. [13]

We end these notes by a discussion of three applications of string topology to classifying spaces
of groups.

Example 1: Application to Poincare duality groups. This is work of H. Abbaspour, R.Cohen,
and K. Gruher [2].

For G any discrete group, one has that the loop space of the classifying space satisfies

LBG '
∐
[g]

BCg

where [g] is the conjugacy class determined by g ∈ G, and Cg < G is the centralizer of g.
When BG is represented by a closed manifold, or more generally, when G is a Poincare duality

group, the Chas-Sullivan loop product then defines pairings among the homologies of the centralizer
subgroups. In [2] the authors describe this loop product entirely in terms of group homology, thus
giving structure to the homology of Poincare-duality groups that had not been previously known.

Example 2 : Applications to 3-manifolds. This is work of H. Abbaspour [1]
Let ι : H∗M → H∗(LM) be induced by inclusion of constant loops. This is a split injection of

rings. Write H∗(LM) = H∗(M) ⊕ AM . We say H∗(LM) has nontrivial extended loop products if
the composition

AM ⊗AM ↪→ H∗(LM)⊗H∗(LM)
µ−→ H∗(LM)

is nontrivial.
Let M be a closed, irreducible 3-manifold. In a remarkable piece of work, Abbaspour showed the

relationship between having a trivial extended loop product and M being “algebraically hyperbolic”.
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This means that M is a K(π, 1) and its fundamental group has no rank 2 abelian subgroup. (If
geometrization conjecture is true, this is equivalent to M admitting a complete hyperbolic metric.)

Example 3: The string topology of classifying spaces of compact Lie groups. This is work of
K. Gruher [8] and of Gruher and Salvatore [9].

The goal of Gruher’s work is to construct string topological invariants of LBG ' EG ×G G,
where G acts on itself via conjugation. Ultimately, one would like to understand the relationship
between this structure and the work of Freed, Hopkins, Teleman [6] on twisted equivariant K-theory,
Kτ

G(G) and the Verlinde algebra.

The first observation in this program was to notice that the key ingredient in the forming of the
Chas-Sullivan loop product is that the fibration ev : LM → M is a fiberwise monoid over a closed
oriented manifold. The fiber is ΩM , which has the usual Pontrjagin product.

The following was proved by Gruher and Salvatore:

Lemma 3. Let G → E → M be a fiberwise monoid over a closed manifold M . Then E−TM is a
ring spectrum.

The following construction gives a large supply of examples of such fiberwise monoids over
manifolds.

Let G → P → M be a principal G bundle over a closed manifold M . We can construct the
corresponding adjoint bundle,

Ad(P ) = P ×G G→M.

It is an easy observation that G→ Ad(P )→M is a fiberwise monoid.

Theorem 4. Ad(P )−TM is a ring spectrum. This ring structure is natural with respect to maps of
principal G-bundles.

Let BG be classifying space of compact Lie groups. It is possible to construct a filtration of BG,

M1 ↪→M2 ↪→ · · · ↪→Mi ⊂Mi+1 ↪→ · · · ↪→ BG

where the M ′
is are compact, closed manifolds. An example of this is filtering BU(n) by Grassman-

nians.
Let G→ Pi →Mi be the restriction of EG→ BG. By the above theorem one obtains an inverse

system of ring spectra

P−TM1
1 ← P−TM2

2 ← · · · ← P−TMi
i ← P

−TMi+1
i+1 ← · · ·

Theorem 5. The homotopy type of this pro-ring-spectrum is a well defined invariant of BG. It is
referred to as the “string topology of BG”.
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Work in progress by Gruher: Apply K∗ to this pro-ring spectrum, as well as twisted K-theory.
Relate the string topology multiplicative structure to the multiplicative structure on Kτ

G(G) found
by Freed, Hopkins, and Teleman , known as the “fusion product” in the Verlinde algebra.
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