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1. Introduction

1.1. A formal deformation problem (over a base field k of characteristic zero) can be described
as a (2-)functor

C : art/k → Grp

from the category of artinian local k-algebras with residue field k to the category of groupoids
which assigns to any A ∈ art/k a groupoid C(A) whose objects are deformations with the base
Spec(A) and whose morphisms are equivalences of these deformations.

On the other hand, any non-negatively graded dg Lie algebra g over k gives rise to such a functor

Cg : art/k → Grp.

This functor assigns to (A,m) ∈ art/k the Deligne groupoid Cg(A) = C(m ⊗ g) of the nilpotent
Lie dg algebra m ⊗ g — see 2.2 or [GM1], sect. 2.

A common belief is that any ”reasonable” formal deformation problem can be described by
the Deligne groupoid Cg where g is an appropriate ”Lie algebra of infinitesimal automorphisms”.
This would imply, for instance, that if H0(g) = 0 (i.e. if the automorphism group of the deformed
object is discrete) then the completion of the local ring of a moduli space at a given point is
isomorphic to the completion of the 0-th cohomology group of g.

If we are dealing with the deformations of algebraic structures (associative, commutative or Lie
algebras or so), the Lie algebra g is just the standard complex calculating the cohomology of
the appropriate type.

In this paper we prove the following claim conjectured by V. Schechtman in [S1, S2, HS3].
It allows one to construct a dg Lie algebra which governs various formal deformations in the
non-affine case.

Let X be a topological space and let g be a sheaf of dg Lie k-algebras. Let U = {Ui} be a locally
finite open covering of X, Di = CΓ(Ui,g) be the Deligne groupoids corresponding to the dg Lie
algebras Γ(Ui, g) and let D be the groupoid of ”descent data” for the collection Di (see 3.2.1,2).
Then D is naturally equivalent to the Deligne groupoid CL where L is a dg Lie algebra representing
the Cech complex Č(U , g).

This result implies, in particular, Corollary 6.2 which claims that Theorem 8.3 of [HS2] remains
valid without the assumption of formal smoothness.

1.2. Our proof is based upon a very important notion of nerve Σ(g) of a nilpotent dg Lie
algebra g which we define in Section 2.
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The nerve Σ(g) is a Kan simplicial set (cf. [GZ]); Deligne groupoid C(g) is homotopically equiv-
alent to Σ(g) and it identifies with the Poincaré groupoid Π(Σ(g)) (cf. [GZ]).

In Section 3 we present a (almost standard) definition of the total space functor in different
categories. Now the claim of 1.1 follows from the main Theorem 4.1 saying that the nerve
functor Σ commutes with the Tot functors up to homotopy.

The natural map Σ◦Tot → Tot ◦Σ is constructed immediately; it takes some pain to check that
this is a homotopy equivalence.

Section 5 is technical. We use its Proposition 5.2.8 in the proof of the main Theorem 4.1. In
the last Section 6 we deduce from Theorem 4.1 an application to formal deformation theory.

The idea that the generalization of the result of [HS2] to the non-smooth case should follow
from a descent property for Deligne groupoids belongs to V. Schechtman. I am very grateful to
him for helpful discussions on the subject. Proposition 2.2.3 claiming that the nerve Σ(g) and
the Deligne groupoid C(g) are homotopy equivalent seems to have something common with the
Main Homotopy Theorem of Schlessinger–Stasheff, cf. [SS]. I am greatly indebted to J. Stasheff
who read the first draft of the manuscript and made some important remarks. I am also grateful
to J. Bernstein for his valuable recommendations.

1.3. Notations. Throughout this paper k is a fixed field of characteristic zero.

art/k denotes the category of commutative local artinian k-algebras having the residue field k.

dglie(k) (resp., cdga(k)) is the category of non-negatively graded dg Lie (resp., commutative)
algebras over k. Its full subcategory ndglie(k) consists of nilpotent dg Lie algebras.

∆ is the category of ordered sets [n] = {0, . . . , n}, n ≥ 0 and monotone maps; ∆0Ens is the
category of simplicial sets; ∆n ∈ ∆0Ens are the standard n-simplices.

Kan ⊆ ∆0Ens is the full subcategory of Kan simplicial sets.

Ab is the category of abelian groups. C(A) (sometimes C(R)) is the category of complexes over
an abelian category A (over the category of R-modules). C≥0 denotes the full subcategory of
non-negatively graded complexes.

2. Nerve of a nilpotent Lie dg algebra

Throughout Sections 2–4 all dg Lie algebras will be nilpotent.

2.1. For any n ≥ 0 denote by Ωn the k-algebra of polynomial differential forms on the standard
n-simplex ∆n — see [BG].

One has

Ωn = k[t0, . . . , tn, dt0, . . . , dtn]/(
∑

ti − 1,
∑

dti).

The algebras Ωn form a simplicial commutative dg algebra: a map u : [p] → [q] induces the map
Ω(u) : Ωq → Ωp defined by the formula Ω(u)(ti) =

∑
u(j)=i tj.
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If g is a dg Lie k-algebra and A is a commutative dg k-algebra then the tensor product A⊗ g is
also a dg Lie k-algebra. Thus, any dg Lie algebra g gives rise to a simplicial dg Lie algebra

g• = {gn = Ωn ⊗ g}n≥0.

For any dg Lie algebra g denote by MC(g) the set of elements x ∈ g1 satisfying the Maurer-
Cartan equation:

dx +
1

2
[x, x] = 0.

2.1.1. Definition. Let g ∈ ndglie(k). Its nerve Σ(g) ∈ ∆0Ens is defined as

Σ(g) = MC(g•).

2.1.2. Recall (see [BG]) that the collection of commutative dg algebras Ωn defines a contravari-
ant functor

Ω : ∆0Ens → cdga(k)

so that Ω(∆n) = Ωn and Ω carries direct limits in ∆0Ens to inverse limits.

Lemma. Let S ∈ ∆0Ens. There is a natural map

MC(Ω(S) ⊗ g) → Hom(S,Σ(g))

which is bijective provided S is finite (i.e., has a finite number of non-degenerate simplices).

Proof. This is because tensoring by g commutes with finite limits — compare to [BG], 5.2. �

2.1.3. Definition. A map f : g → h in ndglie(k) will be called an acyclic fibration(this is
an ad hoc definition!) if it is surjective and induces a quasi-isomorphism of the corresponding
lower central series.

2.1.4. Lemma. Let f : g → h be an acyclic fibration in ndglie(k). Then the induced map
MC(f) : MC(g) → MC(h) is surjective.

Proof. Induction by the nilpotence degree of g — similarly to [GM1], Th. 2.4. �

2.1.5. Lemma. Let f : A → B be a surjective map in cdga(k) and g : g → h be a surjective
map in ndglie(k). Then the map

A ⊗ g → (A ⊗ h) ×(B⊗h) (B ⊗ g)

is an acyclic fibration provided either (a) f is quasi-isomorphism or (b) g is acyclic fibration.

Proof. Since for any commutative dg algebra A (with 1) the functor A⊗ transforms the lower
central series of g into the lower central series of A ⊗ g, it suffices to check that the above map
is a surjective quasi-isomorphism. This is fairly standard. �
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2.1.6. Proposition. Let f : g → h be an acyclic fibration. Then Σ(f) : Σ(g) → Σ(h) is an
acyclic fibration of simplicial sets.

Proof. Lemmas 2.1.2 and 2.1.4 reduce the question to the following. Let K → L be an injective
map of finite simplicial sets. Then one has to show that the induced map of nilpotent Lie
algebras

Ω(L) ⊗ g → Ω(L) ⊗ h ×Ω(K)⊗h Ω(K) ⊗ g

is an acyclic fibration. This follows from 2.1.5(b). �

2.2. Deligne groupoid. Recall (cf. [GM1]) that given a nilpotent dg Lie algebra g ∈ ndglie(k)
one defines the Deligne groupoid C(g) as follows.

The Lie algebra g0 acts on MC(g) by vector fields:

ρ(y)(x) = dy + [x, y] for y ∈ g0, x ∈ g1.

This defines the action of the nilpotent group G = exp(g0) on the set MC(g). Then the groupoid
C = C(g) is defined by the formulas

ObC = MC(g)

HomC(x, x′) = {g ∈ G|x′ = g(x)}.

2.2.1. Lemma. Let g ∈ ndglie(k). The natural map g → gn = Ωn⊗g induces an equivalence
of groupoids C(g) → C(gn).

Proof. It suffices to check the claim when n = 1. In this case an element z = x + dt · y ∈ g1 =
g[t, dt] with x ∈ g1[t], y ∈ g0[t] satisfies MC iff x(0) ∈ MC(g) and x satisfies the differential
equation

ẋ = dy + [x, y].

This means precisely that x = g(x(0)) where g ∈ G1 = exp(g1) is given by the differential
equation

ġ = g(y)

with the initial condition g(0) = 1. Thus, the map C(g) → C(g1) induces a surjective map
of the sets of isomorphism classes. We have also to check that if x ∈ MC(g) then the map
AutC(g)(x) → AutC(g1)(x) is bijective. It is obviously injective since it is split by the map
π : AutC(g1)(x) → AutC(g)(x) sending t to zero. We will prove by induction on the nilpotence
degree of g that π is injeective.

Let y ∈ g0[t], y =
∑n

i=1 ait
i satisfy exp(y)(x) = x. Let a be an ideal in g such that [g, a] = 0.

Put h = g/a. By induction, we suppose that the claim is correct for the Lie algebra h, therefore
ai ∈ a. Then exp(y)(x) = x + [y, x] + dy which easily implies y = 0. �
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2.2.2. Explicit description of Σ(g). The notations are as in 2.2.

For any n ≥ 0 let Gn = exp(g0
n) be the group of polynomial maps from the standard n-simplex

∆n to the group G = G0. The collection G• = {Gn} forms a simplicial nilpotent group. Right
multiplication defines on G• a right G-action.

Proposition. There is a natural bijection

G• ×
G MC(g) → Σ(g)

of simplicial sets. Here, as usual, X ×G Y is the quotient of the cartesian product X × Y by the
relation

(xg, y) ∼ (x, gy) for x ∈ X, y ∈ Y, g ∈ G.

Proof. This immediately follows from Lemma 2.2.1. �

Let NC(g) ∈ ∆0Ens be the nerve of C(g).

Define the map τ : Σ(g) → NC(g) by the formula

τ(g, x) = (g0(x), g1g
−1
0 , . . . , gng−1

n−1)

where g ∈ Gn, x ∈ MC(g), gi = vi(g) with vi being the i-th vertex.

Proposition 2.2.2 implies the following

2.2.3. Proposition. Σ(g) is a Kan simplicial set. The map τ is an acyclic fibration
identifying C(g) with the Poincaré groupoid of Σ(g).

More generally, if f : g → h is a surjective map of nilpotent dg Lie algebras, then the induced
map

Σ(g) → C(g) ×C(h) Σ(h)

is an acyclic fibration.

Proof. The question reduces to the following. Given a pair of polynomial maps α : ∂∆n →
g0, β : ∆n → h0 satisfying fα = β|∂∆n find a map γ : ∆n → g0 such that α = γ|∂∆n , β = fγ.
This is always possible since the canonical map Ωn → Ω(∂∆n) is surjective. �

2.2.4. Remark. If one does not require g to be non-negatively graded, its nerve is still a Kan
simplicial set. In this case it can probably be considered as a generalization of the notion of
Deligne groupoid.

3. ”Total space” functor

3.1. Generalities.
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3.1.1. The category M. Here and below M denotes the following category of morphisms of ∆:

The objects of M are morphisms [p] → [q] in ∆. A morphism from [p] → [q] to [p′] → [q′] is
given by a commutative diagram

[p] −→ [q]
α ↑ β ↓
[p′] −→ [q′]

The morphism in M corresponding to α = id, β = σi, is denoted by σi; the one corresponding
to α = id, β = ∂i, is denoted by ∂i. ”Dually”, the morphism corresponding to α = ∂ i, β = id, is
denoted by di and the one with α = σi, β = id, is denoted by si.

3.1.2. Total space. Let C be a simplicial category having inverse limits and functorial function
objects hom(S,X) ∈ C for X ∈ C, S ∈ ∆0Ens — see [BK], IX.4.5 and the examples below. The
total space Tot(X) of a cosimplicial object X ∈ ∆C is defined by the formula

Tot(X) = lim
←

φ∈M hom(∆p, Xq)

where φ : [p] → [q].

3.2. Examples. We will use three instances of the described construction.

3.2.1. Let C = ∆0Ens. Then the above definition coincides with the standard one given in loc.
cit., XI.3.

Let G ∈ ∆Grp be a (strict) cosimplicial groupoid. We will consider Grp as a full subcategory of
∆0Ens, so the simplicial set Tot(G) is defined.

Lemma. T = Tot(G) is a groupoid. The objects of T are collections {a ∈ ObG0, θ : ∂1(a)
∼
→

∂0(a)} with θ satisfying the cocycle condition:

σ0(θ) = id(a); ∂1θ = ∂0θ ◦ ∂2θ.

A morphism in T from {a, θ} to {b, θ′} is a morphism a → b compatible with θ, θ ′.

Thus, Tot(G) is “the groupoid of descent data” for G.

3.2.2. Let C = C(k) be the category of complexes over k. For S ∈ ∆0Ens and X ∈ C(k) the
complex hom(S,X) is defined to be Hom(C•(S), X) where C• is the complex of normailized
chains of S with coefficients in k. The above definition of the functor Tot coincides with the
standard one.

3.2.3. Let C = dglie(k). For S ∈ ∆0Ens and g ∈ dglie(k) define hom(S, g) = Ω(S)⊗ g. Then
the functor Tot : ∆dglie(k) → dglie(k) coincides with the Thom-Sullivan functor described
in [HS2], 5.2.4. The De Rham theorem (see, e.g., loc. cit., 5.2.8) shows that the functor Tot
commutes up to homotopy with the forgetful functor # : dglie(k) → C(k).
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4. The main theorem

Now we come to the main result of the paper.

Let g ∈ ∆ndglie(k) be a cosimplicial nilpotent dg Lie k-algebra. Suppose that g is finitely
dimensional in the cosimplicial sense, i.e. that the normalization

Nn(g) = {x ∈ gn|σi(x) = 0 for all i}

vanishes for sufficiently big n.

4.1. Theorem. There is a natural homotopy equivalence

Σ(Tot(g)) −→ Tot(Σ(g))

in Kan.

The proof of the theorem is given in 4.2– 5.2.

Taking into account 2.2.3, we easily get

4.1.1. Corollary. Let g ∈ ∆ndglie(k) be a nilpotent cosimplicial dg Lie k-algebra. Suppose
that g is finitely dimensional in the cosimplicial sense.

Then there is a natural equivalence of groupoids

C(Tot(g)) → Tot(C(g)).

Proof. One has to check that the functor Tot carries the map τ : Σ(g) → C(g) to a homotopy
equivalence. By [BK], X.5, it suffices to check τ is a fibration in sense of loc. cit.

This follows from (the second claim of) Proposition 2.2.3 since for any n the natural map from
gn+1 to the n-th matching space Mn(g) (in the notations of loc. cit) is surjective. �

4.2. Proof of the theorem: a natural map. The set of n-simplices of the left-hand side is

MC(Ωn ⊗ lim
←

Ωp ⊗ gq)

and for the right-hand side:

lim
←

MC(Ω(∆n × ∆p) ⊗ gq).

Here the inverse limits are taken over the category M defined in 3.1.1 and Lemma 2.1.2 is used
to get the second formula.

Taking into account that the functor MC commutes with the inverse limits, a canonical map
Σ ◦ Tot(g) → Tot ◦Σ(g) is defined as the composition

Ωn ⊗ lim
←

Ωp ⊗ gq → lim
←

Ωn ⊗ Ωp ⊗ gq → lim
←

Ω(∆n × ∆p) ⊗ gq

the latter arrow being induced by the canonical projections of ∆n × ∆p to ∆n and to ∆p.

We wish to prove that the map described induces a homotopy equivalence.



8 VLADIMIR HINICH

4.2.1. Since g is finitely dimensional, the first map in the composition is bijective — see [HS2],
Thm. 6.11 where the inverse limit lim

←
Ωp ⊗ Xq is explicitly calculated.

4.2.2. In order to prove that the second map is a homotopy equivalence, let us fix n and p and
present the map

α : Ωn ⊗ Ωp → Ω(∆n × ∆p)

as the composition

Ωn ⊗ Ωp
β

−→ Ω(∆n × ∆p+1) ⊗ Ωp
π

−→ Ω(∆n × ∆p)

where β is induced by the projection ∆n × ∆p+1 → ∆n and π by the pair of maps id×∂p+1 :
∆n × ∆p → ∆n × ∆p+1, pr2 : ∆n × ∆p → ∆p.

We will check below that the maps β and π induce homotopy equivalences for different reasons:
β induces a strong deformation retract and π induces an acyclic (Kan) fibration. This will prove
the theorem.

4.3. In the sequel functors X : M → ∆0Ens will be called M-simplicial sets.

Any bisimplicial commutative dg algebra A ∈ (∆0)2cdga defines a M-simplicial set Σ(A, g) as
follows:

For a : [p] → [q], n ∈ N one has

Σ(A, g)(a)n = MC(Anp ⊗ gq).

Define also a simplicial set σ(A, g) to be the inverse limit of Σ(A, g) as a functor from M to
∆0Ens.

4.3.1. We apply the above to define the diagram

σ(A, g)
σ(β,g)
→ σ(C, g)

σ(π,g)
→ σ(B, g)

as follows:

1. Put Anp = Ωn ⊗ Ωp, Bnp = Ω(∆n × ∆p). These are obviously bisimplicial dg algebras.

2. Define ∆+1 to be the cosimplicial simplicial set with (∆+1)n = ∆n+1 whose cofaces and
codegeneracies are the standard maps between the standard simplices (they all preserve the
final vertex). Put Cnp = Ω(∆n × ∆p+1) ⊗ Ωp. Bisimplicial structure on C in defined by the
cosimplicial structure on ∆+1.

Our aim is to prove that the maps β : A → C and π : C → B induce homotopy equivalences
σ(β, g) and σ(π, g).

We will check immediately that σ(β, g) is a strong deformation retract. Afterwards, using the
criterion 5.2.8 below we will get that σ(π, g) is an acyclic fibration.
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4.3.2. Checking β. For S ∈ ∆0Ens and nilpotent g ∈ dglie(k) denote by ΣS(g) (or just ΣS

when g is one and the same) the simplicial set whose set of n-simplicies is MC(Ω(∆n × S)⊗ g).

Any map f : K × S → T in ∆0Ens induces a map

Σf : K × ΣT → ΣS

as follows. Let k ∈ Kn, x ∈ ΣT
n = MC(Ω(∆n × T ) ⊗ g). Denote by Fk the composition

∆n × S
diag×1
−→ ∆n × ∆n × S

1×k×1
−→ ∆n × K × S

1×f
−→ ∆n × T.

Then Σf (k, x) is defined to be (Ω(Fk) ⊗ idg)(x).

Define the map Φp : ∆1 × ∆p+1 → ∆p+1 as the one given on the level of posets by the formula

Φp(i, j) =

{
j if i = 0

p + 1 if i = 1

The maps Φp induce the maps ΣΦp(Ωp⊗gq) which define for any a : [p] → [q] in M the simplicial
set Σ(A, g)(a) = MC(A•p ⊗ gq) as a strong deformation retract of Σ(C, g)(a). The retractions
ΣΦp(Ωp ⊗ gq) are functorial in a ∈ M, therefore the inverse image map σ(β, g) is also strong
deformation retract.

4.3.3. Checking π. The last thing to do is to prove that the map π : C → B of bisimplicial
dg algebras defined above induces an acyclic fibration σ(π, g). In Section 5 below we provide a
necessary machinery for this. First, we define in 5.2 the notion of acyclic fibration for bisimplicial
commutative dg algebras and prove that if f : A → B in (∆0)2cdga(k) is an acyclic fibration
then for any cosimplicial nilpotent dg Lie algebra g the map σ(f, g) is an acyclic Kan fibration.
Then we provide in 5.2.8 a criterion for a map in (∆0)2cdga(k) to be an acyclic fibration.

Thus, in order to prove the theorem we have only to check that the map π : C → B satisfies the
conditions of 5.2.8. Let us do this.

4.3.4. Checking the hypotheses of 5.2.8. First of all, let us check that π(S, T ) is surjective. For
this consider Dnp = Ω(∆n ×∆p+1) and the map ρnp : Dnp → Bnp which is the composition of π
with the natural embedding Dnp → Cnp = Dnp ⊗ Ωp. Surely, it suffices to prove that ρ(S, T ) is

surjective. For this we note that D(S, T ) = Ω(S × T̂ ) where ̂ : ∆0Ens → ∆0Ens is the functor
satisfying the condition |̂∆ = ∆+1 and preserving colimits (see [GZ],II.1.3). Then, since the

map S × T → S × T̂ is injective, the map

Ω(S × T̂ ) → Ω(S × T )

is surjective.

Next, one has
C(S,∆p) = Ω(S × ∆p+1) ⊗ Ωp,

B(S,∆p) = Ω(S × ∆p)

so the condition 5.2.8 (b) is fulfilled.

The simplicial abelian groups Cd(S, ) are contractible by the Künneth formula. The abelian
groups Bd(S, ) = Ωd(S× ) are contractible since any injective map T → T ′ induces a surjection
Ω(S × T ′) → Ω(S × T ). The same reason proves the condition (d).
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Therefore, the map π : C → B of bisimplicial commutative dg algebras is an acyclic fibration
by Proposition 5.2.8 and then by Proposition 5.2.5 the map σ(π, g) is an acyclic fibration in
∆0Ens.

The Theorem is proven.

5. Acyclic fibrations of different things

5.1. M-simplicial sets. Recall (see 4.3) that the functors X : M → ∆0Ens are called M-
simplicial sets. We wish to find a sufficient condition for a map f : X → Y of M-simplicial sets
to induce an acyclic fibration lim

←
f of the inverse limits.

5.1.1. Matching spaces. Fix n ∈ N. Let ∂ i : [n − 1] → [n], i = 0, . . . , n, be the standard face
maps and let σi : [n] → [n − 1], i = 0, . . . , n − 1, be the standard degeneracies.

The n-th matching space of a M-simplicial set X is a simplicial subset µn(X) of the product

n∏

i=0

X(∂i) ×
n−1∏

i=0

X(σi)

consisting of the collections
(
xi ∈ X(∂i), yi ∈ X(σi)

)
satisfying the following three conditions:

(d): dixj = dj−1xi for i < j.

(σ): σjyi = σiyj+1 for i ≤ j.

(dσ): σjxi = diy
j for all i, j.

One has a canonical map X(idn) → µn(X) which sends an element x ∈ X(idn) to the collection
(d0x, . . . , dnx, σ0x, . . . , σn−1x).

5.1.2. Definition. A map f : X → Y of M-simplicial sets is called an acyclic fibration if for
any n ∈ N the commutative square

X(idn) −→ Y (idn)
↓ ↓

µn(X) −→ µn(Y )

defines an acyclic fibration
X(idn) → Y (idn) ×µn(Y ) µn(X).

5.1.3. Lemma. Let f : X → Y be an acyclic fibration of M-simplicial sets. Then the
induced map of the corresponding inverse limits, lim

←
f , is an acyclic fibration.

Proof. Let M≤n be the full subcategory of M consisting of morphisms α : [p] → [q] with
p ≤ n, q ≤ n. Put X(n) = lim

←
X|M≤n

. Then it is easy to see that X(n) = X(idn)×µn(X)X(n−1).

This immediately proves the lemma. �

5.2. Bisimplicial algebras. AutC(g)(x) → AutC(g1)(x)
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5.2.1. Fix a cosimplicial nilpotent dg Lie algebra g. Any bisimplicial commutative dg algebra
A ∈ (∆0)2cdga defines a M-simplicial set Σ(A, g) and a simplicial set σ(A, g) as in 4.3.

We provide now a sufficient condition for a map f : A → B of bisimplicial commutative dg
algebras to induce an acyclic fibration Σ(f, g) for any cosimplicial dg Lie algebra. According
to Lemma 5.1.3 this implies that σ(f, g) is also an acyclic fibration.

5.2.2. Any bisimplicial abelian group A gives rise to a functor

A : ∆0Ens× ∆0Ens −→ Ab

which is uniquely described by the following properties:

— A(∆m,∆n) = Amn

— A carries direct limits over each one of the arguments to inverse limit.

We will identify bisimplicial abelian groups with the functors they define.

5.2.3. Definition. The matching space Mmn(A) of a bisimplicial abelian group A is defined
to be

Mmn(A) = A(∂∆m,∆n) ×A(∂∆m,∂∆n) A(∆m, ∂∆n)

where ∂∆n is the boundary of the n-simplex. One has a canonical map Amn → Mmn(A).

5.2.4. Definition. A map f : A → B in (∆0)2C(Z) is called an acyclic fibration if for any
m,n the canonical map

Amn → Bmn ×Mmn(B) Mmn(A)

is a surjective quasi-isomorphism.

5.2.5. Proposition. Let f : A → B in (∆0)2cdga(k) be an acyclic fibration. Let g be a
cosimplicial nilpotent dg Lie algebra. Then the induced map Σ(f, g) is an acyclic fibration of
M-simplicial sets.

Proof. This is a direct calculation using 2.1.4, 2.1.5(a). Here we use that the natural map from
gn+1 to the n-th matching space Mn(g) (see [BK], X.5) is surjective. �

Now we wish to formulate a sufficient condition for f : A → B to be an acyclic fibration of
bisimplicial dg algebras. The following trivial lemma will be useful.

5.2.6. Lemma. Let in a commutative square

A
f

−→ B
g ↓ h ↓
C −→ D

of abelian groups the map g and the map Ker(g) → Ker(h) be surjective. Then the induced map
A → B ×D C is also surjective.
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We start with a simplicial case. Recall that a simplicial abelian group A ∈ ∆0Ab defines a
functor A : ∆0Ens → Ab by the formula

A(S) = Hom(S,A).

5.2.7. Lemma. Let f : A → B be a map in ∆0C≥0(Z) = C≥0(∆0Ab). Suppose that

(a) fn : An → Bn is a quasi-isomorphism in C(Z)

(b) for any S ∈ ∆0Ens the map f(S) : A(S) → B(S) is surjective

(c) for any d ∈ Z the d-components Ad and Bd are contractible simplicial abelian groups.

Then for any injective map α : S → T the induced map

A(T ) → A(S) ×B(S) B(T )

is a surjective quasi-isomorphism.

Proof. For any S ∈ ∆0Ens the map f(S) : A(S) → B(S) is quasi-isomorphism — this follows
from [Le], remark at the end of III.2, applied to [Ha], Thm. 1.5.1. This immediately implies
that for any α : S → T the induced map

A(T ) → A(S) ×B(S) B(T )

is a quasi-isomorphism. Let us prove that it is surjective if α is injective.

Since Ad are contractible (and Kan), the map A(α) : A(T ) → A(S) is surjective. Thus,
by Lemma 5.2.6, it suffices to check that the map

KerA(α) → KerB(α)

is surjective.

Since the functors A,B : ∆0Ens → C(Z) carry colimits to limits, the map KerA(α) → KerB(α)
is a direct summand of the map f(T/S) : A(T/S) → B(T/S) which is surjective by (b). �

Now we are able to prove the following criterion for a map of bisimplicial complexes of abelian
groups to be an acyclic fibration.

5.2.8. Proposition. Let f : A → B be a map in (∆0)2C≥0(Z) satisfying:

(a) for any S, T ∈ ∆0Ens the map f(S, T ) is surjective

(b) for any S ∈ ∆0Ens, p ∈ N the map f(S,∆p) : A(S,∆p) → B(S,∆p) is a quasi-isomorphism
in C(Z).

(c) for any S ∈ ∆0Ens and any d the simplicial abelian groups Ad(S, ), Bd(S, ) are contractible.

(d) for any p, d the simplicial abelian group Ad( ,∆p) is contractible.

Then f is an acyclic fibration.

Proof. Apply Lemma 5.2.7 to the map f(S, ) : A(S, ) → B(S ). We immediately get that for
any S ∈ ∆0Ens and any injective map α : T → T ′ the induced map

A(S, T ′) → A(S, T ) ×B(S,T ) B(S, T ′)
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is a surjective quasi-isomorphism. Put T ′ = ∆p, T = ∂∆p. The map Anp → Bnp×Mnp(B)Mnp(A)
is then automatically quasi-isomorphism, an we have only to check it is surjective. According
to (d) the map A(S ′, T ′) → A(S, T ′) is surjective for T ′ = ∆p. Define

X(T ) = Ker(A(S ′, T ) → A(S, T )), Y (T ) = Ker(B(S ′, T ) → B(S, T )).

The groups X(T ) and Y (T ) are direct summands of A(S ′/S, T ) and of B(S ′/S, T ) respectively.
Hence the map X → Y satisfies the hypotheses of Lemma 5.2.7. Therefore the map

X(T ′) → X(T ) ×Y (T ) Y (T ′)

is surjective by Lemma 5.2.6. Proposition is proven. �

6. Application to Deformation theory

In this Section we describe how to deduce from Corollary 4.1.1 the description of universal formal
deformations for some typical deformation problems.

Consider, for example, three deformation problems which have been studied in [HS2].

Let X be a smooth separated scheme X over a field k of characteristic 0, G an algebraic group
over k and p : P −→ X a G-torsor over X. Consider the following deformation problems.

Problem 1. Flat deformations of X.

Problem 2. Flat deformations of the pair (X,P ).

Problem 3. Deformations of P (X being fixed).

To each problem one can assign a sheaf of k-Lie algebras gi on X (these are the sheaves Ai, i =
1, 2, 3 from loc. cit., Section 8).

According to Grothendieck, to each problem corresponds a (2-)functor of infinitesimal deforma-
tions

Fi : art/k −→ Grp

from the category of local artinian k-algebras with the residue field k to the (2-)category of
groupoids.

In each case, gi is ”a sheaf of infinitesimal automorphisms” corresponding to Fi (in the sense
of [SGA1], Exp.III, 5, especially Cor. 5.2 for Problem 1; for the other problems the meaning is
analogous).

If X is affine, the functor Fi is equivalent to the Deligne groupoid CL, L = Γ(X, gi) defined as
the functor

CL : art/k → Grp

which is given by the formula

CL(A) = C(m ⊗ L)

where m is the maximal ideal of A.

The deformation functor Fi defines a stack Fi in the Zariski topology of X. The Deligne functor
defines a fibered category Cgi

which assigns a groupoid CΓ(U,gi)(A) to each Zariski open set U
and to each A ∈ art/k.
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We have a canonical map of fibered categories Cgi
→ Fi so that Fi is equivalent to the stack

associated to the fibered category Cgi
.

Using Corollary 4.1.1 we immediately get

6.1. Corollary. The deformation groupoid Fi is naturally equivalent to the Deligne groupoid
associated with the dg Lie algebra RΓLie(X, gi).

In particular, the following generalization of [HS2], Thm. 8.3 takes place.

6.2. Corollary. Suppose that H0(X, gi) = 0; let S = Spf(R) be the base of the universal
formal deformation for Problem i. Then we have a canonical isomorphism

R∗ = HLie
0 (RΓLie(X, gi))

where R∗ denotes the space of continuous k-linear maps R −→ k (k considered in the discrete
topology) and HLie

0 denotes the 0-th Lie homology.

Recall that this result has been proven in loc. cit. for S formally smooth.
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