
#A61 INTEGERS 22 (2022)

P-ADIC ORDER OF POSITIVE INTEGERS
VIA BINOMIAL COEFFICIENTS

Dario T. de Castro
Instituto Federal do Rio de Janeiro - Campus Nilópolis, Nilópolis, Rio de Janeiro,
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Abstract

We prove a formula for the p-adic order of positive integers that explores divisibility
properties of binomial coefficients. A second formula, also in terms of binomial
coefficients, is proposed as a conjecture.

1. Introduction

A branch of combinatorics that consistently attracts much attention today is the

study of divisibility properties of binomial coefficients. A concept that has been

widely used in these studies is the p-adic order of a number [7], represented as vp(n).

For a prime p and a positive integer n, the p-adic order is defined as the exponent

of the highest power of p that divides n. It is part of the fundamental theorem of

arithmetic which states that every positive integer n has a unique factorization in

terms of prime numbers pi (with i = 1, 2, 3, ...), namely,

n =

∞∏
i=1

p
vpi (n)

i . (1)

In this paper, for the p-adic order of positive integers, we present two expressions

that explore divisibility properties of binomial coefficients. One of these expressions

is proposed as a conjecture. Throughout this study, we shall use the notation bxc,
dxe and {x} to indicate, respectively, the largest integer smaller than or equal to x,

the smallest integer greater than or equal to x and the fractional part of x. Let us

first enunciate two properties of vp(n) that follow from its definition:

vp(a · b) = vp(a) + vp(b) and vp(a/b) = vp(a)− vp(b), (2)
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with a, b ∈ N∗. An expression for the p-adic order of factorials of positive integers

obtained by A. M. Legendre [2, 5] is given by

vp(n!) =

blogp nc∑
k=1

⌊
n

pk

⌋
. (3)

One can also write this formula as

vp(n!) =
n− sp(n)

p− 1
, (4)

where sp(n) is the sum of the digits of n when represented in base p. That is, when

n is written as

n = a0 + a1p+ a2p
2 + ...+ amp

m, ai ∈ {0, 1, 2, ..., p− 1}, (5)

then

sp(n) = a0 + a1 + a2 + ...+ am. (6)

The p-adic order of binomial coefficients can be evaluated from (4) using the prop-

erties in (2). Alternatively, it can be determined by applying E. Kummer’s theorem

[4], which we enunciate below.

Kummer’s Theorem. The power to which the prime p divides the binomial coef-

ficient
(
n
m

)
is given by the number of ‘carries’ when we add m and n −m in base

p.

From (2) and (4), a formula for vp(n) can be derived:

vp(n) = vp(n!)− vp((n− 1)!)

=
1− sp(n) + sp(n− 1)

(p− 1)
. (7)

Other expressions for vp(n) are possible using functions like bxc, {x} or dxe. An

example of such formulae is as follows:

vp(n) = blogp nc −
blogp nc∑
j=1

⌈{
n

p j

}⌉
. (8)

We leave it to the reader to verify this fact.

In the next sections, we shall present two other general expressions for vp(n) that

have a combinatorial appeal, since they are given in terms of binomial coefficients.
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2. Auxiliary Results

To derive a formula for vp(n) grounded on divisibility properties of binomial coeffi-

cients, we shall first introduce the function βk(j, n).

Definition 1. With n, j, k ∈ N∗, let

βk(j, n) = k

{(
n

kj

)
kj−1

n

}
. (9)

This function participates in our first main result, and we shall prove in what

follows that it admits a straightforward interpretation as a Boolean operator related

to the question of whether kj divides n when k is a prime number.

Lemma 1. Given n and j positive integers and p prime, the function βp(j, n) yields

0 if pj - n and yields 1 if pj |n.

Proof. Let us consider the two cases separately.

Case 1: pj - n =⇒ βp(j, n) = 0

Let Q be a positive integer such that pj < Q and pj - Q. Taking βp(j, n) as given

by (9), we intend to show that, for n = Q, the expression(
Q

pj

)
pj−1

Q
(10)

always yields an integer. Since binomial coefficients are known to be integers, we

may write (
Q

pj

)
= I0 ∈ N∗ (11)

and (
Q− 1

pj − 1

)
= I0

pj

Q
= I1 ∈ N∗. (12)

Additionally, from (10), we have

Q!

pj ! (Q− pj)!
pj−1

Q
=

(Q− 1)!

(pj − 1)! (Q− pj)!
pj−1

pj
=
I1
p
. (13)

From (12) and (13), and using the fact that pj - Q, it follows that p | I1, which

implies that expression (10) yields an integer. This concludes the proof for this

case.

Case 2: pj |n =⇒ βp(j, n) = 1

LetK be a positive integer and let n = Kpj . We intend to prove that βp(j,Kp
j) =

1, which means that

p

{
(Kpj)!

pj ! ((K − 1)pj)!

pj−1

Kpj

}
= 1. (14)
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This hypothetical identity can be expressed as

(Kpj − 1)! pj−1

pj ! ((K − 1)pj)!
= M +

1

p
, (15)

where M is a natural number. Multiplying both sides in (15) by p, the resulting

equation can be put equivalently as(
Kpj − 1

pj − 1

)
≡ 1 (mod p). (16)

Thus, to demonstrate (16), we shall use Lucas’ Theorem [6], which we state below.

Lucas’ Theorem. Let p be a prime number and let R and S be positive integers

such that

R = r0 + r1p+ r2p
2 + ...+ rmp

m , ri ∈ {0, 1, 2, ..., p− 1}, (17)

and

S = s0 + s1p+ s2p
2 + ...+ slp

l , si ∈ {0, 1, 2, ..., p− 1}, (18)

where ri and si are, respectively, the digits of R and S when written in base p. We

then have (
R

S

)
≡

max{m,l}∏
i=0

(
ri
si

)
(mod p). (19)

Here, we adopt the convention
(
r
s

)
= 0 if s is either greater than r or smaller than

zero.

The use of Lucas’ congruence relation, with its present notation, to prove (16)

requires one to note that:

1. Writing S = pj − 1 in base p yields a number of j digits (l = j − 1), all of

them being equal to p− 1.

2. By representing the number R = Kpj−1 as a sum of two terms, namely pj−1

and (K − 1)pj , we observe that, in base p, R will have in general more than

j digits (m > j − 1 for K > 1). Additionally, all of its first j digits will also

be equal to p− 1.

From these considerations, we get(
R

S

)
=

(
Kpj − 1

pj − 1

)
≡

[(
p− 1

p− 1

)j
×
(
rj
0

)
× ...×

(
rm
0

)]
(mod p), (20)

which clearly yields 1 (mod p).
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If q is a composite number, the function βq(j, n) shall not behave as established

in Lemma 1 for all n ∈ N∗. To illustrate this, the next theorem associates an integer

nq,j to each pair (q, j), with j ∈ N∗, so that βq(j, nq,j) 6= 0 even though qj - nq,j .

Theorem 1. Let q > 0 be a composite number such that q = kpm, where m ∈ N∗,
p is prime and p - k. Given j ∈ N∗, if nq,j = qj + pmj−m+1, then βq(j, nq,j) 6= 0,

even though we have qj - nq,j.

Proof. From (9):

βq(j, nq,j) = q

{(
qj + pmj−m+1

qj

)
qj−1

qj + pmj−m+1

}
= q

{(
qj + pmj−m+1 − 1

qj − 1

)
1

q

}
= q

{(
qj + pmj−m+1 − 1

pmj−m+1

)
1

q

}
= q

{(
qj + pmj−m+1 − 1

pmj−m+1 − 1

)
qj−1

pmj−m+1

}
= q

{
(Mp+ 1)

kj−1

p

}
, (21)

where
(
qj+pmj−m+1−1
pmj−m+1−1

)
≡ 1 (mod p) from Lucas’ Theorem and M is a positive

integer. Thus given that p - k, we have

βq(j, nq,j) = q

{
kj−1

p

}
6= 0. (22)

3. Main Results

Since βp(j, n) acts, when p is prime, as a Boolean function related to whether or

not pj divides n, we are now in a position to present our first expression for vp(n).

Theorem 2. Let n be a positive integer and p be a prime number. Then, the p-adic

order of n can be expressed as

vp(n) = p

blogp nc∑
j=1

{(
n

pj

)
pj−1

n

}
. (23)

Proof. From Lemma 1, it is easy to see that we just have to sum up the terms

βp(j, n) for all possibly effective values of j.
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Formula (23) can also be expressed as

vp(n) = max

{
j ∈ N :

(
n− 1

pj − 1

)
≡ 1 (mod p)

}
. (24)

Remark 1. Let p be a prime number and let n, k and s be integers satisfying

n > 0, k > 0 and 0 ≤ s < n. If pk|n, then the expression(
n− 1

s

)
≡ (−1)s−b

s
p c
(n
p − 1

b spc

)
(mod pk), (25)

obtained in [1], may be used to recursively demonstrate (24), but only for those

values of n such that vp(n) 6= 0.

Remark 2. From Theorems 1 and 2, it follows that the evaluation of vq(n) using

(23) yields correct results for all n ∈ N∗ if and only if q is prime.

The next corollary follows from Lemma 1.

Corollary 1. Let n be a positive integer and p be a prime number. Then

blogp nc∑
j=1

(
n− 1

pj − 1

)
≡ vp(n) (mod p). (26)

Proof. According to Lemma 1,
(
n−1
pj−1

)
yields one plus a multiple of p if pj |n and a

multiple of p if pj - n.

Lemma 1 also provides an alternative way to generalize the following proposition

(see [3]) that can be obtained from Wilson’s theorem, whose statement follows

below.

Wilson’s Theorem. An integer n > 1 is a prime number if and only if it divides

(n− 1)! + 1.

Proposition 1. If m is a positive integer and p is a prime number, then(
mp− 1

p− 1

)
≡ 1 (mod p). (27)

It is clear from our results that a more general congruence relation can be derived,

namely (
mpα − 1

pγ − 1

)
≡ 1 (mod p), (28)

with α, γ ∈ N∗ and α ≥ γ.
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Remark 3. One can alternatively express (23) with the use of complex numbers.

The resulting formula reads as follows

vp(n) =
ie−iπ/p

2 sin (π/p)

blogp nc −
blogp nc∑
j=1

e
2πi
p ( n−1

pj−1)

 . (29)

We leave the proof of this fact as an exercise to the reader.

We now pose a conjecture on another formula for the p-adic order of positive

integers, which is also given in terms of binomial coefficients. Let us first introduce

some definitions. In what follows, n is a positive integer, p is a given prime number

and pi is the ith prime number.

Definition 2. Let Smin
p,n and Smax

p,n denote sets of irreducible fractions given by

Smin
p,n =

{
1

n

(
n

pji

)∣∣∣∣ i ∈ N∗, j ∈ N, gcd(pi, p) = 1, pji ≤ n
}
, (30)

Smax
p,n =

{
1

n

(
n

k

)∣∣∣∣ 0 < k ≤ n, gcd(k, p) = 1

}
. (31)

Definition 3. A set Sp,n will be called admissible if it satisfies the condition Smin
p,n ⊆

Sp,n ⊆ Smax
p,n .

Conjecture 1. Given any admissible set Sp,n, the p-adic order of a positive integer

n can be expressed as

vp(n) = logp

(
n

Lp,n

)
, (32)

where Lp,n represents the least common denominator of the elements of Sp,n.

Remark 4. We observed that elements belonging to Sp,n which are not in Smin
p,n

seem to be either redundant or integers.

Remark 5. Conjecture 1 can be regarded as an assertion about Lp,n, namely,

Lp,n =
n

pvp(n)
=
∏
pi 6=p

p
vpi (n)

i . (33)

Furthermore, computational evidence suggests that the primality of p, as it ap-

pears in (32), is a necessary condition if we want this formula to hold for every

positive integer n. Thus, to substantiate this statement, we present the following

conjecture.

Conjecture 2. Let q > 0 be a composite number, pj a prime number that divides

q, and c a non-negative integer. If we take n = qc pj , the evaluation of vq(n) using

(32) will fail for any admissible Sq,n.

Remark 6. Together, the two conjectures above suggest that formula (32) for vq(n)

yields correct results for all n ∈ N∗ if and only if q is prime.
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4. Conclusions

We presented two expressions for the p-adic order of a positive integer n. They are

given in terms of binomial coefficients that occur in the nth row of Pascal’s triangle.

From the first expression, we derived a congruence relation which connects vp(n)

with a lacunary sum of the entries in the (n − 1)th row of Pascal’s triangle. The

second of these expressions for vp(n), proposed as a conjecture, was motivated by

numerical evidence obtained with the software Wolfram Mathematica. To some

extent, we can say that expressions (23) and (32) are complementary. In fact, while

vp(n) is evaluated using powers of p in the former expression, in the latter only

powers of primes other than p are used. We believe these expressions also have

good pedagogical features, since they (a) represent new connections between p-adic

orders and binomial coefficients, (b) may be used in exercises either as identities to

be proved or as demonstration tools for other propositions, and (c) contribute to

reinforce the distinction between prime and composite numbers. Furthermore, these

expressions for vp(n) being general and of simple structure, seem to indicate the

existence of a combinatorial context for the prime number factorization of integers.

This possibility, however, remains to be investigated. Finally, we note that the

Boolean operator defined in (9) can be used to express other arithmetic functions in

terms of binomial coefficients. For instance, the prime omega function ω(n), which

gives the number of prime factors of n, can be represented as ω(n) =
∑∞
i=1 βpi(1, n).

Acknowledgments. The author wishes to thank Professors Cleber Haubrichs,

Kevin Ryde and Reinaldo de Melo for helpful and inspiring discussions. Gratitude is

also due to the anonymous referee whose comments and suggestions helped improve

this manuscript.

References

[1] T. X. Cai, A. Granville, On the residues of binomial coefficients and their products modulo
prime powers, Acta. Math. Sin., 18, No. 2 (2002), 277–288.

[2] L. E. Dickson, History of the theory of numbers, Vol. 1, Chelsea Publishing Company, New
York, (1952), 263–271.

[3] A. Granville, Arithmetic properties of binomial coefficients, I, Binomial coefficients modulo
prime powers, in Organic Mathematics (Burnaby, BC, 1995), CMS Conf. Proc., 20, Amer.
Math. Soc., Providence, RI, (1997), 253–276, www.dms.umontreal.ca/∼andrew/Binomial/.
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