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The category SHCfin

Let’s do some topology!

So, what is topology? Topology is the study of topological spaces.

But this is hard.

Let’s make things a bit easier for ourselves, and study the

homotopy category of topological spaces.

CW complexesfinite

stable

This is called the finite stable homotopy category, denoted SHCfin.
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What does it mean to stabilize?

Recall that the suspension of a space X is given by

ΣX = [0, 1]× X

/
(0, x1) ∼ (0, x2)
(1, x1) ∼ (1, x2).

Given a map X → Y , we can suspend it to a map ΣX → ΣY .

This gives us a system

[X ,Y ]→ [ΣX ,ΣY ]→ [Σ2X ,Σ2Y ]→ [Σ3X ,Σ3Y ]→ · · · .

The Freudenthal suspension theorem tells us that this system
always stabilizes. So for two finite CW complexes X and Y , we
define

HomSHCfin (X ,Y ) = lim
n→∞

[ΣnX ,ΣnY ].
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The set
HomSHCfin (X ,Y ) = lim

n→∞
[ΣnX ,ΣnY ]

is in fact an abelian group.

(Recall that [ΣX ,Z ] is always a group (for the same reason that
π1 is a group), and that [ΣnX ,Z ] is always an abelian group for
n ≥ 2 (for the same reason that π≥2 is an abelian group).)
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And as long as we only need to be able to define maps between
arbitrarily high suspensions of our finite CW complexes, we may as
well allow desuspensions too.

Then, for example,

HomSHCfin (Σ−i X ,Σ−j Y ) = lim
n→∞

[Σn−i X ,Σn−j Y ].

So, the objects of SHCfin are the finite CW complexes and their
formal desuspensions.
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The geometry of SHCfin

We would like to study the global structure of the finite stable
homotopy category. What structure does it carry?

A subcategory is called thick if it is closed under mapping
cones, retracts, and weak equivalences. So, the “kernel” of
any co/homology theory is thick.

We can use the smash product to define ideal subcategories
and prime ideal subcategories, exactly as in ring theory.

Given a category C with this structure, we can define a space
Spec(C) in much the same way an algebraic geometer defines the
prime spectrum of a ring:

Spec(C) = {P ⊂ C : P a thick prime ideal subcategory}.

This packages a lot of information really cleanly.
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So, what is Spec(SHCfin)?

There is a beautiful answer, given by the nilpotence theorem of
Devinatz–Hopkins–Smith.

P0

P1,(2) P1,(3) P1,(5) P1,(7)

P2,(2) P2,(3) P2,(5) P2,(7)

P3,(2) P3,(3) P3,(5) P3,(7)

...
...

...
...

P∞,(2) P∞,(3) P∞,(5) P∞,(7)

· · ·

· · ·

· · ·

· · ·

· · ·

Spec(Z)

N0 ∪ {∞}

This is exciting! But to explain what the subcategories Pn,(p) are,
we’ll have to talk about...
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Formal group laws in topology

The story of chromatic homotopy theory begins with formal group
laws, and the story of formal group laws begins with CP∞.

Recall that CP∞ is a classifying space for complex line bundles;
that is, it carries a universal line bundle Luniv ↓ CP∞, and there is
a natural isomorphism

{line bundles over X} ∼= [X ,CP∞].

f ∗Luniv ↔ f
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By Yoneda’s lemma, the natural operation of tensor product of
two line bundles is classified by a map CP∞ × CP∞ µ−→ CP∞.

(A pair of line bundles L1,L2 ↓ X is classified by a map

X
f−→ CP∞ × CP∞

such that L1
∼= f ∗Luniv ,1 and L2

∼= f ∗Luniv ,2. By assumption,

CP∞ × CP∞ µ−→ CP∞

classifies Luniv ,1 ⊗Luniv ,2
∼= µ∗Luniv , so the composite

X
f−→ CP∞ × CP∞ µ−→ CP∞

classifies L1 ⊗L2
∼= (µf )∗Luniv .)
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What does this map CP∞ × CP∞ → CP∞ buy us?

Let’s see what happens when we apply H∗(−;Z).

Recall that H∗(CP∞) ∼= Z[[t]]; by the Künneth formula,
H∗(CP∞ × CP∞) ∼= Z[[x , y ]]. So, the ring homomorphism

H∗(CP∞)→ H∗(CP∞ × CP∞)

is entirely described by

t 7→ F (x , y) ∈ Z[[x , y ]].

What is F (x , y)?

Aaron Mazel-Gee You could’ve invented tmf .
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To determine the map

H∗(CP∞) → H∗(CP∞ × CP∞)

t 7→ F (x , y),

we need to remember that the element t also goes by another
name: the first Chern class.

We also need to remember that for
any two line bundles L1 and L2,

c1(L1 ⊗L2) = c1(L1) + c1(L2).

Since F (x , y) just encodes how the first Chern class behaves under
tensor product, it follows that F (x , y) = x + y .

Aaron Mazel-Gee You could’ve invented tmf .
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Let’s generalize this a bit.

A ring-valued cohomology theory E ∗ is called complex-oriented if
we have an isomorphism

E ∗(CP∞) ∼= (E ∗(pt))[[t]] = E∗[[t]];

we call the element t a generalized first Chern class.

We’ll always have E ∗(CP∞×CP∞) ∼= E∗[[x , y ]], and so once again
the map CP∞ × CP∞ → CP∞ induces a map E∗[[t]]→ E∗[[x , y ]],
and once again this is determined by t 7→ FE (x , y) ∈ E∗[[x , y ]].

What can we say about FE (x , y)?
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The power series FE (x , y) ∈ E∗[[x , y ]] enjoys certain properties
coming from analogous properties of the tensor product of line
bundles.

L ⊗ C ∼= L ⇒ FE (x , 0) = x (unitality)

L1 ⊗L2
∼= L2 ⊗L1 ⇒ FE (x , y) = FE (y , x) (commutativity)

(L1 ⊗L2)⊗L3
∼=

L1 ⊗ (L2 ⊗L3) ⇒ FE (FE (x , y), z)

= FE (x ,FE (y , z)) (associativity)

These are the three defining properties for FE to be a
(1-dimensional commutative) formal group law over the ring E∗.

Aaron Mazel-Gee You could’ve invented tmf .
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One can obtain formal group laws as germs of algebraic groups,
much as one can obtain Lie algebras as germs of Lie groups.

The formal group law FHZ(x , y) = x + y associated to singular
cohomology is called the additive formal group law, denoted Ĝa,
which is the germ of the additive group, denoted Ga.

Aaron Mazel-Gee You could’ve invented tmf .
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Another example: complex K -theory.

Recall that KU0(X ) is the group-completion of the monoid
(VectC(X ),⊕), with multiplication given by ⊗.

K -theory is complex-oriented: KU∗(CP∞) ∼= KU∗[[t]], where
t = [Luniv ]− [C] = [Luniv ]− 1. So with x = [L1]− 1 and
y = [L2]− 1, since µ∗Luniv = L1 ⊗L2 we compute that

FKU(x , y) = [L1 ⊗L2]− 1

= [L1] · [L2]− 1

= ([L1] · [L2]− [L1]− [L2] + 1) + [L1]− 1 + [L2]− 1

= ([L1]− 1) · ([L2]− 1) + ([L1]− 1) + ([L2]− 1)

= xy + x + y .

This is called the multiplicative formal group law, denoted Ĝm,
which is the germ of the multiplicative group, denoted Gm. We’ll
come back to this.

Aaron Mazel-Gee You could’ve invented tmf .
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which is the germ of the multiplicative group, denoted Gm. We’ll
come back to this.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Formal group laws in topology
The Morava K -theories
The Morava E -theories

Another example: complex K -theory.

Recall that KU0(X ) is the group-completion of the monoid
(VectC(X ),⊕), with multiplication given by ⊗.

K -theory is complex-oriented: KU∗(CP∞) ∼= KU∗[[t]], where
t = [Luniv ]− [C] = [Luniv ]− 1. So with x = [L1]− 1 and
y = [L2]− 1, since µ∗Luniv = L1 ⊗L2 we compute that

FKU(x , y) = [L1 ⊗L2]− 1

= [L1] · [L2]− 1

= ([L1] · [L2]− [L1]− [L2] + 1) + [L1]− 1 + [L2]− 1

= ([L1]− 1) · ([L2]− 1) + ([L1]− 1) + ([L2]− 1)

= xy + x + y .

This is called the multiplicative formal group law, denoted Ĝm,
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(VectC(X ),⊕), with multiplication given by ⊗.

K -theory is complex-oriented: KU∗(CP∞) ∼= KU∗[[t]], where
t = [Luniv ]− [C] = [Luniv ]− 1. So with x = [L1]− 1 and
y = [L2]− 1, since µ∗Luniv = L1 ⊗L2 we compute that

FKU(x , y) = [L1 ⊗L2]− 1

= [L1] · [L2]− 1

= ([L1] · [L2]− [L1]− [L2] + 1) + [L1]− 1 + [L2]− 1

= ([L1]− 1) · ([L2]− 1) + ([L1]− 1) + ([L2]− 1)

= xy + x + y .

This is called the multiplicative formal group law, denoted Ĝm,
which is the germ of the multiplicative group, denoted Gm. We’ll
come back to this.
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Returning to the general theory, we have a functor

{
complex-oriented

cohomology theories

}
{formal group laws}.

E 7→ FE (x , y) ∈ E∗[[x , y ]]

In fact, there is a partial inverse (i.e. it’s not defined on all formal
group laws) given by the Landweber exact functor theorem.
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The Morava K -theories

To define the Morava K -theories, we first need to define the height
of a formal group law.

Given a formal group law F (x , y) ∈ R[[x , y ]], we define its n-series
[n]F (x) ∈ R[[x ]] inductively by

[1]F (x) = x

[n]F (x) = F (x , [n − 1]F (x)).

This classifies “n-fold addition”. From the axioms, we know that
F (x , y) = x + y + · · · , and so [n]F (x) = nx + · · · .

If R = k is a field of characteristic p, then the first term of [p]F (x)

vanishes. In fact, we’ll always have [p]F (x) = uxph
+ · · · for

u ∈ k× and h ≥ 1, and this integer h is called the height of F .
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Over Fp itself, for each height n ∈ [1,∞] we have the nth Honda
formal group law, denoted Hn,p, with p-series [p]Hn,p (x) = xpn

.

This is realized in topology by a complex-oriented cohomology
theory called the nth Morava K -theory, denoted K (n, p).

Here are a few edge cases.

H1,p = (Ĝm)Fp , and so K (1, p) = KU/p (mod p complex
K -theory).

H∞,p = (Ĝa)Fp , and so K (∞, p) = HFp (mod p singular
cohomology).

Even though there’s no H0,p, it turns out that we can
reasonably define K (0, p) = HQ (rational singular
cohomology) for any prime p.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Formal group laws in topology
The Morava K -theories
The Morava E -theories

Over Fp itself, for each height n ∈ [1,∞] we have the nth Honda
formal group law, denoted Hn,p, with p-series [p]Hn,p (x) = xpn

.

This is realized in topology by a complex-oriented cohomology
theory called the nth Morava K -theory, denoted K (n, p).

Here are a few edge cases.
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H1,p = (Ĝm)Fp , and so K (1, p) = KU/p (mod p complex
K -theory).
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The Morava K -theories represent essentially all† of the homology
theories that have Künneth isomorphisms (instead of just a
Künneth short exact sequence, or worse).

That is, they are essentially all the homology theories whose kernel
is not just a thick subcategory, but is also a prime ideal
subcategory.

†The set {K(n, p)}n,p plays the same role for ring-valued cohomology theories

as the set {Q} ∪ {Fp}p plays for ordinary rings: it is the set of prime fields.
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Recall that the points of the space Spec(SHCfin) are the thick
prime ideal subcategories of SHCfin.

In fact, the point Pn,(p) is
nothing more or less than the kernel of K (n, p)∗!

P0

P1,(2) P1,(3) P1,(5) P1,(7)

P2,(2) P2,(3) P2,(5) P2,(7)

P3,(2) P3,(3) P3,(5) P3,(7)

...
...

...
...

P∞,(2) P∞,(3) P∞,(5) P∞,(7)

· · ·

· · ·

· · ·

· · ·

· · ·

Spec(Z)

N0 ∪ {∞}

However, as fantastic as the Morava K -theories are for giving us
information at the various points of Spec(SHCfin), they do not tell
us how to stitch that information back together.
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The Morava E -theories

To define the Morava E -theories, we first need to define a
deformation of a formal group law.

Let k be a perfect field of characteristic p, let F be a formal group
law over k , and let (A,m) be a complete local ring with projection
A

π−→ A/m to its residue field.

A deformation of F from k to A is a formal group law F over A

and a map k
i−→ A/m such that π∗F = i∗F over A/m. In algebraic

geometry, the picture looks like this:

[picture]

These collect into DefF/k(A).
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In fact, there is a universal deformation, which is a formal group
law F̃ living over the Lubin–Tate ring LTF/k such that

DefF/k (A) ' Homcts(LTF/k ,A)

f ∗F̃ ←[ f

(taking only local ring homomorphisms).

[extend picture]
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Recall that we have the Honda formal group law Hn,p over Fp.

For all n <∞, its universal deformation H̃n,p is realized in
topology by a complex-oriented cohomology theory called the nth

Morava E-theory, denoted En,p. This lives over the ring
LTn,p = LTHn,p/Fp

= Zp[[u1, . . . , un−1]].

Here are a few edge cases.

LT1,p = Zp and H̃1,p = (Ĝm)Zp , and so E1,p = KU∧p
(p-completed complex K -theory).

Again, even though there’s no H0,p and hence no H̃0,p, we can
reasonably define E0,p = HQ (rational singular cohomology)
for any prime p.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Formal group laws in topology
The Morava K -theories
The Morava E -theories

Recall that we have the Honda formal group law Hn,p over Fp.

For all n <∞, its universal deformation H̃n,p is realized in
topology by a complex-oriented cohomology theory called the nth

Morava E-theory, denoted En,p.

This lives over the ring
LTn,p = LTHn,p/Fp

= Zp[[u1, . . . , un−1]].

Here are a few edge cases.

LT1,p = Zp and H̃1,p = (Ĝm)Zp , and so E1,p = KU∧p
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There’s a sense in which a deformation of Hn can have any height
up to n.

This is reflected in topology!

For any space X , (En,p)∗X = 0 if and only if K (i , p)∗X = 0 for
i ∈ [0, n]. So, the kernel of En,p is {P0,P1,(p), . . . ,Pn,(p)}.

P0

P1,(2) P1,(3) P1,(5) P1,(7)

P2,(2) P2,(3) P2,(5) P2,(7)

P3,(2) P3,(3) P3,(5) P3,(7)

...
...

...
...

P∞,(2) P∞,(3) P∞,(5) P∞,(7)

· · ·

· · ·

· · ·

· · ·

· · ·

Spec(Z)

N0 ∪ {∞}
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Thus, the Morava E -theories afford us a notion of chromatic
globalization, i.e. of stitching together information in the chromatic
direction.

But what about arithmetic globalization?
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...and how is it constructed?

3. Topological modular forms
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Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

So, what are some examples of global height-n theories?

For all p, E0,p is just HQ, rational cohomology. So, obviously we
can take HQ as a global height-0 theory!

Next, E1,p is KU∧p , p-completed complex K -theory. What object
might allow us to recover the KU∧p at all primes p?

Well, let’s just not p-complete the darn thing! We can take KU as
a global height-1 theory.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

So, what are some examples of global height-n theories?

For all p, E0,p is just HQ, rational cohomology.

So, obviously we
can take HQ as a global height-0 theory!

Next, E1,p is KU∧p , p-completed complex K -theory. What object
might allow us to recover the KU∧p at all primes p?

Well, let’s just not p-complete the darn thing! We can take KU as
a global height-1 theory.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

So, what are some examples of global height-n theories?

For all p, E0,p is just HQ, rational cohomology. So, obviously we
can take HQ as a global height-0 theory!

Next, E1,p is KU∧p , p-completed complex K -theory. What object
might allow us to recover the KU∧p at all primes p?

Well, let’s just not p-complete the darn thing! We can take KU as
a global height-1 theory.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

So, what are some examples of global height-n theories?

For all p, E0,p is just HQ, rational cohomology. So, obviously we
can take HQ as a global height-0 theory!

Next, E1,p is KU∧p , p-completed complex K -theory.

What object
might allow us to recover the KU∧p at all primes p?

Well, let’s just not p-complete the darn thing! We can take KU as
a global height-1 theory.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

So, what are some examples of global height-n theories?

For all p, E0,p is just HQ, rational cohomology. So, obviously we
can take HQ as a global height-0 theory!

Next, E1,p is KU∧p , p-completed complex K -theory. What object
might allow us to recover the KU∧p at all primes p?

Well, let’s just not p-complete the darn thing! We can take KU as
a global height-1 theory.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

So, what are some examples of global height-n theories?

For all p, E0,p is just HQ, rational cohomology. So, obviously we
can take HQ as a global height-0 theory!

Next, E1,p is KU∧p , p-completed complex K -theory. What object
might allow us to recover the KU∧p at all primes p?

Well, let’s just not p-complete the darn thing!

We can take KU as
a global height-1 theory.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

So, what are some examples of global height-n theories?

For all p, E0,p is just HQ, rational cohomology. So, obviously we
can take HQ as a global height-0 theory!

Next, E1,p is KU∧p , p-completed complex K -theory. What object
might allow us to recover the KU∧p at all primes p?

Well, let’s just not p-complete the darn thing! We can take KU as
a global height-1 theory.

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

In order to go further, let’s reimagine this a bit.

We define a quasicoherent sheaf of cohomology theories over
X = Spec(Z), which we denote KU : we take the global sections to
be

KU(X ) = KU,

and then by quasicoherence, evaluation on X∧p ⊂ X yields

KU(X∧p ) = KU⊗̂Zp = KU∧p .

(Quasicoherence just means that we have this tensoring-up
formula.)

This corresponds to the sheaf of formal groups over X determined
by Ĝm, which evaluates as Ĝm(X∧p ) = (Ĝm)Zp = H̃1,p.
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Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

So, to get a global height-2 theory, we should look for some object
with a sheaf of formal groups which contains as sections the H̃2,p

for all primes p.

The previous case was easy, since all the H̃1,p came from the same

formal group Ĝm. The H̃2,p are much more complicated!

However, we have a clue: Recall that we can obtain a formal group
as the germ of (1-dimensional commutative) algebraic group.

Besides Ga and Gm, what other 1-dimensional commutative
algebraic groups are there, anyways?
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So what is this sheaf, anyways?
...and how is it constructed?

As it turns out, there is only one other sort of 1-dimensional
commutative algebraic group besides Ga and Gm: the elliptic
curves.

Very luckily, some elliptic curves over Fp have formal group of
height 2! Such elliptic curves are called supersingular. (The rest,
which have height 1, are called ordinary.)

For each prime p, there is a moduli of deformations of
supersingular elliptic curves, denoted Mss

ell ,p, and its canonical

sheaf of formal groups does indeed contain H̃2,p.

So, we might hope to bring these all together and define a sheaf of
cohomology theories over

∐
pMss

ell ,p.
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So what is this sheaf, anyways?
...and how is it constructed?

Unfortunately, there is a problem:
∐

pMss
ell ,p is extremely

disconnected.

(By the sheaf condition, evaluating a sheaf on a disjoint union
simply returns the product of the values on the individual
components.)

So, the question becomes: Is there some connected object M
admitting an embedding

∐

p

Mss
ell ,p ↪→M

and with a sheaf of formal groups extending that of
∐

pMss
ell ,p?
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So what is this sheaf, anyways?
...and how is it constructed?

And the answer is:

Yes!

We can use the embedding

∐

p

Mss
ell ,p ↪→Mell

into the moduli of all elliptic curves. Actually, following our friends
in number theory, we instead use the embedding

∐

p

Mss
ell ,p ↪→Mell

into its Deligne–Mumford compactification. The moral is:

We use the ordinary locus to interpolate
between the supersingular neighborhoods.
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So what is this sheaf, anyways?
...and how is it constructed?

So what the heck is this sheaf, anyways?

Recall that Mell is the moduli of generalized elliptic curves (i.e. of
smooth elliptic curves and their nodal degenerations). We endow
Mell with a sheaf Otop of ring-valued cohomology theories.

If Spec(R) ⊂Mell carries the generalized elliptic curve C over the
ring R, then E = Otop(Spec(R)) is a complex-oriented cohomology
theory whose formal group law FE coincides with Ĉ .

This is called the elliptic cohomology theory associated to C .
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So what is this sheaf, anyways?
...and how is it constructed?

Any generalized elliptic curve C has a cotangent space at the
identity, denoted ω(C ).

(This is also the module of invariant
1-forms.) These assemble into a line bundle ω ↓ Mell .

A modular form of weight n is a global section f ∈ ω⊗n(Mell ).
Taken over all n, these assemble into a graded ring

MF∗ =
⊕

n∈Z
MFn =

⊕

n∈Z
ω⊗n(Mell ) =

⊕

n≥0

ω⊗n(Mell ).

(There are no modular forms of negative weight.)

If E is an elliptic cohomology theory associated to C , then
E2n
∼= ω(C )⊗n and E2n+1 = 0 for all n ∈ Z.

Thus, it is reasonable to call the global sections of our sheaf

Tmf = Otop(Mell ),

the cohomology theory of topological modular forms.
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So what is this sheaf, anyways?
...and how is it constructed?

What is the coefficient ring Tmf∗?

The operations of taking global sections and taking coefficient
rings do not commute.

Instead, there is a descent spectral sequence (essentially a Serre
spectral sequence, if you squint hard enough) running

Hs(Mell , ω
⊗t)⇒ Tmf2t−s

which accounts for their interchange.
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So what is this sheaf, anyways?
...and how is it constructed?

Recall that by definition,

MFt = ω⊗t(Mell ) = H0(Mell , ω
⊗t).

The theory of spectral sequences tells us that the inclusion

H0(Mell , ω
⊗t) ↪→ Hs(Mell , ω

⊗t)⇒ Tmf2t−s

induces an edge homomorphism

Tmf2∗ → MF∗.

This ring homomorphism is an isomorphism away from 6 (i.e. its
additive kernel and cokernel consist only of 2- and 3-torsion) in
positive degrees, and so we might reasonably call Tmf≥0 the ring
of derived modular forms.

To mimic number theory as closely as possible, we actually usually
work with tmf = τ≥0Tmf , which is also called topological modular
forms.
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⊗t)⇒ Tmf2t−s

induces an edge homomorphism

Tmf2∗ → MF∗.

This ring homomorphism is an isomorphism away from 6 (i.e. its
additive kernel and cokernel consist only of 2- and 3-torsion) in
positive degrees,

and so we might reasonably call Tmf≥0 the ring
of derived modular forms.

To mimic number theory as closely as possible, we actually usually
work with tmf = τ≥0Tmf , which is also called topological modular
forms.
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...and how the heck is it constructed?

Very, very carefully.
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Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

Actually, the category of ring-valued cohomology theories is not
nearly rigid enough to allow us to glue all of these elliptic
cohomology theories into a sheaf.

Instead, we use the category of E∞-ring spectra; these are much
more rigid, and give rise to ring-valued cohomology theories with
lots of extra structure.

(Open(Mell ))op

{
ring-valued

cohomology theories

}
'{ring spectra}

{E∞-ring spectra}

We have the presheaf of ring-valued cohomology theories
represented by the bottom arrow thanks to the Landweber exact
functor theorem. We would like to lift this to a presheaf of E∞-ring
spectra, since there we have a good notion of sheaves and
sheafification.
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So what is this sheaf, anyways?
...and how is it constructed?

The Goerss–Hopkins–Miller obstruction theory for E∞-ring spectra
guarantees that there is indeed such a lift, and moreover that it is
essentially unique.

In the immortal words of Lurie:

“Although it is much harder to write down an E∞-ring than a spectrum, it is

also much harder to write down a map between E∞-rings than a map between

spectra. The practical effect of this, in our situation, is that it is much harder

to write down the wrong maps between E∞-rings and much easier to find the

right ones.”

There is also a construction of Otop due to Lurie, which was the
original motivation for his theory of derived algebraic geometry.
This ultimately relies on the Goerss–Hopkins–Miller obstruction
theory, too.
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Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

Here is a result, modulo some minor loose ends.

Pre-theorem (M-G–Spitzweck)

There is a Goerss–Hopkins–Miller obstruction theory in the setting
of motivic homotopy theory.

Motivic homotopy theory (a/k/a A1-homotopy theory) is what
you get when you mix algebraic geometry with homotopy theory.

(Schemes represent functors-of-points. So, we just redefine
“point” to mean “scheme” and then proceed from there: a simplex
is just a fattened-up point, and this suggests the definition for
“motivic simplicial complexes”.)
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Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

This result should eventually yield a motivic version of tmf ,
though there are still a number of substantial hurdles to overcome.

It should also tell us about the space of E∞-endomorphisms of
algebraic K -theory, the motivic analog of complex K -theory. This
would tell us about the power operations on algebraic K -theory.

Power operations are the “extra structure” present on cohomology
theories represented by E∞-ring spectra referred to earlier. (This
refinement is analogous to enriching ordinary cohomology from a
graded group to a graded ring.)
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Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

Curiously enough, the above result requires no real algebraic
geometry!

(Everything is wrapped up in hard work that’s already
been done by motivic homotopy theorists.)

This suggests the following generalization.

Work in progress (M-G)

There is a Goerss–Hopkins–Miller obstruction theory in the setting
of ∞-categories.
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So what is this sheaf, anyways?
...and how is it constructed?

An ∞-categorical obstruction theory would give not just a motivic
obstruction theory as a corollary, but also e.g. an obstruction
theory for equivariant stable homotopy theory.

It would also re-prove the original obstruction theory in a much
cleaner and more streamlined way, although of course it would still
rely on the very heavy machinery of ∞-categories.

(The original obstruction theory is the result of six hefty papers,
together over 500 pages, which use extremely technical results in
the theory of model categories. An ∞-category is to a model
category as a manifold is to an atlas.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

An ∞-categorical obstruction theory would give not just a motivic
obstruction theory as a corollary, but also e.g. an obstruction
theory for equivariant stable homotopy theory.

It would also re-prove the original obstruction theory in a much
cleaner and more streamlined way, although of course it would still
rely on the very heavy machinery of ∞-categories.

(The original obstruction theory is the result of six hefty papers,
together over 500 pages, which use extremely technical results in
the theory of model categories. An ∞-category is to a model
category as a manifold is to an atlas.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

An ∞-categorical obstruction theory would give not just a motivic
obstruction theory as a corollary, but also e.g. an obstruction
theory for equivariant stable homotopy theory.

It would also re-prove the original obstruction theory in a much
cleaner and more streamlined way, although of course it would still
rely on the very heavy machinery of ∞-categories.

(The original obstruction theory is the result of six hefty papers,
together over 500 pages, which use extremely technical results in
the theory of model categories.

An ∞-category is to a model
category as a manifold is to an atlas.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Towards tmf
So what is this sheaf, anyways?
...and how is it constructed?

An ∞-categorical obstruction theory would give not just a motivic
obstruction theory as a corollary, but also e.g. an obstruction
theory for equivariant stable homotopy theory.

It would also re-prove the original obstruction theory in a much
cleaner and more streamlined way, although of course it would still
rely on the very heavy machinery of ∞-categories.

(The original obstruction theory is the result of six hefty papers,
together over 500 pages, which use extremely technical results in
the theory of model categories. An ∞-category is to a model
category as a manifold is to an atlas.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

The Witten genus and the String orientation
Transchromatic detection

4. Fun with tmf !
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The Witten genus and the String orientation

Using arguments from physics, Witten defined a genus for String
manifolds, which associates to each String manifold a modular
form.

What is a genus?

Given some structure group G (e.g. unoriented, oriented, Spin,
String, etc.), the G bordism ring is the graded ring ΩG

∗ whose
elements are cobordism classes of G manifolds, with addition given
by disjoint union and multiplication given by Cartesian product.

Then, a genus is just a homomorphism ΩG
∗ → R∗ of graded rings.

So, the Witten genus is a homomorphism

ΩString
∗ → MF∗.
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elements are cobordism classes of G manifolds, with addition given
by disjoint union and multiplication given by Cartesian product.

Then, a genus is just a homomorphism ΩG
∗ → R∗ of graded rings.

So, the Witten genus is a homomorphism

ΩString
∗ → MF∗.
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Any structure group G determines a homology theory MG , called
G bordism homology ; this is defined just like singular homology,
but using G -manifolds instead of simplicial complexes.

Of course, MG∗ = ΩG
∗ .

So, we might hope for a topological version of the Witten
genus...but what should be its target?

Its target should be tmf !

Indeed, Ando–Hopkins–Rezk–Strickland construct the σ-orientation

MString→ tmf .
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The σ-orientation MString→ tmf is actually part of a much
bigger story.

The sphere spectrum, denoted S, is the initial ring spectrum (just
as Z is the initial ring). But S also gives the bordism homology
theory for framed manifolds. The σ-orientation is a factorization of
the unit map

S = MFramed MString

tmf

through the natural “forgetful” map from Framed bordism to
String bordism. (A Framed structure gives a String structure, just
like a Spin structure gives an orientation.)
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This fits into a whole tower of factorizations of unit maps through
various bordism homology theories.

MFramedS = · · · MString MSpin MSO MO

tmf ko HZ HF2

lim

These are topological versions of various genera. From right to
left, they represent:

the Stiefel–Whitney classes;

the Pontrjagin classes;

the ko-Pontrjagin classes of Atiyah–Bott–Shapiro;

the σ-orientation of Ando–Hopkins–Rezk–Strickland.
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MFramedS = · · · MString MSpin MSO MO

tmf ko HZ HF2

lim

What does this tell us when we pass to coefficient rings?

It is a classical result that a Spin-manifold is Spin-nullcobordant if
(and only if) its ko-Pontrjagin and Stiefel–Whitney classes vanish.

Thus, it is natural to hope that tmf -characteristic classes allow us
to completely detect String-cobordism.
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Transchromatic detection

Let’s work at a fixed prime p.

Recall that elliptic curves can either have height 1, in which case
they are called ordinary, or height 2, in which case they are called
supersingular.

Over the moduli Mord
ell ,p of ordinary elliptic curves over p-complete

rings, there is a covering space

Mord
ell ,p(p∞) ↓ Mord

ell ,p,

which is associated to Katz’s ring V of p-adic modular forms.
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We can think of the covering space

Mord
ell ,p(p∞) ↓ Mord

ell ,p

as the frame bundle;

it is the moduli of ordinary elliptic curves C
equipped with a trivialization, i.e. a chosen isomorphism Ĉ ∼= Ĝm.

So, the fiber over a point is a copy of AutZp (Ĝm) ∼= Z×p .

We should think of this as the group of deck transformations.
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There is a result from number theory called Igusa’s theorem, which
roughly says two things:

The covering space Mord
ell ,p(p∞) ↓ Mord

ell ,p is connected.

In any (punctured) neighborhood of a supersingular point, i.e.
a point in the complement of

Mord
ell ,p ⊂Mell ,p,

the covering space remains connected.
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This is very tantalizing.

In broad terms, it’s somehow saying that despite living at height 1,
the ring of p-adic modular forms “knows about” the points of
height 2.

(Connected covering spaces correspond to quotient groups of the
fundamental group. So, this covering space “sees the missing
points”.)

How can we interpret this result in topology?
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The study of ramified coverings in arithmetic geometry goes by the
name of class field theory, which gives results analogous to the
Riemann–Hurwitz theorem for ramified coverings of Riemann
surfaces.

The ring Z has no connected unramified extensions: every
nontrivial extension ramifies at some prime.

(For example, Z[i ] = Z[x ]/(x2 + 1) ramifies at (2) ∈ Spec(Z), but
defines a unramified extension when we localize away from (2), i.e.
if we restrict to Spec(Z[2−1]) ⊂ Spec(Z). And of course, by the
time we pass all the way to Spec(Q) ⊂ Spec(Z), there are tons of
extensions!)

For this reason, we say that Z is separably closed : it has no
nontrivial connected finite Galois extensions.
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As a ring spectrum, the sphere spectrum S is also separably closed.

However, when we take its localization LK(n,p)S with respect to the
Morava K -theory K (n, p), it ceases to be separably closed; in fact,
its maximal unramified extension is essentially the Morava
E -theory En,p (at least for p > 2, but probably for p = 2 too).

Since Otop(Mss
ell ,p) is essentially E2,p and since K (1, p)-localization

models restriction to the ordinary locus, Igusa’s theorem suggests
the following.

Conjecture

The covering space of LK(1,p)tmf coming from the ring V is a
connected Galois extension.

The restriction of this covering space to LK(1,p)E2,p is also a
connected Galois extension. (In particular, E2,p is no longer
separably closed after K (1, p)-localization.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

The Witten genus and the String orientation
Transchromatic detection

As a ring spectrum, the sphere spectrum S is also separably closed.

However, when we take its localization LK(n,p)S with respect to the
Morava K -theory K (n, p), it ceases to be separably closed;

in fact,
its maximal unramified extension is essentially the Morava
E -theory En,p (at least for p > 2, but probably for p = 2 too).

Since Otop(Mss
ell ,p) is essentially E2,p and since K (1, p)-localization

models restriction to the ordinary locus, Igusa’s theorem suggests
the following.

Conjecture

The covering space of LK(1,p)tmf coming from the ring V is a
connected Galois extension.

The restriction of this covering space to LK(1,p)E2,p is also a
connected Galois extension. (In particular, E2,p is no longer
separably closed after K (1, p)-localization.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

The Witten genus and the String orientation
Transchromatic detection

As a ring spectrum, the sphere spectrum S is also separably closed.

However, when we take its localization LK(n,p)S with respect to the
Morava K -theory K (n, p), it ceases to be separably closed; in fact,
its maximal unramified extension is essentially the Morava
E -theory En,p (at least for p > 2, but probably for p = 2 too).

Since Otop(Mss
ell ,p) is essentially E2,p and since K (1, p)-localization

models restriction to the ordinary locus, Igusa’s theorem suggests
the following.

Conjecture

The covering space of LK(1,p)tmf coming from the ring V is a
connected Galois extension.

The restriction of this covering space to LK(1,p)E2,p is also a
connected Galois extension. (In particular, E2,p is no longer
separably closed after K (1, p)-localization.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

The Witten genus and the String orientation
Transchromatic detection

As a ring spectrum, the sphere spectrum S is also separably closed.

However, when we take its localization LK(n,p)S with respect to the
Morava K -theory K (n, p), it ceases to be separably closed; in fact,
its maximal unramified extension is essentially the Morava
E -theory En,p (at least for p > 2, but probably for p = 2 too).

Since Otop(Mss
ell ,p) is essentially E2,p and since K (1, p)-localization

models restriction to the ordinary locus, Igusa’s theorem suggests
the following.

Conjecture

The covering space of LK(1,p)tmf coming from the ring V is a
connected Galois extension.

The restriction of this covering space to LK(1,p)E2,p is also a
connected Galois extension. (In particular, E2,p is no longer
separably closed after K (1, p)-localization.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

The Witten genus and the String orientation
Transchromatic detection

As a ring spectrum, the sphere spectrum S is also separably closed.

However, when we take its localization LK(n,p)S with respect to the
Morava K -theory K (n, p), it ceases to be separably closed; in fact,
its maximal unramified extension is essentially the Morava
E -theory En,p (at least for p > 2, but probably for p = 2 too).

Since Otop(Mss
ell ,p) is essentially E2,p and since K (1, p)-localization

models restriction to the ordinary locus, Igusa’s theorem suggests
the following.

Conjecture

The covering space of LK(1,p)tmf coming from the ring V is a
connected Galois extension.

The restriction of this covering space to LK(1,p)E2,p is also a
connected Galois extension. (In particular, E2,p is no longer
separably closed after K (1, p)-localization.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

The Witten genus and the String orientation
Transchromatic detection

As a ring spectrum, the sphere spectrum S is also separably closed.

However, when we take its localization LK(n,p)S with respect to the
Morava K -theory K (n, p), it ceases to be separably closed; in fact,
its maximal unramified extension is essentially the Morava
E -theory En,p (at least for p > 2, but probably for p = 2 too).

Since Otop(Mss
ell ,p) is essentially E2,p and since K (1, p)-localization

models restriction to the ordinary locus, Igusa’s theorem suggests
the following.

Conjecture

The covering space of LK(1,p)tmf coming from the ring V is a
connected Galois extension.

The restriction of this covering space to LK(1,p)E2,p is also a
connected Galois extension.

(In particular, E2,p is no longer
separably closed after K (1, p)-localization.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

The Witten genus and the String orientation
Transchromatic detection

As a ring spectrum, the sphere spectrum S is also separably closed.

However, when we take its localization LK(n,p)S with respect to the
Morava K -theory K (n, p), it ceases to be separably closed; in fact,
its maximal unramified extension is essentially the Morava
E -theory En,p (at least for p > 2, but probably for p = 2 too).

Since Otop(Mss
ell ,p) is essentially E2,p and since K (1, p)-localization

models restriction to the ordinary locus, Igusa’s theorem suggests
the following.

Conjecture

The covering space of LK(1,p)tmf coming from the ring V is a
connected Galois extension.

The restriction of this covering space to LK(1,p)E2,p is also a
connected Galois extension. (In particular, E2,p is no longer
separably closed after K (1, p)-localization.)

Aaron Mazel-Gee You could’ve invented tmf .



The finite stable homotopy category
Chromatic homotopy theory

Topological modular forms
Fun with tmf

Thank you!

Further reading, in order of appearance.

M-G, An introduction to spectra.1

Peterson, The geometry of formal varieties in algebraic topology I and II.2

M-G, Dieudonné modules and the classification of formal groups.1

Hopkins, Complex oriented cohomology theories and the language of stacks
(a/k/a COCTALOS).3

Lurie, A survey of elliptic cohomology.3

M-G, What are E∞-rings? 4

M-G, Model categories for algebraists, or: What’s really going on with injective
and projective resolutions, anyways? 1

Katz, p-adic L-functions via moduli of elliptic curves.

1 http://math.berkeley.edu/∼aaron/writing/
2 http://math.berkeley.edu/∼aaron/xkcd/fall2010.html
3 googleable
4 math.stackexchange answer; googleable via the string “what are e-infty rings”
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M-G, Dieudonné modules and the classification of formal groups.1

Hopkins, Complex oriented cohomology theories and the language of stacks
(a/k/a COCTALOS).3

Lurie, A survey of elliptic cohomology.3

M-G, What are E∞-rings? 4

M-G, Model categories for algebraists, or: What’s really going on with injective
and projective resolutions, anyways? 1

Katz, p-adic L-functions via moduli of elliptic curves.

1 http://math.berkeley.edu/∼aaron/writing/
2 http://math.berkeley.edu/∼aaron/xkcd/fall2010.html
3 googleable
4 math.stackexchange answer; googleable via the string “what are e-infty rings”

Aaron Mazel-Gee You could’ve invented tmf .


