Sustainable Linked Data Generation:
The Case of DBpedia *

Wouter Maroy!, Anastasia Dimou!, Dimitris Kontokostas?, Ben De Meester!,
Ruben Verborgh!, Jens Lehmann®*, Erik Mannens', and Sebastian Hellmann?

! imec — IDLab, Department of Electronics and Information Systems,
Ghent University, Ghent, Belgium
{firstname.lastname}Qugent.be

2 Leipzig University - AKSW/KILT, Leipzig, Germany
{lastname}@informatik.uni-leipzig.de
3 University of Bonn, Smart Data Analytics Group, Germany
jens.lehmann@cs.uni-bonn.de
4 Fraunhofer IAIS, Sankt Augustin, Germany
jens.lehmann@iais.fraunhofer.de

Abstract. DBpedia EF, the generation framework behind one of the
Linked Open Data cloud’s central interlinking hubs, has limitations with
regard to quality, coverage and sustainability of the generated dataset.
DBpedia can be further improved both on schema and data level. Errors
and inconsistencies can be addressed by amending (i) the DBpedia EF;
(ii) the pBpedia mapping rules; or (iii) Wikipedia itself from which it
extracts information. However, even though the DBpedia EF and mapping
rules are continuously evolving and several changes were applied to both
of them, there are no significant improvements on the DBpedia dataset
since its limitations were identified. To address these shortcomings, we
propose adapting a different semantic-driven approach that decouples, in
a declarative manner, the extraction, transformation and mapping rules
execution. In this paper, we provide details regarding the new DBpedia EF,
its architecture, technical implementation and extraction results. This way,
we achieve an enhanced data generation process, which can be broadly
adopted, and that improves its quality, coverage and sustainability.

1 Introduction

The DBpedia Extraction Framework (DBpedia EF) [12] extracts raw data from
Wikipedia and makes it available as Linked Data, forming the well-known and
broadly used DBpedia dataset. The majority of the DBpedia dataset is derived
through Wikipedia infobox templates, after being annotated by the DBpedia
ontologgﬂ [12]. The DBpedia dataset is further enriched with additional information

* The described research activities were funded by Ghent University, imec, Flanders
Innovation & Entrepreneurship (AIO), the Fund for Scientific Research Flanders
(FWO Flanders), and the EU’s H2020 program for ALIGNED (GA 644055).

5 http://dbpedia.org/ontology/

 {firstname.lastname}@ugent.be
 {lastname}@informatik.uni-leipzig.de
jens.lehmann@cs.uni-bonn.de
jens.lehmann@iais.fraunhofer.de
http://dbpedia.org/ontology/

2 Wouter Maroy et al.

derived from the articles such as free text, abstracts, images, links to other Web
pages, and tables. Mapping Templates, i.e., rules generating most of the DBpedia
dataset from Wikipedia are executed by the DBpedia EF, defined by a world-wide
crowd-sourcing effort, and maintained via the DBpedia mappings wzkzﬁ

Even though DBpedia is one of the central interlinking hubs in the Linked
Open Data (LoD) cloud [17], its generation framework has limitations that reflect
on the generated dataset [14,(19]. We distinguish two types of issues with DBpedia:

schema-level rules that define how to apply vocabularies to raw data [6,/10}/14],
e.g., the dbo:militaryBranch property is used for entities of dbo:MilitaryUnit
type, but it should only be used with entities of dbo:Person type [13].

data-level eztracted, or processed and transformed data values. The former
includes incorrect, incomplete or irrelevant extracted values and datatypes, or
not (well-)recognized templates [19]; the latter issues with parsing values |18],
interpreting/converting units [18], or transforming cardinal direction [15].

Errors or inconsistencies in DBpedia can be addressed by amending the DBpedia
EF, mapping rules, or Wikipedia itself [19]. However, even though several changes
were applied to both the DBpedia EF and mapping rules [12], quality issues
still persist. For instance, 32% of its mapping rules are involved in at least one
inconsistency [13], and more than half of all cardinal direction relations are still
invalid or incorrect |15]. These issues challenge DBpedia dataset’s usage, hence the
demands for DBpedia EF to improve in terms of expressivity, i.e., level of details
that a user can specify in mapping rules, semantic flexibility, i.e., possibility to
interchange among different schemas, and modularity, i.e., declarative rules and
modular components for extraction, transformation and mapping. Given that
quality issues persist over a long period of time [13,[15], the custom DBpedia EF
appears to not meet the above and more foundational changes are required.

In this work, we show that the coupling among eztraction, i.e., retrieving
data from Wikipedia, transformation, i.e., processing the extracted data values,
and mapping rules execution, i.e., applying semantic annotations to the retrieved
and transformed data values, contributes to DBpedia EF’s inadequacy to cope
with the increasing demands for high quality Linked Data. While just decoupling
these processes and keeping them hard-coded is just (re-)engineering, we look
into a radical solution that turns the DBpedia EF more semantic rather than
just a black-box. The goal is to adjust the current DBpedia EF and provide
a general-purpose and more sustainable framework that enables more added
value. For instance, in terms of semantic flexibility, interchanging among different
schema, annotations should be supported, instead of e.g., being coupled to a
certain ontology as it is now, and allowing only certain semantic representation.

In this paper, we show how we incorporate in the existing DBpedia EF a
general-purpose semantic-driven Linked Data generation approach, based on
RML [7]. It replaces the current solution, decouples extraction, transformations
and conditions from DBpedia EF, and enables generating high quality Linked
Data for DBpedia. The activities to achieve this solution started as a GSoC2016

6 http://mappings.dbpedia.org/index.php/Main_Page

http://mappings.dbpedia.org/index.php/Main_Page

Sustainable Linked Data Generation: The Case of DBpedia 3

projectﬂﬂ and continue till nowdays. Our contribution is three-fold: we (i) outline
the limitations of the current DBpedia EF; (ii) identify the requirements for a
more sustainable approach; and (iii) incorporate a generic approach that fulfills
those requirements to the current DBpedia EF and compare the two approaches.
The paper is organized as follows: after outlining the state of the art ,
we detail the current DBpedia EF limitations and requirements for a sustainable
framework (Section 3|). In [Section 4] we introduce our approach, and provide
a corresponding implementation. In we provide the results of our
approach’s evaluation. Finally, we summarize our conclusions in

2 Background and Related Work

In this section, we discuss related work in Linked Data generation (Section [2.1))
and we outline the current DBpedia EF functionality (Section [2.2)).

2.1 State of the Art

In the past, case-specific solutions were established for Linked Data generation,
which couple schema and data transformations. XSLT- or XPath-based approaches
were established for generating Linked Data from data originally in XML format,
e.g., AstroGrid—[ﬂ There are also query-oriented languages that combine SPARQL
with other languages or custom alignments to the underlying data structure.
For instance, XSPARQL [1] maps data in XML format and Tarq’] data in csv.
Nevertheless, those approaches cannot be extended to cover other data sources.

Different approaches emerged to define data transformations declaratively,
such as voLT [16] for SPARQL, Hydra [11] for Web Services, or Fno [4]. Hydra or
vOLT depend on the underlying system (Web Services and SPARQL, respectively),
thus their use is inherently limited to it. Using Hydra descriptions for executing
transformations only works online, whereas VOLT only works for data already
existing in a SPARQL endpoint. Describing the transformations using Fno does not
include this dependency, thus allows for reuse in other use cases and technologies.

2.2 DBpedia Extraction Framework

The DBpedia Extraction Framework (DBpedia EF) generates the DBpedia dataset [12].
It extracts data from Wikipedia, such as infobox templates or abstracts. The
DBpedia EF consumes a source, i.e., an abstraction of a set of Wiki pages in
wikitext syntax, parses it with a Wiki parser, and transforms it in an Abstract
Syntax Tree (AST). To process the page’s content, several AST-processing com-
ponents, called extractors (e.g., Mapping Extractor, Geo Extractor), traverse a
Wiki page’s AST and generate RDF triples. Eventually the DBpedia EF forwards
them to a sink that outputs them to different datasets based on their properties.

7 www.mail-archive.com/dbpedia-discussion@lists.sourceforge.net/msg07837.html
8 https://summerofcode.withgoogle.com/projects/#6213126861094912
9 http://www.gac-grid.de/project-products/Software/XML2RDF.html

10 https://tarql.github.io/

www.mail-archive.com/dbpedia-discussion@lists.sourceforge.net/msg07837.html
https://summerofcode.withgoogle.com/projects/#6213126861094912
http://www.gac-grid.de/project-products/Software/XML2RDF.html
https://tarql.github.io/

4 Wouter Maroy et al.

Extractors The core DBpedia EF components are the extractors, whose common
main functionality is to traverse the AsT-representation of a Wiki page and gen-
erate RDF triples based on the syntax tree and other heuristics. Many extractors
contribute in forming the DBpedia dataset |12, Section 2.2]. A prominent one is
the Mapping-Based Infobox Extractor, which uses manually written mapping rules
that relate infoboxes in Wikipedia to terms in DBpedia ontology, and generates
RDF triples. It is the most important extractor, as the most valuable content of
DBpedia dataset is derived from infoboxes |12], and covers the greatest part of the
DBpedia ontology. Infobox templates are defined in wiki syntax and summarize
information related to a page’s article in a structured, consistent format which is
presented on the article’s page as a table with attribute-value pairs.

Mapping-Based Infobox Extractor It uses community-provided, but manu-
ally written mapping rules, which are available at the DBpedia Mappings WikiH
The mappings wiki enables users to collaboratively create and edit mapping
rules, specified in the custom DBpedia Mapping Language. The DBpedia Mapping
Language relies on MediaWiki templates to define the DBpedia ontology classes
and properties and align them with the corresponding template elements [12]. A
mapping rule assigns a type from the DBpedia ontology to entities that are de-
scribed by the corresponding infobox and the infobox’s attributes are mapped to
DBpedia ontology properties. This extractor traverses the AST and finds infoboxes
for which user-defined mapping rules were created. The infoboxes’ attribute-value
pairs are extracted and RDF triples are generated.

DBpedia mapping language The custom DBpedia mapping language is in
wikitext syntax and is used to define how RDF triples are generated from infobox.
Each mapping template contains mapping rules for a certain infobox template,
such as geocoordinates and date intervals. The mapping rules might specify
another mapping template for an infobox property to help the DBpedia EF produce
high quality Linked Data [12]. The following exemplary mapping document
contains three different mapping templates: (i) a class mapping (Listing [1} line
that maps articles that use that template to the DBpedia Automobile class,
(ii) a property mapping template (line , which maps the name attribute in
the infobox to foaf:name and, (iii) a date interval mapping template (line ,
which splits the production attribute (which should be a start and end date) and
semantically annotates each part with different ontology terms.

3 Limitations and Requirements

To address DBpedia dataset quality issues, the current DBpedia EF limitations
need to be addressed by adopting a more sustainable approach. In this section,
we discuss the current limitations (Section and requirements for a sustainable
framework (Section that enables higher quality Linked Data generation.

1 http://mappings.dbpedia.org

http://mappings.dbpedia.org

Sustainable Linked Data Generation: The Case of DBpedia 5

{{TemplateMapping
| mapToClass = Automobile
| mappings =
{{PropertyMapping
| templateProperty = name
| ontologyProperty = foaf:name }}
{{DateIntervalMapping
| templateProperty = production
| startDateOntologyProperty = productionStartDate
| endDateOntologyProperty = productionEndDate }} }}

© VW N AW

[

Listing 1: extract of a DBpedia mapping templates in wikitext syntax

3.1 Limitations

The current DBpedia EF has the following limitations:

mapping rules and implementation coupling Although a set of DBpedia
Mapping Templates (DMT) is available, the DBpedia community is limited to
this set only and cannot easily introduce new ones. The reason is that the DMTs
translation happens directly inside the DBpedia EF. Thus, different mapping
rules that are defined in each DMT are coupled to their implementation.
Some rules, such as transformation of values are, in some case, more flexible
to change. For example, changing the language value from ‘de’ to ‘el’, or
converting a string to an IRI by appending a namespace, can be done directly
from the mapping rules. However, there are still many useful mapping rules
that are not supported without adjusting the DBpedia EF. For instance,
combining different values of an infobox is not supported.
Any community member who would like to adjust the mapping rules should
be aware of how to develop the DBpedia EF and Linked Data principles.
Extending, adjusting or adding a new template, requires (i) extending the
current custom DBpedia mapping language, by specifying and documenting
the new constructs, and (ii) providing the corresponding implementation to
extract these constructs to generate the corresponding RDF triples.
Extending the language is not straightforward and is performed in an ad-hoc
manner, while the corresponding implementation is developed as custom
solutions, hampering the DBpedia EF maintenance.

transformations and implementation coupling The DBpedia community
can neither adjust nor add new transformations because the mapping rules
only refer to schema transformations. Transformations over extracted data
values are hard-coded and executed at different places within the DBpedia
EF, from extraction to mapping and RDF generation. For instance, the actual
value for the birth_date property of Person infobox is {{Birth date and
age|lyyyy|mm|dd}}. The DBpedia EF, parses and extracts this to a valid
XSD date value, i.e., "yyy-mm-dd". If another date format is desired, it
is required to be implemented within the DBpedia EF. Similarly, for the
mapping rules that use the DBpedia ontology, DBpedia EF retrieves the
DBpedia ontology predicates ranges and uses the defined range to transform

Wouter Maroy et al.

the values accordingly. For example, for object properties, the DBpedia EF
tries to extract only links and for datatype properties, custom parsers for
numbers, floats, dates etc. are applied. Nonetheless, there are cases where the
values can be of different types and the users cannot override this behavior
without extending the DBpedia EF. Another limitation is the hard-coded
unit measurements calculations which, when combined with not consistently
formatted input, can lead to wrong values |18]. Overall, the DBpedia dataset is
restricted to certain transformations which cannot be easily amended, unless
the DBpedia EF is amended, which on its own turn, is not so trivial. Even
reusing existing transformation functions requires adjusting the DBpedia EF.

hard-coded mapping rules The DBpedia community cannot adjust all RDF

triples which form the DBpedia dataset, because not all of them are generated
based on mapping rules. Certain RDF terms and triples are generated without
mapping rules being defined, but the DBpedia EF generates them based on
hard-coded mapping rules. Adjusting such mapping rules requires adjusting
the DBpedia EF. For instance, each RDF triples’s subject is dependent on the
context of the extraction’s execution. Entities in localized datasets (a DBpedia
dataset within a certain language) are identified with a subject that is a
language specific IRI, e.g., the http://{lang}.dbpedia.org/resource/{resource} NamMeEs-
pace is used in the different DBpedia language editions. Generating RDF terms
that represent entities with other identifiers or adding new entities cannot be
expressed with a mapping rule. For instance, adjusting the aforementioned IR1
template to http://{lang}.dbpedia.org/example/{resource} OI generating another en-
tity with a different IRI, such as http://example.com/{resource}, requires adjusting
the implementation. Overall, configuring current mapping rules has limited
influence on most RDF terms and triples generation.

restricted to the DBpedia ontology The DBpedia community cannot use

other schema(s) to annotate the Wikipedia pages, than the DBpedia ontology.
The current mapping extractor functions only with DBpedia ontology, e.g.,
the predicate depends on the ontology term used for a certain attribute
of an infobox. This occurs because the DBpedia EF interprets the context
and selects the corresponding parser based on where the mapping template
is used and which ontology term is selected. For instance, the dbo:date
triggers the Data parser. If an ontology term is not added to the DBpedia
ontology, it cannot be used, e.g., only the dbo:location may be used to
indicate an entity’s location. Other vocabularies, such as gedE vocabulary,
cannot be used unless imported into the DBpedia ontology. Incorporating any
other vocabulary requires adjusting the DBpedia EF, because the extractor
will not recognize its properties, namely it will not generate RDF triples if
geo:location is provided. Only certain vocabularies, such as dctermﬂ or
foaﬂ are supported. Similarly, the assigned data type is also dependent
on the mapping template and ontology term, e.g., the area in square kms

12 http://www.w3.0rg/2003/01/geo/wgs84_pos#

13

http://purl.org/dc/terms/

14 http://xmlns.com/foaf/0.1/

http://{lang}.dbpedia.org/resource/{resource}
http://{lang}.dbpedia.org/example/{resource}
http://example.com/{resource}
http://www.w3.org/2003/01/geo/wgs84_pos#
http://purl.org/dc/terms/
http://xmlns.com/foaf/0.1/

Sustainable Linked Data Generation: The Case of DBpedia 7

generates an xsd:double but also a DBpedia datatype (dbo:areaTotal) that
depends on the used predicate.

domain validation If the DBpedia community uses ontology terms which cause
violations, there is no support for schema validation. Domain validation of
the mapping templates defined in the custom DBpedia mapping language
can not be supported [6]. Nevertheless, the DBpedia dataset quality would
significantly improve if schema violations is applied to the mapping templates
[6,13]/19]. Currently custom DBpedia mapping templates are only validated
for syntax violations (using the Mapping Syntax ValidatorE [12]).

3.2 Requirements

Adjusting the DBpedia EF with a general-purpose Linked Data generation tool
allows to adopt a more sustainable solution and enables generating higher quality
Linked Data. Such a sustainable approach has the following requirements:

1. declarative mapping rules The DBpedia community needs to be able
to directly edit, adjust, and define mapping rules for all RDF triples which are
generated, while the underlying implementation should be able to interpret
them in each case. Hence, a declarative language is required which is able to
express all mapping rules. A corresponding underlying implementation should
generate all RDF triples relying on declaratively defined mapping rules, either
they refer to schema or data transformations [5]. If the DBpedia mapping
rules are formalized in a generic and complete approach, the DBpedia EF
mapping process and maintenance will be improved, and, thus, the DBpedia
dataset quality will improve too, as it is already indicated by e.g., [6,/13].

2. modular and decoupled implementation The DBpedia community
should be able to add new mapping rules for schema annotations, and
alternate or add new transformation rules, as well as data transformation
libraries, without requiring to adjust the underlying implementation. The
extraction, transformation, mapping and RDF generation should be decoupled
from each other, but aligned as modular components which can be extended
or replaced, if e.g., other or new transformations are desired [5].

3. machine-processable mapping rules The DBpedia community should
be able to build applications which can automatically process the mapping
rules. To achieve this, mapping rules should be processable by both humans
and machines [7]. For instance, machine processable mapping rules can be
assessed not only for syntax but also for schema validation. More, the results of
the validation might be automatically processed, as it occurs e.g., with [6,(13],
or automated mapping rules generation might occur as indicated by [81[9].

4. vocabulary-independent The DBpedia community should be able to
generate each time any data model is desired, uniquely identify entities as
it is desired, as well as annotate data values derived from Wikipedia pages
relying on any vocabulary. Mapping rules should be defined and executed, and
RDF terms and triples should be generated, independently of the vocabulary
used to annotate the extracted data values.

15 http://mappings.dbpedia.org/server/mappings/en/validate/

http://mappings.dbpedia.org/server/mappings/en/validate/

8 Wouter Maroy et al.

4 Sustainable DBpedia EF with RML

To overcome the current DBpedia EF limitations, we developed a solution that
fulfills the aforementioned requirements. R2RML [2] is a W3C standardized lan-
guage for defining mapping rules to generate Linked Data from data residing in
relational databases. The RDF Mapping Language (RML) [7] extends R2RML |[2]
to enable specifying how Linked Data is generated from sources in different
(semi-)structured formats, such as ¢SV, XML, and JSON. Mapping rules in RML
are expressed as RDF triples (Requirement @ and any vocabulary can be used to
annotate the data (Requirement[{)). Thanks to its extensibility [7], RML can also
cover wikitext syntax to generate Linked Data from Wikipedia (Requirement .
Moreover, RML is aligned with Fno [4], an ontology to define data transformations
declaratively (Requirement . The RMLMapper executes mapping rules expressed
in RML, while the Fno Processor interprets data transformation expressed in Fno
and discovers corresponding libraries that execute them (Requirement @

In this section, we discuss how we replaced the existing Infobox based Mapping
Extractor, which is custom for DBpedia EF, with the RMLMappeIE and challenges
we faced. The transition to the new solution was fulfilled in three steps:

1. mapping rules translation The DBpedia mapping rules were translated
in RML (schema) and Fno (data transformation) statements (Section [4.1));

2. transformations decoupling The DBpedia Parsing Functions were decou-
pled from the DBpedia EF and aggregated in a distinct module (Section ;

3. mapping rules execution The RMLMapper was integrated as extractor (the
RMLExtractor) in the DBpedia EF (Section to execute the mapping rules.

4.1 Mapping rules translation

To take advantage of the RML-based solution, we needed to translate the custom
DBpedia mapping rules into RML statements. This was one of the most labor-
intensive tasks of the integration process and it was performed in two phases,
firstly the translation and, then, the decoupling. In more details:

1. The custom mapping templates in wikitext syntax were translated in RML
statements. The RML mapping rules after the first phase can be found at
http://mappings.dbpedia.org/server/mappings/en/pages/rdf/|

2. The mapping rules which were embedded in the DBpedia EF were expressed
as RML statements and the data transformations as Fno statements. Every
mapping template was assigned its own function, e.g., the Datelnterval
Template was assigned the Datelnterval Function with same parameters.
Moreover, we added basic functions like FEzxtractDate, which extracts and
processes dates from a value. The RML mapping rules after this phase can be
found at http://mappings.dbpedia.org/rml_mappings-201705.zipl

16 https://github.com/RMLio/RML-Mapper

http://mappings.dbpedia.org/server/mappings/en/pages/rdf/
http://mappings.dbpedia.org/rml_mappings-201705.zip
https://github.com/RMLio/RML-Mapper

Sustainable Linked Data Generation: The Case of DBpedia 9

<#infobox_country_mapping_en> rr:subjectMap <subject_mapping_1>;
rml:predicateObjectMap <pom_mapping_1>.

<subject_map_1> rr:template "http://en.dbpedia.org/resource/{wikititle}".
<pom_mapping_1> rr:predicateMap [rr:constant dbo:name.];
rr:objectMap [rml:reference "common_name"; rr:datatype xsd:string].

[e N

dbf:extract-entity a fno:Function ;
fno:name "generates a DBpedia IRI" ;
dcterms:description "returns an entity" ;
fno:expects ([fno:predicate dbf:property 1) ;
fno:output ([fno:predicate dbf:entity]) .

e
AW N = O ©

:exe a fno:Execution ;
fno:executes dbf:extractEntity ;
dbf:property "Bill Gates";
dbf:entity dbr:Bill_Gates .

o e
N o o

Listing 2: RML mapping rules and FnoO data transformations

Manually translating all mapping rules in RML would have been difficult,
hence, a temporary extension in the DBpedia EF was built to automate the
translatiorﬂ This extension builds on top of the RMLModeIEI7 and can be run
both within the DBpedia EF and standalone. To generate the new RML mapping
rules, the original custom DBpedia mapping rules are loaded by the DBpedia
EF. Once loaded, the mapping rules are represented in the DBpedia EF data
structures and based on these, RML mapping rules are automatically generated.
Each template is translated into RML statements and are dumped to a file.

The RML building blocks are Triples Maps (Listing [2} line [1)) which define
how RDF triples are generated. A Triples Map consists of three main parts: the
Logical Source, the Subject Map and zero or more Predicate-Object Maps. The
Subject Map (line [4]) defines how unique identifiers (URIs) are generated for the
mapped resources and is used as the subject of all RDF triples generated from
this Triples Map. A Predicate-Object Map (line [2)) consists of Predicate Maps,
which define the rule that generates the triple’s predicate (line [2)) and Object
Maps (line @ or Referencing Object Maps, which define how the triple’s object is
generated. The Subject Map, the Predicate Map and the Object Map are Term
Maps, namely rules that generate an RDF term (an IRI, a blank node or a literal).

The Function Ontology (Fno) [3,/4] allows to declare and describe functions
uniformly, unambiguously, and independently of their implementation technology.
A function (fno:Function, Listing line is an activity which has input parame-
ters (line7 output (line[12)), and implements certain algorithm(s). A parameter
is the description of a function’s input value. An output is the description of its
output value. An ezecution (fno:Execution, line assigns values to the func-
tion’s parameters for a certain execution. For instance, dbf :extractEntity (line 8]
is a function extracted from DBpedia EF and generates a DBpedia IRI (line

17 https://github.com/dbpedia/extraction-framework/tree/rml/server/src/main/scala/org/
dbpedia/extraction/server/resources/rml

*® https://github.com/RMLio/RML-Model

https://github.com/dbpedia/extraction-framework/tree/rml/server/src/main/scala/org/dbpedia/extraction/server/resources/rml
https://github.com/dbpedia/extraction-framework/tree/rml/server/src/main/scala/org/dbpedia/extraction/server/resources/rml
https://github.com/RMLio/RML-Model

10 Wouter Maroy et al.

for a given Wikipedia title (line which is passed as parameter. An Ezxecu-
tion (line[14)) can be instantiated to bind a value to the parameter. The result is
then bound to that Ezecution via the dbf:entity property (line .

Addressed challenges While the original DBpedia mapping templates mainly
build on top of a core template, different templates emerged to cover specific
cases, such as templates for geocoordinates and date intervals. Therefore, we had
to make sure that each extension and each edge case is covered and RML mapping
rules are automatically generated. Nevertheless, a few cases were deliberately
excluded because they were not used or they were introduced only for very rare
or specific cases; others were omitted because they did not produce sustainable
IRIS (see Section for details). For the latter, the community still needs to agree
on a more sustainable modeling. Moreover, we had to interpret each parameter’s
underlying functionality and to describe it declaratively. Last, the mapping
rules and data transformations which were embedded in the DBpedia EF should
also be declaratively described and this required to manually define additional
RML mapping rules. Refining and extending the mapping rules required several
iterations before we reach to a version that generates the same RDF triples as
the current DBpedia EF. Moreover, even though it is convenient that certain RDF
statements are generated without the community being involved, the complete
lack of control over what is generated or how the data values are transformed, it
is often the cause for deteriorating DBpedia dataset quality [18/19]. Then again,
declaratively defining everything causes an overhead when editing the mapping
rules. Nevertheless, it is not expected that the DBpedia community will directly
edit the mapping rules, as a corresponding interface is foreseen (GSOCZONE).

4.2 Transformations decoupling

The custom DBpedia mapping rules allow the DBpedia community to partially
define how Linked Data is generated from Wikipedia (schema transformations),
without allowing though to customize how the extracted data values can be
transformed (data transformations) to form the desired Linked Data. The data
transformations are hard-coded in DBpedia EF and restricted to what is imple-
mented. To this end, after formally describing all DBpedia mapping rules and
transformations, we decoupled their implementation from the DBpedia EF.

All template functionalities were extracted and gathered into an independent
module which can be found at https://github.com/Fn0Oio/dbpedia-parsing-
functions-scala/. The FnO Processor is integrated as an independent module
in the RMLMapper. It uses the DBpedia data transformation declarations in Fno
to retrieve and execute the corresponding implementation each time.

19 https://summerofcode.withgoogle.com/projects/#6205485112885248

https://github.com/FnOio/dbpedia-parsing-functions-scala/
https://github.com/FnOio/dbpedia-parsing-functions-scala/
https://summerofcode.withgoogle.com/projects/#6205485112885248

Sustainable Linked Data Generation: The Case of DBpedia 11

A function might disclose the functionality of a certain mapping template,
e.g., the Property Mapping Templatﬂ becames Simple Property Functz’or@
Moreover, other functions were isolated from the DBpedia EF which performed
data transformations without a mapping template being involved. There were
three major cases: (i) the extract-entity functionlﬂ which takes a value of an
infobox and creates a DBpedia IRI from it. For instance, it takes ‘Melinda gates’
and returns <http://dbpedia.org/Melinda_Gates>; (ii) the dates function which
takes a date and generates a valid XsD date; and (iii) the string function which
removes the wikitext syntax and returns the actual data value. All of these
functions my be reused beyond the DBpedia EF scope.

Besides data transformations, there were mapping rules which were embedded
in the DBpedia EF and they generated automatically RDF triples, without having
corresponding mapping rules, such as the datatype annotations, i.e., http://
www.w3.org/2001/XMLSchema#double, as well as the custom DBpedia datatypes,
e.g., https://dbpedia.org/ontology/PopulatedPlace/areaTotall

Addressed challenges It was challenging to identify each single transformation
that the current DBpedia EF has for transformations, as they were spread all over
the implementation. The mapping rules only provide a very abstract and high
level idea (e.g., dates or coordinates). Moreover, extracting those transformations
and gathering them as an independent module for reuse beyond the scope of
DBpedia required thorough analysis of the DBpedia EF implementation. The
heuristics of these functions are optimized for a large number of cases and their
reuse would contribute on improving the quality of datasets beyond DBpedia.

4.3 Mapping rules execution

The generation procedure of DBpedia EF is data-driven. Namely, the Linked Data
generation is driven by the data sources and an extract of data is considered
each time to perform the applicable mapping rules; in contrast to mapping-driven
where the mapping rules request for the applicable data.

To make sure that the performance remains good, the mapping rules are
pre-loaded. This offers faster lookups among the mapping rules, compared to
re-loading them every time from the hard-disk. The RML mapping rules are
executed by triggering the RMLExtractor. In the beginning of each generation
process, the RML—MapDocHandler@ loads all RML mapping rules which are
considered for generating DBpedia in memory. Once all RML mapping templates
are loaded, the DBpedia dataset generation is initiated. The data is extracted
from all Wikipedia pages and the Extraction Manager forwards the incoming AST

20 https://github.com/dbpedia/extraction-framework/blob/0496309a0e142b27d940e9d8baa26446bldadccb/

~core/src/main/scala/org/dbpedia/extraction/mappings/SimplePropertyMapping.scala

2t https://github.com/Fn0io/dbpedia-parsing-functions-scala/blob/development/src/main/scala/

~ functions/implementations/SimplePropertyFunction.scala

24 https://github.com/Fn0io/dbpedia-parsing-functions-scala/blob/development/src/main/scala/
functions/implementations/core/ExtractEntityFunction.scala

=3 https://github.com/RMLio/RML-MapDocHandler

http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#double
https://dbpedia.org/ontology/PopulatedPlace/areaTotal
https://github.com/dbpedia/extraction-framework/blob/0496309a0e142b27d940e9d8baa25446b1da4ccb/core/src/main/scala/org/dbpedia/extraction/mappings/SimplePropertyMapping.scala
https://github.com/dbpedia/extraction-framework/blob/0496309a0e142b27d940e9d8baa25446b1da4ccb/core/src/main/scala/org/dbpedia/extraction/mappings/SimplePropertyMapping.scala
https://github.com/FnOio/dbpedia-parsing-functions-scala/blob/development/src/main/scala/functions/implementations/SimplePropertyFunction.scala
https://github.com/FnOio/dbpedia-parsing-functions-scala/blob/development/src/main/scala/functions/implementations/SimplePropertyFunction.scala
https://github.com/FnOio/dbpedia-parsing-functions-scala/blob/development/src/main/scala/functions/implementations/core/ExtractEntityFunction.scala
https://github.com/FnOio/dbpedia-parsing-functions-scala/blob/development/src/main/scala/functions/implementations/core/ExtractEntityFunction.scala
https://github.com/RMLio/RML-MapDocHandler

12 Wouter Maroy et al.

to all configured extractors, including the RMLExtractor. The RMLExtractor runs
over the data to identify the infobox templates which are included in a certain
Wiki page. When an infobox template is found, the corresponding RML mapping
rules are identified and once all relevant ones are gathered, the RMLMapper is
triggered with the AST and mapping rules as input. For instance, when the
RMLExtractor finds an infobox, e.g., Infobox_person, the RMLExtractor will load
the corresponding RML mapping rules, e.g., Mapping_en:Infobox_person.rml.ttl.
The infobox associated with each set of RML mapping rules are provided to the
RMLMapper which processes these inputs and returns RDF triples. Eventually,
the RMLExtractor forwards all generated RDF triples to an output sink.

Addressed challenges Developing an RMLExtractor that performs large ex-
tractions from a Wikipedia dataset within an acceptable time frame had some
complexities. The RMLMapper was not designed for being used as an external
module, adaptations had to be made to make the integration with DBpedia EF
possible. Additionally, the RMLMapper does not process datasets in parallel, since
the DBpedia EF does exploit parallel processing. These obstacles have been ad-
dressed, but there is still room for more improvement. Besides performance, there
were issues with processing steps (e.g., storing triples in specific datasets) during
mapping rules executions. These processing steps were initially executed by the
DBpedia EF but were adapted because, with the new approach, the RMLMapper
handles the mapping execution, instead of the DBpedia EF.

4.4 New DBpedia architecture

Source Text . Wiki parser AST RDF Sink

Mappings RML
Custom Extractor _ Extractor
DBpedia RML mapping Tttt
. ! RML V] ========x
mapping Template Processor —: Processor : :Dapedla Parsing!
1

, Functions :

Fixed Trant tl

Mapping rules g N Transformation rules
rules

Fixed mapping rules

AST RDF AST

RDF

custom generic

Fig. 1: To the left the Mappings Extractor, to the right the new RML Extractor:

The DBpedia EF allows adding different extractors to fulfill different Linked
Data generation processes. Taking advantage of its modularity, a new extractor
was built, called the RMLExtractor. The DBpedia EF with the RMLExtractor can be
found at https://github.com/dbpedia/extraction-framework/tree/rml.

https://github.com/dbpedia/extraction-framework/tree/rml

Sustainable Linked Data Generation: The Case of DBpedia 13

The RMLExtractor, as every other extractor, is available to be used when a
user triggers DBpedia’s generation. It is independent of other extractors and runs
over each AST to generate RDF triples for the infobox values that are contained
in the AST based on the loaded RML mapping templates. The RMLExtractor
wraps up the RMLMapper which is used as a library (Figure . Each infobox
together with the associated mapping template are given as input to RMLMapper,
to generate the corresponding RDF triples. The RMLMapper depends on the
Function Processor (Fno Processor)lﬂ which, depends on the DBpedia Parsing
Functionﬂ The Fno Processor parses the Fno statements 3] which are included
in the DBpedia mapping rules. Afterwards, it fetches the functions and executes
them, using values derived from each extraction as parameters. The DBpedia
parsing Functions were extracted from the DBpedia data parsers and were put in
an independent module which can be reused beyond the DBpedia EF scope.

5 Evaluation

The new approach was compared with the existing DBpedia EF with respect to

coverage (Section [p.1)), performance (Section [5.2), and flexibility (Section [5.3).

5.1 Coverage

We generated RDF triples for 16,244,162 pages of the English Wikipedia (version
20170501@, both with the current Mapping Extractor and new RMLExtractor.
The former extraction yielded 62,474,123 RDF triples in total, the latter 52,887,156.
In terms of entities, 4,747,597 are extracted with the current, whereas 4,683,709
entities are extracted with RMLExtractor, offering 98% coverage.

The subset of RDF triples which overlap was verified to be the same but the
RDF datasets differ in size. Even though the mapping rules of all languages were
translated in RML statements, certain mapping rules were deliberately omitted, due
to the following reasons: (i) unsustainable URIs; the DBpedia EF itself generates
intermediate entities whose URI is generated relying on an iterator, e.g., http://
dbpedia.org/resource/Po_(river) __mouthPosition__1. Assigning URIS this
way does not generate sustainable identifiers. Therefore, those mapping rules
were temporarily omitted, until the DBpedia community decides — now that this
can be resolved outside of the DBpedia EF— on how they should be modeled in a
more sustainable fashion. (ii) custom dbpedia datatypes; the DBpedia EF generates
additional RDF triples with custom DBpedia datatypes for units of properties.
We omitted them from the RML mapping rules because there is still discussion on
whether these should be included in the dataset or not. (iii) RDF triples added
by the DBpedia EF; These are RDF triples generated from a value of an infobox,
if the article’s text contains a URI with this value. Currently the RMLMapper
does not support referencing the articles text, thus generating those RDF triples

24 https://github.com/Fn0io/function-processor-java
25

26

https://github.com/Fn0io/dbpedia-parsing-functions-fno
https://dumps.wikimedia.org/enwiki/20170501/enwiki-20170501-pages-articles.xml.bz2

http://dbpedia.org/resource/Po_(river)__mouthPosition__1
http://dbpedia.org/resource/Po_(river)__mouthPosition__1
https://github.com/FnOio/function-processor-java
https://github.com/FnOio/dbpedia-parsing-functions-fno
https://dumps.wikimedia.org/enwiki/20170501/enwiki-20170501-pages-articles.xml.bz2

14 Wouter Maroy et al.

—— RML Extractor ~—— Mappings Extractor

300

Execution time (minutes)
o
8

100

0 4 8 12 16

Wiki pages (millions)

Fig. 2: Performance comparison: Mappings Extractor vs RML Extractor

is temporarily omitted, until the RMLMapper is configured to work with data
from Wikipedia beyond infoboxes.

5.2 Performance

The prototype RMLExtractor generates the DBpedia dataset on reasonable time.
Currently, performance is put aside for more sustainable mapping rules and data
transformations, as achieving sustainability is much more important than speed
which may be optimized in the future. The RMLExtractor is still on average 0.46ms
slower per page than the original framework. Namely the RMLExtractor requires
1.31ms/page, compared to the original DBpedia EF which requires 0.85ms/page.
On a larger scale the RMLExtractor generates Linked Data from 16,244,162 pages
in 5 hours and 56 minutes, compared to the current DBpedia EF which requires 3
hours and 50 minutes (35% slower than the DBpedia EF, Figure [2).

5.3 Flexibility

The mapping rules, being RDF triples, can be (automatically) updated and other
semantic annotations can be applied or other datasets can be generated from
Wikipedia. For instance, relying on the DBpedia mapping rules and the alignment
of DBpedia with schema.orﬂ we translated the RML mapping rules for DBpedia,
but any other vocabulary may be used too. This way, we can generate a DBpedia
dataset with schema.org annotations, instead of only using the DBpedia ontology.
This was accomplished by generating a new RML mapping file with schema.org
annotations, based on the mapping rules with the DBpedia ontology annotations.
The extracted data values are transformed to a clean format by relying on
the same Fno functions which are specified in the RML mapping rules. In our

27 http://schema.org

http://schema.org

Sustainable Linked Data Generation: The Case of DBpedia 15

exemplary case, we based on Infobox_person mapping template that generates
RDF triples for entities of person type. An extraction was done over 16,244,162
pages, 191,288 Infobox_ persons were found. 1,026,143 RDF triples were generated.
Indicatively, 179,037 RDF triples were generated with schema:name property,
54,664 with schema:jobTitle, 23,751 with schema.org:nationality, 144,907 with
schema.org:birthPlace, and 139,488 with schema.org:birthDate. The dataset is
available at http://mappings.dbpedia.org/person_schema.dataset.ttl.bz2.

6 Conclusions and Future Work

In this paper, we presented a generic and semantics-driven approach to replace the
Mapping Extractor in DBpedia EF which contributes in the adoption of Semantic
Web technologies and Linked Data principles. Thereby, we address several major
challenges that currently exist in the DBpedia generation process. We show that
our solution can cover same Linked Data output with a more sustainable and
reusable process, without prohibitively increasing the execution time.

The resulting new DBpedia EF is easier to maintain, as changes are limited to
declarative mapping and transformation rules. We moved from a tightly coupled
architecture to a sustainable Linked Data generation approach, as the code of the
extractor does not require modifications anymore to improve the Linked Data
generation. This better prepares DBpedia for changes, and thereby also facilitates
quality improvements to the output. Indeed, many errors and inconsistencies in
DBpedia are either due to the old DBpedia EF |[19]—which our solution succeeds—
and due to the DBpedia ontology [13]—which can more easily be adjusted |13 or
replaced thanks to our solution. More, we can apply validation on the mappings
themselves, catching potential inconsistencies even before they are generated [6].

Because of the above reasons, the DBpedia community will apply our solution
as the default setup for generating DBpedia in the future. The source code is
already available on the official DBpedia GitHub repository in a separate branch.

Importantly, and in contrast to the old DBpedia EF, the solution we propose
is not specific to DBpedia and can therefore be applied to other use cases as well.
Any part of the Linked Data generation can be reused to generate other datasets,
such as the mapping and transformation rules; or the transformation functions
that were written as small, reusable units. As this functionality becomes shared
with other generation workflows, any improvement to them will directly lead to
improvements in others. Sustainability thereby spreads beyond just DBpedia.

This work gives rise to several opportunities for future work. A user interface
is planned and will enable people to collaboratively create, update, and man-
age DBpedia generation, while assessing the impact of new ontologies becomes
straightforward. By improving the DBpedia generation sustainability, we not only
improve DBpedia today, but enable continuous advancements in the future.

References

1. S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A. Polleres. Mapping between
RDF and XML with XSPARQL. Journal on Data Semantics, 1(3):147-185, 2012.

http://mappings.dbpedia.org/person_schema.dataset.ttl.bz2

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Wouter Maroy et al.

S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF Mapping Language.
Working group recommendation, W3C, sep 2012. http://www.w3.org/TR/r2rml/.
B. De Meester and A. Dimou. The Function Ontology. Unofficial Draft, 2016.
https://w3id.org/function/spec.

B. De Meester, A. Dimou, R. Verborgh, E. Mannens, and R. Van de Walle. An
Ontology to Semantically Declare and Describe Functions. In The Semantic Web:
ESWC 2016 Satellite Events, volume 9989 of LNCS, pages 46-49. Springer, 2016.
B. De Meester, W. Maroy, A. Dimou, R. Verborgh, and E. Mannens. Declarative
data transformations for Linked Data generation: the case of DBpedia. In The
Semantic Web — Latest Advances and New Domains (ESWC 2017). Springer, 2017.
A. Dimou, D. Kontokostas, M. Freudenberg, R. Verborgh, J. Lehmann, E. Mannens,
S. Hellmann, and R. Van de Walle. Assessing and Refining Mappings to RDF to
Improve Dataset Quality. In The Semantic Web — ISWC' 2015, volume 9367 of
LNCS, pages 133-149. Springer, 2015.

A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de
Walle. RML: A Generic Language for Integrated rdf Mappings of Heterogeneous
Data. In Proceedings of the 7th Workshop on Linked Data on the Web, volume 1184
of CEUR Workshop Proceedings, 2014.

P. Heyvaert. Ontology-Based Data Access Mapping Generation using Data, Schema,
Query, and Mapping Knowledge. In ESWC-DC' 2017 Doctoral Consortium, 2017.
P. Heyvaert, A. Dimou, A.-L. Herregodts, R. Verborgh, D. Schuurman, E. Mannens,
and R. Van de Walle. RMLEditor: A Graph-based Mapping Editor for Linked Data
Mappings. In The Semantic Web — Latest Advances and New Domains (ESWC
2016), volume 9678 of LNCS, pages 709-723. Springer, 2016.

D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen,
and A. Zaveri. Test-driven Evaluation of Linked Data Quality. In Proceedings of
the 23rd International Conference on World Wide Web, pages 747-758. ACM, 2014.
M. Lanthaler. Hydra Core Vocabulary. Unofficial Draft, June 2014. http://wuw,
hydra-cg.com/spec/latest/core/.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia — A
large-scale, multilingual knowledge base extracted from Wikipedia. Sem Web, 2015.
H. Paulheim. Data-driven Joint Debugging of the DBpedia Mappings and Ontology.
In The Semantic Web — Latest Advances and New Domains (ESWC 2017), volume
10250 of LNCS. Springer, 2017.

H. Paulheim and A. Gangemi. Serving DBpedia with DOLCE — More than Just
Adding a Cherry on Top, pages 180-196. Springer International Publishing, 2015.
B. Regalia, K. Janowicz, and S. Gao. VOLT: A Provenance-Producing, Transparent
SPARQL Prozy for the On-Demand Computation of Linked Data and its Application
to Spatiotemporally Dependent Data, pages 523-538. Springer, 2016.

B. Regalia, K. Janowicz, and S. Gao. VOLT: A Provenance-Producing, Trans-
parent SPARQL Proxy for the On-Demand Computation of Linked Data and its
Application to Spatiotemporally Dependent Data. In The Semantic Web — Latest
Advances and New Domains (ESWC 2016), pages 523-538. Springer, 2016.

M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of the Linked Data Best
Practices in Different Topical Domains, pages 245-260. Springer, 2014.

D. Wienand and H. Paulheim. Detecting Incorrect Numerical Data in DBpedia,
pages 504-518. Springer International Publishing, 2014.

A. Zaveri, D. Kontokostas, M. A. Sherif, L. Bihmann, M. Morsey, S. Auer, and
J. Lehmann. User-driven Quality Evaluation of DBpedia. In Proceedings of the 9th
International Conference on Semantic Systems, pages 97-104. ACM, 2013.

http://www.w3.org/TR/r2rml/
https://w3id.org/function/spec
http://www.hydra-cg.com/spec/latest/core/
http://www.hydra-cg.com/spec/latest/core/

	Sustainable Linked Data Generation: The Case of DBpedia
	Introduction
	Background and Related Work
	State of the Art
	DBpedia Extraction Framework
	Extractors
	Mapping-Based Infobox Extractor
	DBpedia mapping language

	Limitations and Requirements
	Limitations
	Requirements

	Sustainable DBpedia EF with RML
	Mapping rules translation
	Addressed challenges

	Transformations decoupling
	Addressed challenges

	Mapping rules execution
	Addressed challenges

	New DBpedia architecture

	Evaluation
	Coverage
	Performance
	Flexibility

	Conclusions and Future Work

