
12th International Society for Music Information Retrieval Conference (ISMIR 2011)

THE MUSIC ENCODING INITIATIVE AS A
DOCUMENT-ENCODING FRAMEWORK

Andrew Hankinson1 Perry Roland2 Ichiro Fujinaga1
1CIRMMT / Schulich School of Music, McGill University

2University of Virginia
andrew.hankinson@mail.mcgill.ca, pdr4h@eservices.virginia.edu,

ich@music.mcgill.ca

ABSTRACT

Recent changes in the Music Encoding Initiative (MEI)
have transformed it into an extensible platform from which
new notation encoding schemes can be produced. This
paper introduces MEI as a document-encoding framework,
and illustrates how it can be extended to encode new types
of notation, eliminating the need for creating specialized
and potentially incompatible notation encoding standards.

1. INTRODUCTION
The Music Encoding Initiative (MEI)1 is a community-
driven effort to define guidelines for encoding musical
documents in a machine-readable structure. The MEI
closely mirrors work done by text scholars in the Text
Encoding Initiative (TEI)2 and while the two encoding
initiatives are not formally related, they share many
common characteristics and development practices.

MEI, like TEI, is an umbrella term to simultaneously
describe an organization, a research community, and a
markup language [1]. It brings together specialists from
various music research communities, including
technologists, librarians, historians, and theorists in a
common effort to discuss and define best practices for
representing a broad range of musical documents and
structures. The results of these discussions are then
formalized into the MEI schema, a core set of rules for
recording physical and intellectual characteristics of music
notation documents. This schema is developed and
maintained by the MEI Technical Group.

The latest version of the MEI schema is scheduled for
release in Fall 2011. The most ambitious feature of the
2011 release is the transformation of the MEI schema from
a single, static XML schema language to an extensible and
customizable music document-encoding framework. This
framework approach gives individuals a platform on which
to build custom schemas for encoding new types of music
documents by adding features that support the unique
aspects of these documents, while leveraging existing rules
and guidelines in the MEI schema. This eliminates the

1 http://www.music-encoding.org
2 http://www.tei-c.org 2 http://www.tei-c.org

duplication of effort that comes with building entire
encoding schemes from the ground up.

In this paper we introduce the new tools and techniques
available in MEI 2011. We start with a look at the current
state of music document encoding techniques. Then, we
discuss the theory and practice behind the customization
techniques developed by the TEI community and how their
application to MEI allows the development of new
extensions that leverage the existing music document-
encoding platform developed by the MEI community. We
also introduce a new initiative for sharing these
customizations, the MEI Incubator. Following this, we
present a sample customization to illustrate how MEI can
be extended to more accurately capture new and unique
music notation sources. We then introduce two new
software libraries written to allow application developers to
add support for MEI-encoded notation. Finally, we end
with a discussion on how this will transform the landscape
for music notation encoding.

2. MUSIC NOTATION ENCODING
There have been many attempts to create structural
representations of music notation in machine-readable
formats [2]. Some formats, like **kern or MuseData, use
custom ASCII-based structures that are then parsed into
machine-manipulable representations of music notation.
Others, like NIFF or MIDI, use binary file formats. In
recent years, XML has been the dominant platform for
structural music encoding, employed by initiatives like
MusicXML3 and IEEE15994.

The wide variety of encoding formats and approaches to
music representation may be attributed to the complexity of
music notation itself. Music notation often conveys
meaning in multiple dimensions. Variations in placement
on the horizontal or vertical axes manifest different
dimensions in meaning, along with size, shape, colour, and
spacing. To these, however, are added cultural and
temporal dimensions that result in different types of music
notation expressing different meanings through visually
similar notation, depending on where and when that
notation system was in use. This complexity prohibits the

3 http://www.recordare.com/musicxml
4 http://www.mx.dico.unimi.it/index.php

293

Oral Session 3: Symbolic Music, OMR

construction of a single, unified set of rules and theories
about how music notation operates without encountering
contradictions and fundamental incompatibilities between
notation systems. Consequently, formulating a single,
unified notation encoding scheme for representing the full
breadth of music notation in a digital format becomes very
difficult.

As a result, representing music notation in a computer-
manipulable format generally takes two approaches. The
first approach is to identify the greatest amount of
commonality among as many different types of music as
possible, and target a general encoding scheme for all of
them. The consequence is a widely accepted encoding
scheme, which serves as a system that is “good enough” to
represent common features among most musical
documents, but extremely poor at representing the unique
features that exist in every musical document. For example,
the MIDI system of encoding pitch and timing as a stream
of events functions very well if the only musical elements
of interest are discrete volume, timing, and pitch values. It
is, however, notoriously poor at representing features like
phrase markings or distinctions between enharmonic pitch
values.

The second general approach is to build an encoding
system that takes into account all the subtle variation and
nuance that makes a particular form of music notation
different from all others. With this approach, highly
specialized methods for encoding the unique features of a
given notation system may be designed and customized for
a given set of users. The disadvantage, however, is that
these systems are largely developed independent of each
other, and may exhibit entirely incompatible ways of
approaching notation encoding. This approach can be seen
in many current encoding formats, where the choice to
support the features of common music notation (CMN) in
MusicXML, for example, creates a fundamental
incompatibility with accurately capturing nuance in
mensural notation. This is then addressed by developing
entirely new encoding formats, such as the Computerized
Mensural Music Editing (CMME) format 5 , specifically
built to handle the unique features of mensural music but
ultimately incompatible with other formats without the
creation of lossy translators. This creates a highly
fragmented music notation ecosystem, where software
developers must choose which types of notation they can
support in their applications and which ones are specifically
out of scope.

Earlier versions of the MEI schema focused on the
second approach, initially built to represent CMN with all
other systems declared out of scope. This led to a number
of criticisms about its ability to accurately capture notation
nuance; for example, Bradley and Vetch commented:
“Although the scholarly orientation of the MEI markup
scheme seemed extremely promising…considerable further

5 http://www.cmme.org

work would be needed to extend it so that it could
appropriately express these very subtle notational
differences” [3].

Later revisions of the MEI schema added support for
different types of music notation, but still it was criticized
for being unable to capture particular nuances in highly
specialized repertoires. A pointed criticism of the
representation of neumed notation in MEI was given in [4],
which makes entirely valid points about the ability of a
generalized notation encoding system to capture highly
specific details about a particular notation type.

There are inevitable commonalities between different
systems of music notation, yet there are simply no universal
commonalities across all systems of music notation. This
suggests a possible third approach to the creation of music
notation encoding schemes that has yet to be fully explored.
This third approach exemplifies what we will call the
“framework” approach, where parties interested in
supporting new types of notation can leverage existing
description methods for common aspects of music notation
documents, yet are able to extend this to cover unique
aspects of a given repertoire. This allows developers to
focus specifically on the features that make that music
notation system unique, while still leveraging a large body
of existing research and development in common encoding
tasks.

We call this the framework approach because it mirrors
the use of software development frameworks, like Apple’s
Cocoa framework6. A framework provides a large number
of “pre-packaged” methods designed to alleviate the burden
of mundane and repetitive tasks, and allows application
developers to focus on the features that make their
application unique. It significantly reduces duplication of
effort, and provides a platform that can easily be bug tested
and re-used by many other people.

The MEI 2011 Schema marks the first release where
extension and customization can be very easily applied to
the core set of elements to produce custom encoding
systems that extend support for new types of musical
documents. This has been accomplished by adopting the
tools and development processes pioneered by the TEI
community and will be discussed further in the next
section.

3. TEI AND MEI: TOOLS AND
CUSTOMIZATION

The TEI was established to develop and maintain a set of
standard practices and guidelines for encoding texts for the
humanities. The scope of this project is extensive, but even
with a comprehensive set of guidelines in place, there is a
recognition that the guidelines developed by the core
community do not cover all possible current or future use
cases or applications for the TEI.

6 http://developer.apple.com/technologies/mac/cocoa.html

294

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

To address this, the TEI community has developed a
process where custom TEI schemas may be generated
through a formalized extension process. There is no single
TEI schema or TEI standard [5]. The full set of TEI
elements is arranged in 21 modules according to their
utility in encoding certain features of a text (e.g., names and
dates, drama, transcriptions of speech, and others). A
customization definition file is then applied to the full set of
elements specifying which features from these modules
should be present in the output schema, and a custom
schema for encoding a particular set of sources is generated
by running the source and customization files through a
processor.

The most powerful feature of this customization process
is that new elements, attributes, or content models may be
included in the customization definition, allowing the
addition of new elements into the TEI that can address the
differences presented by new types of documents. What
this customization approach represents is the transition
from a single, monolithic encoding schema to an extensible

Table 1: MEI core modules.

document-encoding framework. Validation schemas for
ensuring conformance with TEI guidelines can be
dynamically generated from a central source and shared
among other community members interested in encoding
similar document types.

3.1 MEI as an encoding framework
The MEI core is divided into 23 modules, each used to
encapsulate unique characteristics of musical source
encoding (Table 1). There are a total of 259 elements
defined in the 2011 version of the MEI core, up from 238 in
the 2010 release. The MEI core, like the TEI core, is
expressed in an XML meta-schema language, the “One
Document Does-it-all” (ODD) format. The ODD meta-
schema language provides developers with the facility for
easily capturing encoding rules, grouping similar
functionality into re-useable classes, and providing a central
place for documentation, following a literate programming
style. We use the term “meta-schema,” since it does not
actually provide XML validation on its own, but provides
MEI developers with the ability to express definitions of
the MEI elements, the rules of how these elements may or
may not be used, and their accompanying documentation.
The Roma processor7 can then be used to create validation
schemas expressed in three popular schema languages:
RelaxNG (RNG), W3C Schema (XSD), and Document
Type Definition (DTD). (Of these three, RelaxNG is the
preferred schema validation language for MEI). To
generate these custom validation schemas, two ODD-
encoded files are needed: the MEI core, containing all
possible elements and maintained by the MEI Technical
Group; and a customization file containing directives that
specify the modules that should be activated in the resulting
custom MEI schema. A complete set of HTML
documentation may also be produced for a specific
customization. This documentation includes usage
guidelines for elements and their accompanying attributes,
as well as automatically generated information about where
a given element may or may not appear in a source tree.
This process is illustrated in Figure 1.

Figure 1: The MEI customization process.

The most powerful feature of this system is that the ODD
modification file allows for the definition of new elements
and the re-definition or removal of core elements in the
resulting schema. This functionality gives schema
developers the ability to define extensions to MEI,

7 http://www.tei-c.org/Guidelines/Customization/use_roma.xml

Module Name Module content
 MEI MEI infrastructure
 Shared Shared components
 Header Common metadata
 CMN Common music notation
 Mensural Mensural music notation
 Neumes Neume notation
 Analysis Analysis and interpretation
 CMNOrnaments CMN ornamentation
 Corpus Metadata for music corpora
 Critapp Critical apparatus
 Edittrans Scholarly editions and interpretations
 Facsimile Facsimile documents
 Figtable Figures and tables
 Harmony Harmonic analysis
 Linkalign Temporal linking and alignment
 Lyrics Lyrics
 MIDI MIDI-like structures
 Namesdates Names and dates
 Performance Recorded performances
 Ptrref Pointers and references
 Tablature Basic tablature
 Text Narrative textual content
 Usersymbols Graphics, shapes and symbols

295

Oral Session 3: Symbolic Music, OMR

customizing the core set of elements to accurately capture
nuance and unique features of a given repertoire or set of
documents. These customizations may be targeted at
specifically addressing the needs of these documents,
building on and extending the base set of MEI elements.

The customization functionality of MEI challenges the
idea of building a common encoding system. The infinite
and deep customization functionality available in the
framework approach allows the development of
incompatible “dialects” of MEI. Does this actually
represent an advance in music document encoding over a
more fragmented encoding landscape with separate
encoding initiatives focused on specific areas? While the
creation of incompatible document-encoding systems is a
possibility, we believe that there are specific advantages to
the MEI and TEI approach, based on three assumptions
about the nature of document-encoding languages and their
development.

The first assumption is that the developers of custom
schemas want to address a perceived need for encoding a
given musical document type, and typically do not want to
reinvent entire document structures. Without a formal
customization and extension process, however, developers
of music encoding schemas have needed to construct
entirely new encoding platforms from the ground up.

The second assumption is that there are fewer encoding
system developers than there are potential users of a given
encoding system. A single developer who needs to develop
a method of accurately capturing a given document type—
German lute tablature, for example—will take the time to
learn the customization process, while most encoding
projects will be largely satisfied by the capabilities in the
MEI core or pre-made and distributed customizations. Once
a customization has been completed, that work can then be
made available for others to use and extend, reducing
further duplication of effort.

Finally, the third assumption is that developing
compatible encoding formats is a social and political
process, as well as a technical one [6]. The TEI has
addressed this by forming Special Interest Groups (SIGs) in
which groups of individuals and organizations develop and
propose extensions to the TEI core that deal with encoding
specific types of documents, like correspondence and
manuscripts. The fragmentation of an encoding language
into incompatible dialects is not a technical problem, but
one that can be addressed through discussion among
stakeholders. The advantage that the customization
approach brings to the process, however, is that it provides
a common platform on which to base development and
discussions. The customization tools allow a formalization
of these discussions into a well-defined set of rules and
guidelines.

These assumptions have yet to be extensively scrutinized
and only time and further discussion will tell if they
accurately reflect reality. In the next section we will discuss
a new MEI community initiative to allow developers to

share their MEI extensions among other interested parties
in an open development process.

3.2 The MEI Incubator
The MEI Incubator was created to provide community
members with a common space for developing and sharing
their MEI extension customizations. Incubator projects are
proposed by a Special Interest Group (SIG) from the
community to address specific needs that members of the
SIG feel are not adequately addressed in the MEI core. The
Incubator website8 hosts a common code repository and
documentation wiki.

As Incubator projects mature, the SIG may then propose
that the work of the SIG be incorporated into the MEI core
as a new module, or an update to an existing module. An
editorial committee will review the proposed extension for
its suitability and ensure that the proposal does not
duplicate existing functionality or create incompatibilities
with existing MEI core modules.

The complexity of document encoding and the needs of
communities to accurately describe sources may ultimately
result in modifications that are fundamentally incompatible
with the MEI core. While this means that it is unlikely that
this extension will make it into the MEI core, the work
done by the SIG can still be made available to others,
making it possible to leverage a common platform to share
existing work in specialized document encoding.

Incubator projects are designed to be a means through
which community members can participate in MEI
development and propose new means and methods for
musical document encoding. In the next section, we will
demonstrate this process by examining a current Incubator
project and illustrate how ODD modifications may be used
to extend the MEI core.

Figure 2: An example of the Solesmes neume notation
showing a four-line staff, neumes, and divisions (vertical
lines).

3.3 Sample Extension: The Solesmes Module
The monks at Solesmes, France, were responsible for
creating a large number of liturgical service books for the
Catholic Church in the late 19th and early 20th centuries.
These books included missals, graduals and, perhaps most
famously, the Liber Usualis [7], a book containing most of
the chants for the daily offices and masses of the Catholic
Church. These books were notated using a revival of 12th-
century Notre Dame notation, featuring square note groups
(neumes) on a four-line staff (Figure 2).

8 http://code.google.com/p/mei-incubator

296

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

There are a number of features of this particular type of
notation that make it different from other types of earlier
notation. Although MEI has included functionality for
encoding neume notation since 2007, it was ultimately
found to be insufficient for accurately capturing Solesmes-
style neume notation for a project dedicated to
automatically transcribing the contents of these books.
Certain features, like divisions (similar, but not equivalent
to breath marks, graphically represented by a vertical line
across the staff), episema (note stresses) and Solesmes-
specific neume names and forms were not present in the
existing MEI core.

A new Incubator project was proposed to address the
need for an updated method of handling this type of neume
notation. The ODD modification file created for this project
defines four new elements for MEI, as well as their
accompanying attributes. Due to space considerations we
cannot reproduce the entire modification file, but we will
illustrate the process by focusing on the method used to
define the <division> element. We follow the convention
of using angle brackets (<	
 >) to identify XML elements,
and the @ symbol to identify XML attributes.

<elementSpec ident="division"
 module="MEI.solesmes" mode="add">
 <desc>Encodes the presence of a division
 on a staff.</desc>
 <classes>
 <memberOf key="att.common"/>
 <memberOf key="att.facsimile"/>
 <memberOf key="att.solesmes.division" />
 </classes>
</elementSpec>

Figure 3: Declaration of the <division> element in
ODD.

This <elementSpec> definition (Figure 3) creates a new
element, <division>, with the name specified in the
@ident attribute. The @module attribute specifies the MEI
module to which this element belongs, and the @mode
attribute specifies the mode the Roma processor should use
for this element. The @mode attribute may be one of “add,”
for adding a new element, “delete,” for removing an
existing element from the resulting schema, or “replace,”
for re-defining an existing element (the “delete” and
“replace” attribute use are not shown in Figure 3).

The <desc> tags provide the documentation string for
this element. The Roma processor will use this information
to create the HTML documentation for the resulting schema
customization. The <classes> element specifies the classes
this element belongs to. In this case, the <division>
element will automatically inherit the XML attributes
specified in the att.common, att.facsimile, and
att.solesemes.division classes. Of these three classes, two
are defined in the MEI core while the third is declared
elsewhere in the Solesmes ODD file.

The <classSpec> declaration (Figure 4) creates a new
class of attributes, att.solesmes.division. This class is used

to define a new group of attributes that may be used on any
element that is a member of this class; in this case, only the
<division> element is a member of this class, but more
general classes of attributes may be defined that apply to
multiple XML elements (like the att.common class). The
new @form attribute is declared by the <attDef> element.
Additional attributes may be declared by creating more
<attDef> children of the <attList> element. The @usage
attribute on <attDef> declares this attribute to be optional,
meaning that it is acceptable if a <division> element does
not possess a @form attribute. Required attributes may be
specified by setting this to “req.”

Figure 4: Declaration of the att.solesmes.division class to
describe a common attribute group.

The <valList> element defines the possible values that
the @form attribute may have; in this case the only valid
values for the @form attribute are given by the <valItem>
elements. Since the value list here is a closed set, any
values supplied in the @form attribute that is not one of
those specified will not pass validation.

Figure 5: Valid and invalid use of the <division>
element defined in the Solesmes module.

These definitions will result in a schema that allows a
<division> element in an MEI file, something that is not
considered valid in unmodified MEI. Figure 5 llustrates
valid and non-valid examples of this in practice.

The full Solesmes module contains definitions for four
new elements, <division>, <episema>, <neume>, and <nc>
(neume component) and eight new attributes to accompany
these elements. When this customization is processed with
the Roma processor against the 2011 MEI core, a schema is
produced that can be used to validate MEI instances.

<division form=”comma” />
Valid, @form can take comma as a value.
<division />
Valid, @form is optional.
<division form=”bell” />
Invalid, @form must be one of the specified
values.
<division name=”long” />
Invalid, @name is not allowed on this element.

<classSpec ident="att.solesmes.division"
 type="atts" mode="add">
 <desc>Divisions are breath and
 phrasing indicators.</desc>
 <attList>
 <attDef ident="form" usage="opt">
 <desc>Types of divisions.</desc>
 <valList type="closed">
 <valItem ident="comma" />
 <valItem ident="major" />
 <valItem ident="minor" />
 <valItem ident="small" />
 <valItem ident="final" />
 </valList>
 </attDef>
 </attList>
</classSpec>

297

Oral Session 3: Symbolic Music, OMR

4. MEI SOFTWARE LIBRARIES
For software developers looking to integrate MEI into their
applications, we have developed two new software libraries
to support reading and writing MEI files. Libmei is written
in C++, and PyMEI is written in Python. Using object-
oriented programming principles, these software libraries
were designed to reflect the same modular structure as
MEI, and are extensible by others to add support for new
customizations. PyMEI 1.0 was developed as a rapid
prototype for testing and designing a common API, which
was then written in C++ as libmei. PyMEI 2.0, scheduled
for release in Fall 2011, will adopt libmei as the base
platform, unifying the two projects and serving as a
reference implementation for the creation of MEI software
libraries in other languages.

Architecturally, every element in the MEI core is
mirrored in the software libraries by a corresponding
class—the <note> element has a Note class, and so on.
Every element class inherits from a base MeiElement class.
This base class contains methods and attributes common to
all MEI elements, like getting and setting names, values,
child objects, and element attributes. Subclasses that inherit
from this base class gain all of these functions. In the
subclasses, however, are musical methods and attributes
that are specific to the semantic function of that particular
MEI element. For example, a Note class has get and set
methods for pitch-related attributes, while a Measure class
has methods for working with measure numbers.

To extend this software, developers can easily add new
classes to reflect new elements that they have added to an
MEI customization. For example, a developer who wishes
to support the <division> element specified in the
Solesmes module would only need to create a Division
class that inherits from the base MeiElement class, and then
implement any methods that he or she wants to support for
this class. For example, a developer may wish to add
explicit getForm and setForm methods to set the @form
attribute on the <division> element. The libmei and
PyMEI projects are available as open source projects on
GitHub9,10, licensed under the MIT license.

5. CONCLUSION
With the 2011 release of the MEI Schema and the adoption
of tools developed by the TEI project, MEI has moved
beyond a static music document schema to an extensible
document-encoding framework, providing developers with
a formalized method of customizing and extending MEI to
meet specific needs. An extensive set of elements and
guidelines for creating valid MEI documents forms the core
of MEI, but the complexity of music makes it impossible to
anticipate every context in which users may want to use it.

9 http://github.com/ahankinson/pymei
10 http://github.com/ddmal/libmei

To help support and direct these efforts, we have created
a new MEI community initiative, the MEI Incubator. This
initiative will provide community members with a common
space to “grow” their customizations and share them with
other members of the community, reducing duplication of
effort. As Incubator projects mature, they may be proposed
as extensions to the MEI core, subject to editorial review,
and finally adopted into the specification itself.

To support MEI in software applications, we are also
releasing software libraries that assist developers with
providing MEI import and export functionality. Currently
we are targeting two common programming languages,
C++ and Python, but we are also investigating support in
other languages as well.

MEI goes beyond simple notation encoding. It is a
powerful platform for creating, sharing, storing, and
analysing music documents. We are investigating methods
of integrating MEI into optical music recognition platforms,
as well as searching, analysing, and displaying MEI-
encoded document facsimiles in a digital environment.

6. ACKNOWLEDGEMENTS
The authors would like to thank Erin Mayhood for her
support and encouragement, the MEI Technical Group for
their valuable musical and technical insights, and our
colleagues at the Distributed Digital Music Archives and
Libraries Lab. This work was supported by the Social
Sciences and Humanities Research Council of Canada, the
National Endowment for the Humanities, and the Deutsche
Forschungsgemeinschaft (DFG).

7. REFERENCES
[1] Jannidis, F. 2009. TEI in a crystal ball. Lit. & Ling.

Comp. 24 (3): 253–65.
[2] Selfridge-Field, E. 1997. Beyond MIDI: The handbook

of musical codes. Cambridge, MA: MIT Press.
[3] Bradley, J., and P. Vetch. 2007. Supporting annotation

as a scholarly tool: Experiences from the Online
Chopin Variorum Edition. Lit. & Ling. Comp. 22 (2):
225–41.

[4] Barton, L. 2008. KISS considered harmful in
digitization of medieval chant manuscripts. In Proc.
Int. Conf. Automated Solutions for Cross Media
Content and Multi-channel Distribution at Florence,
Italy. 195–203.

[5] Ide, N., and C. Sperberg-McQueen. 1995. The TEI:
History, goals, and future. Comp. and the Humanities
29: 5–15.

[6] Bauman, S., and J. Flanders. 2004. Odd
customizations. In Proc. Extreme Markup Lang..
Montréal, Quebec.

[7] Catholic Church. 1963. The Liber Usualis, with
introduction and rubrics in English. Tournai, Belgium:
Desclée.

298

