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ABSTRACT

This paper proposes an efficient approach for the identifica-
tion of the predominant voice from polyphonic musical au-
dio. The algorithm implements an auditory streaming model
which builds upon tone objects and salient pitches. The
formation of voices is based on the regular update of the
frequency and the magnitude of so called streaming agents,
which aim at salient tones or pitches close to their preferred
frequency range. Streaming agents which succeed to assem-
ble a big magnitude start new voice objects, which in turn
add adequate tones. The algorithm was evaluated as part of a
melody extraction system during the MIREX audio melody
extraction evaluation, where it gained very good results in
the voicing detection and overall accuracy.

1. INTRODUCTION

Melody is defined as a linear succession of tones which is
perceived as a single entity. One important characteristic
of the tone sequence is the smoothness of the melody pitch
contour. There are different techniques to avoid large fre-
quency intervals in the tone sequence — at present two main
algorithm types can be distinguished:

On the one hand, there are probabilistic frameworks that
combine pitch salience values and smoothness constraints
in a cost function that is evaluated by optimal path find-
ing methods like the hidden Markov Model (HMM), the
Viterbi algorithm or dynamic programming (DP). On the
other hand, there are rule based approaches that trace multi-
ple FO contours over time using criteria like magnitude and
pitch proximity in order to link salient pitch candidates of
adjacent analysis frames. Subsequently, a melody line is
formed from these tone-like pitch trajectories, using rules
that take the necessary precautions to assure a smooth melodic
contour. Of course such a division is rather artificial. It is
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easy to imagine a system that uses tone trajectories as input
for a probabilistic framework. And vice versa a statistical
approach can be used to model tones. In fact, Ryynidnen
and Klapuri have implemented a method for the automatic
detection of singing melodies in polyphonic music, where
they derive a HMM for note events from fundamental fre-
quencies, their saliences and an accent signal [8].

There are many stable probabilistic relationships that can
be observed in melody tone sequences [6]. This fact makes
the application of a statistical model so useful, because such
characteristics can easily be expressed mathematically in or-
der to find the optimal succession of tones. Hence, most
approaches to voice processing are statistical methods that
accomplish the tone trajectory forming and the identifica-
tion of the melody voice simultaneously [4,5,7]. Rao and
Rao advocate DP over variants of partial and tone tracking,
but also clearly state the problems of most statistical meth-
ods [7].

While for rule-based approaches alternative melody lines
can be recovered quite easily, there is no effective possibil-
ity to retrieve alternative paths for DP approaches, because
the mathematical optimization of the methods depends on
the elimination of concurrent paths. Hence, it is not easy to
state whether the most likely choice stands out from all other
paths. This problem is most evident if two or more voices
of comparable strength occur simultaneously within a mu-
sical piece. Work towards a solution to this problem was
presented in [7], giving an example for DP with dual fun-
damental frequency tracking. The system tracks an ordered
pair of two pitches, but it cannot ensure that the two contours
will remain faithful to their respective sound sources.

Another challenging problem is the identification of non-
voiced portions, e.g. frames where no melody voice occurs.
The simultaneous identification of the optimal path together
with the identification of melody frames is not easy to ac-
complish within one statistical model, so often the voic-
ing detection is performed by a separate processing step.
Nonetheless, optimal path finding algorithms may be con-
fused by breaks in the tone sequence, especially because
the usual transition probabilities do not apply in between
melodic phrases.
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Figure 1. Overview of the voice estimation algorithm

In this paper, we present an algorithm for the identifi-
cation of predominant voices in music that addresses some
of the above-mentioned problems. Although no statistical
model is implemented, probabilistic relationships that can
be observed in melody tone sequences are exploited.

2. METHOD
2.1 Overview

Figure 2.1 shows an overview of the algorithm. The in-
put to the proposed algorithm are the tone objects and/or
salient pitches of the current frame. The formation of mu-
sical voices is a continuous process destined by the frame-
wise evolution of so-called streaming agents, which are dis-
tributed along the frequency spectrum. A streaming agent
gains power by the capturing of salient tones or pitches.
Moreover, it changes its position in the frequency spectrum
in order to move towards salient sounds. Voice objects can
be derived from the streaming agents. Then, adequate tone
objects are assigned to the respective voices. Finally, the
melody voice is chosen from the set of voices. The main cri-
terion for the selection is the magnitude of the voice. Only
tone objects of the melody voice qualify as melody tones.

2.2 Formation of Streaming Agents

The voice detection is based on 18 streaming agents (SA).
Each streaming agent denotes a very simple voice forma-
tion unit, which independently selects a succession of strong
tones or pitches. It is mainly characterized by its magnitude
A, and two frequency based measures: a variable position
fsa and a fixed home position fg, home, Which are both given
in cent. The home positions of the streaming agents are dis-
tributed evenly with a distance of 300 cent over the allowed
melody frequency range.

Over time, each streaming agents gradually moves to-
wards the selected sound sources and assembles a magni-
tude corresponding to the rating magnitude of the captured
tone objects.
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Figure 2. Gaussian Weighting Functions

2.2.1 Selection of Tones

In each analysis frame, the streaming agents searches for
strong tones and pitches. In the further description, we refer
only to tone objects, although the method can be also used
for frame-wise estimated pitch magnitudes as described for
example in [3]. For the identification of the best matching
tone a rating is calculated from four criteria:

o magnitude: The tone magnitude Ao is a good indi-
cator for the perceptual importance of a tone.

e frequency distance weight: Itis due to the fixed home
position that each SA may pick different notes in a
polyphonic signal. While at the one hand a strong se-
lection criterion is the magnitude of the tone object,
at the other hand the agent’s choice is strongly biased
towards its own home position. The frequency dis-
tance A f in cent between the tone’s pitch fioe and the
streaming agent’s home position fg, home €nters into
the rating as a weighting factor that is calculated us-
ing a Gaussian function wy (A f):

(an?

wl(Af) = 3_0'5 6402

ey

Figure 2.2.1 shows the weighting function, which reaches

half the maximum value at a frequency difference of
approximately 750 cent.

e frequency deviation: Human listeners draw particular
attention to all sounds with changing attributes. If a
tone has a varying frequency deviation (persistently
more than 20 cent frequency difference in between
analysis frames) the rating is doubled. Accordingly,
the deviation factor D is set to one or two in the final
rating.

e capture mode: There should be a tendency of the SA
to continuously track an already captured tone object.
If a tone object has already been captured by a SA,
the rating for the tone object is boosted by the factor
C' = 1.5. Otherwise, the factor is set to one. (See
section 2.2.2 for a detailed explanation of the capture
mode.)
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The rating is estimated for all streaming agents and fi-
nally, each streaming agent “’picks” only one tone — the ob-
ject with the maximum rating magnitude Ayng:

Arating =D.C- Atone : wl(ftone - fsaJlome) (2)

For the rating of pitches the boost factors D and C' are omit-
ted — the rating is simply the product of pitch magnitude and
the frequency distance weight.

2.2.2 Modes of Tone Capturing

As the streaming agent approaches salient sound sources,
two different modes are distinguished within the tone cap-
turing process: aim and captured. In the aim mode the
streaming agent aims at a distinct tone object and moves
slowly towards the selected pitch or tone.

In order to capture a tone, the SA must aim at the distinct
tone for a specific time span. The demanded time depends
on the difference between the variable position of the SA fi,
and the tone’s frequency fione I As long as the SA aims at
the same tone object, a capture counter n is incremented in
each analysis frame. The tone is captured if? :

n>%’fsa_ftone’- (3)
As the SA moves towards the selected pitch, the frequency
difference between tone and streaming agent becomes smaller
during the capturing process. Since the adaptation speed of
the variable position f,, depends on many parameters, the
duration needed to capture a tone cannot be immediately
assessed from the frequency difference between successive
notes. As soon as the SA aims at a sound object in a differ-
ent frequency region, the capture counter is set to zero.

The mode captured might not be reached by every tone
in very complex or noisy music signals. Yet, it is not neces-
sary that a tone is captured by a streaming agent to qualify
as a melody tone. The aim mode is generally sufficient to
ensure the propagation of the streaming agents towards the
most significant sound sources. Still, the additional mode
enhances the movement of the streaming agent towards the
selected tone objects.

2.2.3 Magnitude Update

The streaming agent is able to increase its magnitude Ag,
whenever it reaches the capture mode captured. The mag-
nitude it assembles depends on the current rating magnitude
of the selected tone as given in equation 2, but without tak-
ing into account the boosting factor C'. The slightly altered
rating magnitude is labeled A7, .. The use of this rating
magnitude implies that a streaming agent which captures a

I All frequencies are measured in cent.
2 The condition assumes a hop-size of 5.8 ms between two analysis
frames.
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tone far away from the home positions will not build up a
high magnitude.

However, for the computation of the magnitude, the ini-
tial rating Ay, is weighted by a second frequency distance
weighting which exploits the distance between the variable
position of the streaming agent fi, and the tone’s frequency
frone- The weighting function remains the same: the Gaus-
sian function wy given in equation 1. The additional weight-
ing assures that the streaming agent profits more from tone
magnitudes which are close to its current position fi,.

In order to update the magnitude values we use the expo-
nential moving average (EMA)?3 :

Asa — O - Asa + (1 - ax) : A;ka[jng . wl(ftone - .fsa)- (4)

The start value for the iterative calculation of the EMA is

zero. The smoothing factor ax depends on the current weighted

*

rating Arating - w1 (fione, fsa). If the current value is higher
than the actual EMA value, ax corresponds to a half life pe-
riod of 1 second, otherwise the half life period is set to 500
ms. If the streaming agent is only in aim capture mode, the
magnitude of the streaming agent is damped with a half life
period of 500 ms.

2.2.4 Position Update

The streaming agent changes its variable position fi, to-
wards salient tones or pitches. The speed of the position
adaptation is mainly determined by three factors:

e the tone’s magnitude: the bigger the tone magnitude
in comparison to the long term average weightings,
the faster the SA changes its position.

o the distance between captured tone and the streaming
agent’s home position: the SA tends to move faster
towards its own home position. This behavior ensures
the stream segregation for a cycle of quickly alternat-
ing high and low tones as described in [1, chapter 2].

e the frequency deviation: the SA moves faster towards
frequency modulated tones.

e the capture mode: the SA moves faster towards cap-
tured tones.

From this it follows that the basic weighing for the posi-
tion update is similar to the rating magnitude Ayyng for the
tone selection process as given in equation 2. In order to

3 The EMA applies weighting factors to all previous data points which
decrease exponentially, giving more importance to recent observations
while still not discarding older observations entirely. The smoothing factor
« determines the impact of past events on the actual EMA. It is a number
between 0 and 1. A lower smoothing factor discards older results faster. A
more intuitive measure than the smoothing factor is the so called half-life
period. It denotes the time span over which the initial impact of an observa-
tion decreases by a factor of two. Taking into account the desired half-life
tp, and the time period between two EMA calculations At ~ 5.8ms, the
corresponding smoothing factor is calculated as follows: o = 0.58t/th
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estimate the significance of the current rating magnitude, it
has to be set into relation with the ratings of previous anal-
ysis frames. That’s why we introduce a position magnitude,
which is the exponential moving average of previous rat-
ings:

&)

In order to adapt the variable position fi, of the streaming
agent, the current rating is set into relation with the EMA of
previous ratings:

Aposfsa + (1 - O4500ms) . Arating . ftone
Apos + (1 - OZSOOms) : Arating
The initial value for the iterative calculation is the home

position fg home. Parameter asooms 1S @ smoothing factor,
which corresponds to a half life time of 500 ms*.

Apns — (55t ApOS + (1 - al.Ss) ! Arating~

fa—

(6)

2.3 Formation of Voices

The positions and magnitudes of the 18 streaming agents are
the foundation for the voice estimation. Figure 3 shows how
the progress of the multiple streaming agents is influenced
by salient tone objects. It can be noted that the approximate
progression of musical voices is already suggested by the
distribution of the streaming agents.

Each streaming agent which poses a local magnitude max-
imum is a candidate for the formation of a voice object. This
means that each voice object is in general linked to a stream-
ing agent with the peak magnitude compared to the magni-
tude of the neighboring agents. Of course, the local maxi-
mum may shift from one streaming agent to another. In this
case, the voice may gradually change the assigned link to a
neighboring streaming agent within the duration of approx-
imately 20 analysis frames. The position of a voice fypice
is defined by the position f;, of the linked streaming agent.
The magnitude of the voice Aice is defined by the streamer
magnitude Ag,. If the voice is currently adapting to a new
streaming agent, weighted average values of the concerning
two streaming agents are used.

If a streaming agent with a local maximum magnitude
is not assigned to a voice object, it may start a new one.
However, a new voice is created only if the streaming agent
is more than 4 streaming agents away from a any stream-
ing agent linked to another voice, or if the frequency dif-
ference between the streaming agent and all other existing
voices is greater than 600 cent. A voice object is eliminated
if the voice magnitude is smaller than 5 percent of the global
maximum voice magnitude or if two voices aim at the same
streaming agent. In the latter case the voice with the smaller
magnitude is eliminated.

4 Since the position weight depends on many factors, parameter v does
not exactly set any half life period for the position update. Yet the corre-
sponding time span gives a reference point for the approximate adaptation
speed.
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2.4 Adding Tones to Voices

Now that voice objects have been defined, adequate tone ob-
jects must be added. The only voice tone candidate is actu-
ally the currently selected tone of the corresponding stream-
ing agent. If the voice is adapting to a new streaming agent,
the closest streaming agent is used as a reference. Several
measures are taken to ensure a reliable voicing detection.
This means even if the corresponding streaming agent has
selected a tone, the tone candidate has to be validated in or-
der to qualify as a voice tone.

2.4.1 Distance Threshold

Although the proposed algorithm does not apply a common
statistical model, it takes advantage of the most eminent
probabilistic relationships in melodic tone sequences [6]: 1)
Melodies consist typically of tones that are close to one an-
other in pitch. 2) There is a strong tendency for a regression
to the mean pitch.

The frequency of the voice represents the weighted av-
erage frequency of the recently selected tone objects, so in
a way the voice position can be seen as the adaptive com-
putation of the mean pitch. Consequently, the best voice
tone candidates are close to the actual voice position. Ade-
quate voice tones have to be within an octave range of the
actual voice position. Another obvious thing to do would be
the adjustment of the magnitude thresholds according to the
frequency distance. This idea is implemented in the short
term magnitude threshold described in section 2.4.3.

2.4.2 Global Long Term Magnitude Threshold

The global long term magnitude threshold is implemented
as an adaptive threshold that is valid for all voices. It decays
with a half life period of 5 seconds. If a tone magnitude
appears which is larger than the current long term magni-
tude value, the magnitude threshold is updated to the new
maximum.

The magnitude of the candidate voice tone is compared
to the long term maximum value. In order to pass the global
threshold, tones should not be more than 8 dB below the
decaying maximum value. Still, other criteria may alter the
effective threshold value — in the best case the allowed dy-
namic range is increased from 8 dB to 20 dB:

e The capture level of the assigned streaming agent and
its two neighbors are evaluated. Depending on how
many streaming agents are in capture mode captured

concerning the candidate voice tone, the effective thresh-

old may decreased to 14 dB below the decaying max-
imum. On the other hand, the threshold is increased
for all tones that are not selected (aimed) by at least 5
streaming agents in the long term average.

e A variation of the fundamental frequency (vibrato or
glides) increases the noticeability of tones. In this
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Figure 3. Streaming Agents: It can be seen how the streaming agents (thin lines) move towards salient tones and pitches. To
maintain clarity salient pitches are not shown. The identified tone objects are indicated by dark bold lines. When the bass voice
comes in, some streaming agents turn to the bass voice as it is closer to their preferred home position.

case the threshold is lowered by 6 dB.

2.4.3 Short Term Magnitude Threshold

The short term magnitude threshold is estimated separately
for each voice. It secures that shortly after a strong tone is
finished no weaker tone is included as a voice tone, so it is
especially useful to bridge small time gaps between strong
tones of a voice. Furthermore, the threshold delays the in-
clusion of tones that are far away from the current voice po-
sition. To achieve this the tone magnitude is again weighted
with a frequency distance weight, evaluating the frequency
offset between tone and voice:

wy =1+ (1 - ’I“) . wl(flone - fvoice)- @)
Figure 2.2.1 shows that the weighting function wy is asym-
metric. Tones in the lower frequency range of an instrument
or the voice are often softer. Hence, parameter r is set to
0.4 for tones with a lower frequency than the current voice

position, otherwise r = 0.2.

The short term threshold is adaptive and decays with a
half life time of 100 ms. If a weighted tone magnitude
W - Aone appears which is larger than the current short term
magnitude threshold, the threshold is updated to the new
maximum. The tone passes the threshold if it is no more
than 6 dB below the current threshold value.

2.5 The Identification of the Melody Voice

The most promising feature to distinguish melody tones from
all other sounds is the magnitude. The magnitude of the
tones is of course reflected by the voice magnitude. Hence,
in general the voice with the highest magnitude is selected
as the melody voice. It may happen that two ore more voices
have about the same magnitude and thus no clear decision
can be taken. In this case, the voices are weighted accord-
ing to their frequency: voices in very low frequency regions
receive a lower weight.
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3. EVALUATION
3.1 Qualitative Evaluation

A striking advantage of the proposed method is its compu-
tational efficiency and the continuously updated voice in-
formation in real time. Moreover, the algorithm is flexi-
ble enough to track a variable number of concurrent voices.
This is the main reason for the good melody detection ac-
curacy for instrumental music excerpts with two or more
strong voices like the one shown in figure 4.

The segregation of notes into different auditory streams
depends on many aspects — like for example the magnitude,
frequency and timbre of tones. Psychoacoustic experiments
have shown that the grouping of tones also depends on the
rate [1]. Due to the delayed capturing of tone objects, the
presented method is able to take into account temporal as-
pects of the evolving signal. For example a series of alternat-
ing high and low tones will be integrated into one auditory
stream at a low playback speed. Yet, with increasing rate
high and low tones are grouped into individual voices.

Nonetheless, it must be noted that many aspects of hu-
man perception cannot be covered. Although the algorithm
allows a broad dynamic range for melody tones, in some in-
terpretations an even greater dynamic range can be found,
especially if the melody is sung by a human. Still, by low-
ering the magnitude thresholds many tones from the accom-
paniment will be selected by mistake. A simple magnitude
threshold cannot avoid all errors.

3.2 MIREX Audio Melody Extraction Task

The presented method for the detection of predominant voices
has been implemented as part of a melody extraction algo-
rithm which was evaluated at the Music Information Re-
trieval Evaluation eXchange (MIREX) [2]. Algorithm pa-
rameters regarding the width and the shape of the weight-
ing functions as well as the timing constants of the adaptive
thresholds have been adjusted using the melody extraction
training data of ISMIR 2004 and MIREX 2005. Although
the presented parameter sets maximize accuracy in the two
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Figure 4. Voices: When the bass voice comes in, a second voice object is created. Two predominant voices are recognized: the

melody voice (blue) and the bass voice (pink).

- Voicin Raw Overall .
Algorithm R\égg:?*’gﬁ,) Falseg Pitch | Accuracy Rlz::lti':)‘e
Alarm (%) | (%) (%)

proposed 90.9 41.0 | 80.6 73.4 24
dr1 92.4 517 | 744 66.9 23040
dr2 87.7 412 | 721 66.2 524
r 91.3 511 | 722 65.2 26
pc 79.3 40.3 | 64.1 62.9 4677
iy 61.0 294 | 733 56.6 3726
cl2 80.3 574 | 635 55.2 33
cl1 93.0 80.7 | 635 52.2 28
hjc1 43.6 9.7 | 66.1 50.5 344
hjc2 43.6 9.7 | 51.1 49.0 584

Figure 5. Melody Extraction Results of MIREX 2009

data sets, acceptable results are achieved on a wide parame-
ter range. Moreover, the MIREX results show that the given
settings generalize well on different kinds of data.

Table 5 shows the analysis results for systems that per-
form voicing detection. The melody extraction algorithm
achieved the best overall accuracy and at the same time stands
out due to very short run-times. The Raw Pitch measure
represents the estimation performance for all voiced frames.
For this measure the evaluation is constrained to time in-
stants where the melody voice is present. The measure Over-
all Accuracy requires a voicing detection — the algorithm
has to indicate whether the melody voice is present in the
current frame or not. The MIREX results show that the im-
plemented method allows a high Voicing Recall and at the
same time a low Voicing False Alarm.

4. CONCLUSION

In this paper we presented an efficient approach to auditory
stream segregation in polyphonic music. The MIREX re-
sults show that the proposed method allows a reliable iden-
tification of the predominant voice in different kinds of poly-
phonic music. The qualitative evaluation shows that the al-
gorithm mimics some characteristics of stream segregation
in the human auditory system, taking into account the mag-
nitude of tones, note intervals and playback speed. How-
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ever, timbral features are not exploited to group tones. In
order to reach a higher accuracy an instrument/singing voice
recognition is required.
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