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ABSTRACT

Social tagging is the process by which many users add
metadata in the form of keywords, to annotate information
items. In case of music, the annotated items can be songs,
artists, albums. Current music recommenders which em-
ploy social tagging to improve the music recommenda-
tion, fail to always provide appropriate item recommen-
dations, because: (i) users may have different interests for
a musical item, and (ii) musical items may have multiple
facets. In this paper, we propose an approach that tackles
the problem of the multimodal use of music. We develop
a unified framework, represented by a 3-order tensor, to
model altogether users, tags, and items. Then, we recom-
mend musical items according to users multimodal per-
ception of music, by performing latent semantic analysis
and dimensionality reduction using the Higher Order Sin-
gular Value Decomposition technique. We experimentally
evaluate the proposed method against two state-of-the-art
recommendations algorithms using real Last.fm data. Our
results show significant improvements in terms of effec-
tiveness measured through recall/precision.

1 INTRODUCTION

Social tagging is the process by which many users add
metadata in the form of keywords to annotate and catego-
rize information items such as songs, pictures, products.
In general, social tagging is associated to the “Web 2.0”
technologies and has already become an important source
of information for recommendation. In the music domain,
popular web systems such as Last.fm and MyStrands pro-
vide possibility for users to tag with free text labels an
item of interest - e.g., artist, song, album. Such systems
can further exploit these social tags to improve the search
mechanisms and the personalized music recommendation.
Recent research in the music field has also focused on

exploiting the social tags in various ways. For example,
a partial solution to the cold-start problem of music rec-
ommenders has been proposed in [4]: social tags are used
for the automatic generation of new tags, which then can
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be used to label the untagged music. In [9], the social
tags are investigated as a source of semantic metadata for
music, which can be used to generate a psychologically-
motivated search-space representing musical emotion.
However, the social tags carry useful information not

only about the musical items they label, but also about
the users who tagged. This aspect is not being fully ex-
ploited, neither by the music recommenders, neither in the
research field. Music is an artistic concept, and the musi-
cal items (artists, songs, albums) have a rich and complex
view, which is only partially perceived by particular users,
depending on their emotional and cultural perspective on
music. Social tags are a powerful mechanism that reveal
3-dimensional correlations between users–tags–items. This
triplet information can project for each user his perception
of a particular musical item. However, the current music
recommender systems are commonly using collaborative
filtering techniques, which traditionally exploit only pairs
of 2-dimensional data. Thus, they are not capable of cap-
turing well the multimodal use of music.
As a simple example, let us consider the social tag-

ging system of artists in Last.fm. Assume two users. One
is very fond of young female singers and therefore has
tagged Christina Aguilera as “sexy” and Beyonce as “sen-
sual”. Another is fond of male singers and has tagged
Lenny Kravitz as “sexy” and “male vocalists”. When want-
ing to listen to “sexy” music, both users are recommended
male and female singers, while the first user is expecting
female singers and the other prefers the opposite.
Recent research has focused on developing recommen-

dation algorithms [7, 14], which try to exploit tags given
by users on specific items. However, the existing algo-
rithms do not consider the 3 dimensions of the problem
altogether, and therefore they miss a part of the semantics
that is carried by the 3-dimensions.
In this paper, we address the problem of music recom-

mendation by capturing the multimodal perception of mu-
sic by particular users. We perform 3-dimensional analy-
sis on the social tags data, attempting to discover the la-
tent factors that govern the associations among the triplets
user–tag–item. Consequently, the musical items (artists,
songs or albums) can be recommended according to the
captured associations. That is, given a user and a tag, the
purpose is to predict whether and how much the user is
likely to label with this tag a specific musical item.
Our strategy in dealing with the 3-dimensional social
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tagging data, is to develop a unified framework to model
the three dimensions. Thus, user-tag-item data is rep-
resented by a 3-order tensor. Consequently, we have to
deal with the data sparsity problem: the three-way data is
highly sparse, especially that each user only tags a small
number of items. Latent Semantic Indexing (LSI) has
been proved useful to address the data sparseness in 2-
dimensional data recommender systems, however, it is still
an open problem for the 3-dimensional data case. There-
fore, we perform 3-mode analysis, using the Higher Order
Singular Value Decomposition (HOSVD) technique.
The contributions of our approach are as follow: (1)

we provide a method to improve music recommendation
by capturing users multimodal perception of music; (2)we
develop a unified framework, represented by a 3-order ten-
sor, to model the three types of entities that exist in social
tagging data; (3) we apply dimensionality reduction in 3-
order tensors to reveal the latent semantic associations be-
tween users, tags, and items; (4) we perform experimental
comparison of the proposed method against two state-of-
the-art recommendations algorithms, using Last.fm data;
our results show significant improvements in terms of ef-
fectiveness measured through recall/precision.
The rest of this paper is organized as follows. Section 2

summarizes the related work, whereas Section 3 briefly re-
views background techniques employed in our approach.
A motivating example and the proposed approach are de-
scribed in Section 4. Experimental results are given in
Section 5. Finally, Section 6 concludes this paper.

2 RELATEDWORK

Music recommendation has been addressed in various work.
For example, in Logan [11] music recommendation is done
based solely on using acoustic-based similarity measure.
Other approaches try to bridge the semantic gap and em-
ploy hybrid music recommendation methods. Thus, Yoshii
et al. [15] model collaborative filtering (CF) data and audio-
content data together, and unobservable user preferences
are statistically estimated. Li et al. [10] employ a proba-
bilistic model estimation for CF, where musical items are
clustered based on audio-content and user rating, and pre-
dictions are made considering the Gaussian distribution of
ratings. Celma [2] mines music information from the Web
(album releases, MP3 blogs, etc.) and is using it together
with user profiling and audio-content descriptions.
The above work can be used to improve the music rec-

ommendation by addressing the cold-start problem and
the bias of CF towards mainstreammusic. Along the same
lines, an innovative use of social tags has been recently
proposed in [4]. Eck et al. [4] predict new tags using au-
dio features extracted frommusic and supervised learning.
These automatically-generated tags resemble the charac-
teristics of those generated by social taggers, and can be
used to label new or poorly tagged music.
However, current music recommenders fail to always

provide good recommendations, because they do not cap-
ture well the interest of particular users in musical items
that have multiple facets. Recent research work [4] envis-

aged that musical items have multiple facets, but it did not
address their multimodal perception by particular users.
Since social tagging data carry simultaneous information
about both the items and the users who tagged them, we
propose to use such data as means to improve music rec-
ommendation by capturing the multimodal use of music.
The characteristics of social tagging systems have been

already studied in the literature. Halpin et al. [6] claimed
that there are three main entities in any tagging system:
users, items, and tags. In contrast to the above ternary re-
lation, recommender systems apply collaborative filtering
on 2-dimensional spaces. For example, the approach of
projecting the 3-dimensional space of social tagging into
pair relations {user, item}, {user, tag}, {tag, item}, is
applied in well-known recommendation algorithms such
as Penalty-Reward and FolkRank. The Collaborative Tag
Suggestions algorithm [14], also known as Penalty-Reward
(PR), uses an authority score for each user, which mea-
sures how well each user has tagged in the past. This au-
thority score can be computed via an iterative algorithm
such as HITS [8]. FolkRank algorithm [7] is inspired by
the seminal PageRank [12] algorithm. The key idea of
FolkRank is that an item, which is tagged with important
tags by important users, becomes important itself (and the
same holds for tags and users).
However, the above state-of-art algorithms miss a part

of the total interaction between the three dimensions of the
social tagging space. In contrast, our approach develops a
unified framework to concurrently model the three dimen-
sions by employing a 3-order tensor, on which latent se-
mantic analysis is performed using HOSVD technique [3].
The HOSVD technique has been successfully applied for
computer vision problems. We also use in our approach
the work proposed in Wang and Ahuja [13], which present
a novel multi-linear algebra-based method to reduce the
dimensionality representation of multi-dimensional data.

3 PRELIMINARIES - TENSORS AND HOSVD

In the following, we denote tensors by calligraphic up-
percase letters (e.g., A, B), matrices by uppercase letters
(e.g., A, B), scalars by lowercase letters (e.g., a, b), and
vectors by bold lowercase letters (e.g., a, b).

SVD and Latent Semantic Indexing
The singular value decomposition (SVD) [1] of a ma-

trix FI1×I2 can be written as a product of three matrices,
as shown in Equation 1:

FI1×I2 = UI1×I1 · SI1×I2 · V T
I2×I2, (1)

where U is the matrix with the left singular vectors of F ,
V T is the transpose of the matrix V with the right singular
vectors of F , and S is the diagonal matrix of (ordered)
singular values of F .
By preserving only the largest c < min{I1, I2} sin-

gular values of S, SVD results to matrix F̂ , which is an
approximation of F . In Information Retrieval, this tech-
nique is used by Latent Semantic Indexing (LSI) [5], to
deal with the latent semantic associations of terms in texts
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Figure 1. Visualization of the three unfoldings of a 3-
order tensor.

and to reveal the major trends in F . The tuning of c is em-
pirically determined by the information percentage that is
preserved compared to the original matrix [3].

Tensors
A tensor is a multi-dimensional matrix. AN -order ten-

sor A is denoted as A ∈ RI1...IN , with elements ai1,...,iN
.

In this paper, for the purposes of our approach, we only
use 3-order tensors.

HOSVD
The high-order singular value decomposition [3] gen-

eralizes the SVD computation to multi-dimensional matri-
ces. To apply HOSVD on a 3-order tensorA, three matrix
unfolding operations are defined as follows [3]:

A1 ∈ RI1×I2I3 , A2 ∈ RI2×I1I3 , A3 ∈ RI1I2×I3

where A1, A2, A3 are called the 1-mode, 2-mode, 3-mode
matrix unfoldings ofA, respectively. The unfoldings ofA
in the three modes is illustrated in Figure 1.

Example: Define a tensor A ∈ R3×2×3 by a111 =
a112 = a211 = −a212 = 1, a213 = a311 = a313 =
a121 = a122 = a221 = −a222 = 2, a223 = a321 =
a323 = 4, a113 = a312 = a123 = a322 = 0. The ten-
sor and its 1-mode matrix unfolding A1 ∈ RI1×I2I3 are
illustrated in Figure 2.

Next, we define the n-mode product of anN -order ten-
sor A ∈ RI1×...×IN by a matrix U ∈ RJn×In , which is
denoted as A ×n U . The result of the n-mode product is
an (I1× I2× . . .× In−1×Jn× In+1× . . .× IN )-tensor,
the entries of which are defined as follows:

(A×n U)i1i2...in−1jnin+1...iN
=∑

in

ai1i2...in−1inin+1...iN
ujnin

(2)

Since we focus on 3-order tensors, n ∈ {1, 2, 3}, we
use 1-mode, 2-mode, and 3-mode products.
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Figure 2. Visualization of tensor A ∈ R3×2×3 and its
1-mode matrix unfolding.

In terms of n-mode products, SVD on a regular two-
dimensional matrix (i.e., 2-order tensor), can be rewritten
as follows [3]:

F = S ×1 U (1) ×2 U (2) (3)

where U (1) = (u(1)
1 u

(1)
2 . . . u

(1)
I1

) is a unitary (I1 × I1)-

matrix, U (2) = (u(2)
1 u

(2)
2 . . . u

(2)
I1

) is a unitary (I2 × I2)-
matrix, and S is a (I1 × I2)-matrix with the properties of:
(i) pseudo-diagonality: S = diag(σ1, σ2, . . . , σmin{I1,I2})
(ii) ordering: σ1 ≥ σ2 ≥ . . . ≥ σmin{I1,I2} ≥ 0.

By extending this form of SVD, HOSVD of 3-order
tensor A can be written as follows [3]:

A = S ×1 U (1) ×2 U (2) ×3 U (3) (4)

where U (1), U (2), U (3) contain the orthonormal vectors
(called the 1-mode, 2-mode and 3-mode singular vectors,
respectively) spanning the column space of theA1, A2, A3

matrix unfoldings. S is the core tensor and has the prop-
erty of all orthogonality.

4 THE PROPOSED APPROACH

We first provide the outline of our approach, which we
name Tensor Reduction, through a motivating example.
Next, we analyze the steps of the proposed algorithm.

4.1 Outline

When using a social tagging system, to be able to retrieve
information items easily, a user u labels with a tag t an
item i. After some time of usage, the tagging system ac-
cumulates a collection of data – hence, usage data, which
can be represented by a set of triplets {u, t, i}.
Our Tensor Reduction approach applies HOSVD on

the 3-order tensor constructed from these usage data. In
accordance with the HOSVD technique introduced in Sec-
tion 3, the Tensor Reduction algorithm receives as input
the usage data of A and outputs the reconstructed tensor
Â. Âmeasures the associations among the users, tags, and
items. The elements of Â can be represented by a quadru-
plet {u, t, i, p}, where p measures the likeliness that user
u will label with tag t an item i . Therefore, items can be
recommended to u according to their weights associated
with {u, t} pair.
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Figure 3. Usage data of the running example

In order to illustrate how our approach works, we ap-
ply the Tensor Reduction algorithm to a running example,
which is illustrated in Figure 3. As it can be seen, 4 users
tagged 4 different items. In the figure, the arrow lines and
the numbers on them give the correspondence between
the three types of entities. For example, user U1 tagged
with tag “sensual” (denoted as T1) the item “Beyonce”
(denoted as I1). From Figure 3, we can see that users U1

and U2 have common interests on female singers, while
users U3 and U4 have common interests in male singers.
A 3-order tensorA ∈ R4×4×4 can be constructed from

these usage data. We use the co-occurrence frequency of
user, tag and item as the elements of tensor A, which are
given in Table 1.

Arrow Line User Tag Item Weight
1 U1 T1 I1 1
2 U2 T1 I1 1
3 U2 T2 I2 1
4 U2 T3 I3 1
5 U3 T3 I4 1
6 U3 T4 I4 1
7 U4 T4 I4 1

Table 1. Tensor Constructed from the usage Data of the
running example.

After performing the Tensor Reduction analysis (de-
tails are given in the section 4.2), we get the reconstructed
tensor of Â. Table 2 gives the output of the Tensor Reduc-
tion algorithm, which is also illustrated in Figure 4.
We can notice that the algorithm outputs new associa-

tions among the involved entities (see the last rows in the
Table 2 and the dotted lines in Figure 4). Even though in
the original data, user U1 did not tag items I2 and I3, the
algorithm is capable to infer that if U1 would tag them,
then U1 would likely (likelihood 0.35) use tags “female
vocalists”, and respectively “sexy”. As well, the algorithm
can infer that if U4 would tag item I4 with another tag,
then U4 would likely (likelihood 0.44) use the tag “sexy”.
We judge the obtained results as reasonable since U1

appears to be concerned with female singers rather than

Figure 4. Illustration of the Tensor Reduction Algorithm
output for the running example

with male singers, and viceversa for U4 . That is, the Ten-
sor Reduction approach is able to capture the latent associ-
ations among the multi-type data entities: users, tags and
musical items. These associations can further be used to
improve the recommendation procedure of musical items.

Arrow Line User Tag Item Weight
1 U1 T1 I1 0.50
2 U2 T1 I1 1.20
3 U2 T2 I2 0.85
4 U2 T3 I3 0.85
5 U3 T3 I4 0.72
6 U3 T4 I4 1.17
7 U4 T4 I4 0.72
8 U1 T2 I2 0.35
9 U1 T3 I3 0.35
10 U4 T3 I4 0.44

Table 2. Tensor Constructed from the usage data of the
running example.

4.2 The Tensor Reduction Algorithm

In this section, we elaborate on how HOSVD is applied on
tensors and on how the recommendation of musical items
is performed according to the detected latent associations.
Our Tensor Reduction algorithm initially constructs a

tensor, based on usage data triplets {u, t, i} of users, tags
and items. The motivation is to use all three entities that
interact inside a social tagging system. Consequently, we
proceed to the unfolding of A, where we build three new
matrices. Then, we apply SVD in each new matrix. Fi-
nally, we build the core tensor S and the resulting tensor
Â. All these can be summarized in 6 steps, as follows.

Step 1. The initial construction of tensor A
From the usage data triplets (user, tag, item), we con-

struct an initial 3-order tensor A ∈ Ru×t×i, where u, t,
i are the numbers of users, tags and items, respectively.
Each tensor element measures the preference of a (user u,
tag t) pair on an item i.
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Step 2. Matrix unfolding of tensor A
As described in Section 3, a tensor A can be matri-

cized i.e., to build matrix representations in which all the
column (row) vectors are stacked one after the other. In
our approach, the initial tensorA is matricized in all three
modes. Thus, after the unfolding of tensor A for all three
modes, we create 3 new matrices A1, A2, A3, as follows:

A1 ∈ RIu×ItIi , A2 ∈ RIt×IuIi , A3 ∈ RIuIt×Ii

Step 3. Application of SVD in each matrix
We apply SVD on the three matrix unfoldings A1, A2,

A3. We result to total 9 new matrices.

A1 = U (1) · S1 · V T
1 (5)

A2 = U (2) · S2 · V T
2 (6)

A3 = U (3) · S3 · V T
3 (7)

For tensor dimensionality reduction, there are three pa-
rameters to be determined. The numbers c1, c2, and c3 of
left singular vectors of matrices U (1), U (2), U (3) which
are retained, are determinative for the final dimension of
the core tensor S. Since each of the three diagonal singular
matrices S1, S2, and S3 are calculated by applying SVD
on matrices A1, A2 and A3 respectively, we use different
c1, c2, and c3 values for each matrix U (1), U (2), U (3).
The numbers c1, c2, and c3 are empirically chosen by

preserving a percentage of information of the original S1,
S2, S3 matrices after appropriate tuning (usually the per-
centage is set to 50% of the original matrix).

Step 4. The core tensor S construction
The core tensor S governs the interactions among user,

item and tag entities. Since we have selected the dimen-
sions of U (1), U (2), and U (3) matrices, we proceed to the
construction of the core tensor S, as follows:

S = A×1 U c1
(1)T ×2 U c2

(2)T ×3 U c3
(3)T

, (8)

where A is the initial tensor, U c1
(1)T

is the transpose of
the c1-dimensionally reduced U (1) matrix, U c2

(2)T

is the
transpose of the c2-dimensionally reducedU (2), andU c3

(3)T

is the transpose of the c3-dimensionally reduced U (3).

Step 5. The tensor Â construction
Finally, tensor Â is build by the product of the core

tensor S and the mode products of the three matricesU (1),
U (2) and U (3) as follows:

Â = S ×1 U c1
(1) ×2 U c2

(2) ×3 U c3
(3), (9)

where S is the c1, c2, c3 reduced core tensor, U c1
(1) is

the c1-dimensionally reduced U (1) matrix, U c2
(2) is the

c2-dimensionally reduced U (2) matrix, U c3
(3) is the c3-

dimensionally reduced U (3) matrix.

Step 6. The generation of the item recommendations
The reconstructed tensor Â measures the associations

among the users, tags and items, so that the elements of Â

represent a quadruplet {u, t, i, p} where p is the likeliness
that user u will tag musical item i with tag t. Therefore,
musical items can be recommended to u according to their
weights associated with {u, t} pair.

5 EXPERIMENTAL CONFIGURATION

In this section, we study the performance of our approach
against two well-known recommendation algorithms: Col-
laborative Tag Suggestions [14] (known as Penalty-Reward)
and FolkRank [7], denoted as PR and FolkRank, respec-
tively. We denote our algorithm as Tensor Reduction.

5.1 Data Set

To evaluate the aforementioned algorithms we have cho-
sen a real data set mined from Last.fm. The data was gath-
ered during October 2007, by using Last.fm web services.
The musical items correspond to artist names, which are
already normalized by the system. There are 12,773 triplets
in the form user–tag–artist. To these triplets correspond
4,442 users, 2,939 tags and 1,620 artists. (We only kept
tags expressing positive preference.)
To get more dense data, we follow the approach of [7]

and we adapt the notion of a p-core to tri-partite hyper-
graphs. The p-core of level k has the property, that each
user, tag and item occurs in at least k posts. We use k = 5,
and we finally retain 112 users, 567 tags, and 234 artists.

5.2 Evaluation Metrics

We perform 4-fold cross validation and the default size of
the training set is 75% – we pick, for each user, 75% of his
posts randomly. The task of each item recommendation
algorithm is to predict the items of the user’s 25% remain-
ing posts. As performance measures we use precision and
recall, which are standard in such scenarios.
For a test user that receives a list of N recommended

items (top-N list), the following are defined:
– Precision: is the ratio of the number of relevant items in
the top-N list (i.e., those items in the top-N list that are
used/tagged by the test user) relative to N .
– Recall: is the ratio of the number of relevant items in the
top-N list relative to the total number of relevant items (all
items used/tagged by the test user).

5.3 Settings of the Algorithms

Tensor Reduction algorithm: The numbers c1, c2, and c3

of left singular vectors of matrices U (1), U (2), U (3) after
appropriate tuning are set to 40, 80 and 190. Due to lack
of space we do not present experiments for the tuning of
c1, c2, and c3 parameters. The core tensor dimensions are
fixed, based on the aforementioned c1, c2, and c3 values.
FolkRank algorithm: We set the damping factor d = 0.7
and stop computation after 10 iterations or when the dis-
tance between two consecutive weight vectors is less than
10−6. For the preference vector p, we give higher weights
to the user and the tag from the post which is chosen.
While each user, tag and item gets a preference weight
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Figure 5. Comparison of the Tensor Reduction, FolkRank
and the PR algorithms for the Last.fm data set

of 1, the user and tag from that particular post gets a pref-
erence weight of 1 + |U | and 1 + |T |, respectively.
PR algorithm: Initially, we set the uniform authority score
for each user equal to 1.0. Then, the authority score of
users is computed via an iterative algorithm similar to HITS.

5.4 Comparison Results

We compare the Tensor Reduction algorithmwith FolkRank
and PR, in terms of precision and recall. This reveals the
robustness of each algorithm in attaining high recall with
minimal losses in terms of precision. We examine the
top-N ranked list, which is recommended to a test user,
starting from the top item. In this situation, the recall and
precision vary as we proceed with the examination of the
top-N list. For our data set, N is between [1..5].
In Figure 5, we plot a precision versus recall curve for

all three algorithms. As it can be seen, Tensor Reduction
algorithm attains the best performance. The reason is that
Tensor Reduction exploits altogether the information that
concerns the three entities (users, tags, items) and thus, it
is able to provide more accurate recommendations.

6 CONCLUSIONS

We developed a unified framework to model the three types
of entities that exist in social tagging systems: users, tags
and items. This data is represented by a 3-order tensor,
on which latent semantic analysis and dimensionality re-
duction is applied using the higher-order singular value
decomposition technique. Our approach can be used to
generate personalized recommendations of musical items,
which can capture users multimodal perception of music.
We performed thorough experimental comparison of our
approach against two state-of-the-art recommendations al-
gorithms on real Last.fm data. Our method achieves sig-
nificant improvements measured through recall/precision.
As future work, we intend to apply different weight-

ing schemes for the initial construction of a tensor. Also,
we will adjust our Tensor Reduction framework so that
the newly emerged users, tags or items of a social tagging
system, can be handled online.
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