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ABSTRACT

There are many different aspects of musical similarity [7].
Some relate to acoustic properties, such as melodic [5],
rhythmic [10], harmonic [9] and timbral [2]. Others are
bound up in cultural aspects: artists involved in creation,
year of first release, subject matter of lyrics, demograph-
ics of listeners, etc. In judgments about musical similar-
ity, the relative importance of each of these aspects will
change, not only for different listeners, but also for the
same listener in different contexts [11]. Extra care must
therefore be taken when designing studies in musical sim-
ilarity to ensure that the context is an explicit variable.
This paper describes the methodology behind our work in
context-based musical similarity; introduces a novel sys-
tem through which users can specify by example the con-
text and focus of their retrieval needs; and details the de-
sign of a study to find parameters for our system which
can also be adapted to test the system as a whole.

1 INTRODUCTION

Though musical similarity is multi-faceted, it is some-
times considered useful to distill it into a single measure;
for example, to present a simple ordered list of results
from a search-engine-style query. There are various mea-
sures for different aspects of similarity in the literature (for
a full exploration of these, see [7]): melodic and timbral
measures have generally received the most attention, but
rhythmic and harmonic ones have also been considered,
and metadata such as artist, lyrics, year of release, sales
figures, chart position and label classification may also
be examined. A single measure might combine several
of these, but the relative weighting of the components of
such a combination has a great impact of the utility of the
measure. For a start, the perceptual prominence of aspects
may vary across listeners; in addition, the context of the
query exercise has an impact on which aspects are per-
ceived as most salient [11].

We present a novel technique for allowing users to cre-
ate example sets of pieces of music which are used to de-
termine a weighting for various existing similarity mea-
sures. This allows for users lacking a musical vocabulary
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(or unwilling to constrict their query into one) to make
queries like, “I think all these pieces of music are similar
in a way that appeals to me. Find me music that is similar
to them in the same way.” The technique also incorpo-
rates a negative example set and a feedback loop through
which the user can train the aspect more accurately (see
Figure 1). We believe this dynamic approach addresses
the subjectivity and context issues whilst retaining a good
balance between expressive power and ease of use. It dif-
fers fundamentally from almost all existing approaches in
the genre classification and similarity retrieval literature,
in which parameters are fixed after an initial training phase
rather than being iteratively tailored to the needs of indi-
vidual users.

The technique only provides a relative weighting for
the individual measures. Therefore, we also propose
an experimental study to determine one or more initial
weightings according to their perceptual salience for an
average user (or several classes of user according to a
clustering exercise). This is closely related to the task of
weighting features to create a perceptually valid similar-
ity measure [6]. However, when the separation of differ-
ent aspects is considered, certain problematic assumptions
are revealed which must be carefully examined. These as-
sumptions, and a rigorous method which overcomes them,
are the primary topic of this paper.

2 CONCEPTUAL OUTLINE OF ASPECT
WEIGHTING

To demonstrate the concept of aspect weighting, we
present an example using four distance measures and a
corpus of 20 pieces of music. (Our full study will actually
use a database of over 14,000 MIDI-encoded western pop
songs and over 40 distance measures.) The selection and
normalisation of these measures will be covered in detail
in the next section, once we have explained our motiva-
tion.

Figure 2 shows two-dimensional projections of the ex-
ample measures. For instance, these data might corre-
spond to melodic (D1), rhythmic (D2), harmonic (D3)
and timbral (D4) similarities. The projection itself is
merely for demonstration: we assume only the pairwise
distances between songs, rather than any of the underlying
features. The shorter the distance, the greater the similar-



Figure 1. Choosing positive (left) and negative (right) ex-
amples by adding tracks to a playlist.

ity, with zero distance between identical pieces. Most of
the measures will be metric spaces, though this does not
necessarily have to be the case.

In our example, the user decides that tracks 2, 4 and
6 are all similar in her chosen aspect. A straightforward
way for her to indicate this might be to drag them from a
library of titles into a playlist marked “positive” (see Fig-
ure 1). Intuitively, this means that D1 and D3, in which
those tracks are closer together than in D2 and D4 (see
the solid thick lines in Figure 2) should be weighted more
heavily. One way of achieving this is to divide the mean
distance between all the tracks in Dk by the mean dis-
tance between only the tracks in Dk in the positive ex-
ample set (i.e., dividing the mean of all the line lengths
by the mean of only the three solid thick line lengths for
each Dk in Figure 2). To avoid division by zero, a small
constant should be added to both means. In this example,
this gives an overall weighting for D(+{2, 4, 6},−φ) of
3.000 ·D1 + 1.536 ·D2 + 3.312 ·D3 + 1.347 ·D4. Ac-
cording to this weighting, the nearest track on average to
tracks 2, 4 and 6 is track 9. However, let us imagine that
when we report this to the user, she puts track 9 into the
negative example set. This means that our weighting does
not reflect the aspect she had in mind. We need to incorpo-
rate the negative example set, for example by multiplying
our existing weighting for Dk by the mean distance be-
tween all [positive, negative] pairs in Dk (i.e., the mean
length of the three dashed lines for each Dk in Figure 2).
Contrary to initial appearances, D4 is now a much better
measure for the aspect the user has in mind. In this ex-
ample, the overall weighting D(+{2, 4, 6},−{9}) is now
0.462 ·D1 + 0.270 ·D2 + 0.492 ·D3 + 1.030 ·D4. Ac-
cording to this weighting, the track nearest to tracks 2, 4
and 6 and furthest from 9 on average is now track 17 (the
system can of course report more than one closest track).
The user can continue to add positive and negative tracks
to tune her description of the aspect she is interested in.
We believe that this feedback cycle is a good way to de-
termine the subjective and context-based similarity needs
of an average user lacking a comprehensive agreed musi-
cal vocabulary. The authors are aware of one other piece
of work [4] using relevance feedback in a similar way, but
which requires both positive and negative initial examples
and has a more complicated feedback cycle. There are,
however, commercial recommendation systems based on
collaborative filtering (e.g. Last.fm, Pandora) which use a
thumbs-up / thumbs-down style of interface.

D1

1

2

3

4
5

6
7

8

9

10

11

12

13

14

15
16

17

18

19

20

D2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

D3

1

23
4

5

6

7

8

9

10

11

12

13

14
15

16

17
18

19

20

D4

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17
18

19

20

Figure 2. Two-dimensional projections of example dis-
tance measures.



3 DESIGN OF USER STUDY TO DETERMINE
MUSICAL SIMILARITY

The example in Section 2 gives the distance measures
equal weighting before the example sets are taken into ac-
count. However, there is no reason to assume that they all
relate to aspects with equal perceptual salience. We have
therefore designed an experimental study to determine an
initial weighting for an average user. Although the bal-
ance of salient aspects may in fact be unique to each lis-
tener, an initial weighting derived from a study is likely to
be better than a flat equal weighting. The results from the
study may form clusters, in which case modelling more
than one type of average user may be beneficial.

There is also the question of which distance measures
to select from the literature. Measures for which the task
is more closely specified (e.g., “similarity in melodic con-
tour” or “similarity in rhythmic complexity”) are likely
to have more perceptually reliable experimental valida-
tion, so we select those in preference to measures claim-
ing ‘generic’ similarity. We select as many measures as
we can, with the proviso that we must be able to find a
sampling of the corpus such that every measure has a sim-
ilar distribution of pairwise distances in the sample to that
it has in the whole corpus. Because the sampling of a sub-
set of the corpus is not independent from the whole set,
we compare the distributions by taking the difference be-
tween the cumulative distribution functions for the whole
set and the subset (see Figure 3; for more about using
CDF to compare distribution, see [1]). The size of the
sample is limited by the pragmatics of the user study as
described below. We must also be able to normalise each
measure so that the linear combination described above
makes sense; as the pairwise distances are never negative,
this can be achieved by dividing each measure’s distances
by their mean to give a range of values from 0 upwards
with a mean of 1, giving each measure a similar scale
whilst also allowing outliers to be incorporated in the ex-
ample sets. Linear combinations of normalised measures
may still be problematic if the percept to which the mea-
sure corresponds is non-linear or if the measures are not
fully independent; further research needs to be done to de-
termine the optimal combination. Also, we may have to
restrict the number of measures selected, to avoid overfit-
ting.

One way in which pieces of music can be similar is
if they have the same large-scale structure; for example,
quiet verse followed by loud chorus. However, we will be
presenting short excerpts rather than whole pieces to sub-
jects, and for the sake of simplicity the excerpts we choose
will be largely self-similar (self-similarity being assessed
using the same distance measures as those selected for the
study).

We need from the user study an empirical distance
measure to estimate each wk:

Dstudy = ε +
n∑

k=1

(wk ·Dk) (1)

Figure 3. Comparing distributions using the cumulative
density function. The solid line is the CDF of the parent
distribution; the dashed line is the CDF of a much more
representative sub-sample than that of the dotted line. The
area between each curve can be taken to be the distance
between each distribution.

for which the error term ε can be minimised. There are
various empirical approaches that can be taken to obtain
a complete pairwise distance matrix for Dstudy , but we
choose the method of triadic comparisons [12] because it
involves discrete decisions from subjects rather than use
of a continuous scale, which means that subjects are less
likely to have changed their calibrations as the experiment
proceeds.

In this triadic comparison, excerpts from three pieces
of music are played to the subject who is subsequently
asked to judge which two are most similar. We have
implemented a browser-based interface for this, with a
graphical control designed to minimise visual biasing (see
Figure 4). The control changes to reflect which piece the
subject is currently listening to and also to indicate how to
go about indicating their judgment. Subjects must listen to
all three pieces in order; if they wish to listen again, they
must listen to all three again, in the same order. The in-
terface is connected to a back-end which records the sub-
ject’s choices in a database; it also ensures that the triads
are apportioned to subjects according to the methodologi-
cal design principles described below.

For a complete block design (CBD) with n tracks, the
number of different permutations is n(n− 1)(n− 2). Let
us suppose that a subject can listen to an excerpt from each
of three tracks and make a judgement about their relative
similarities within 30 seconds. This equates to 120 triads
in an hour (with no time for breaks), which is the full per-
mutations for n = 6 tracks. For n = 8, we have 336
triads or 5.6 hours. Clearly as the number of tracks rises,
the number of triads quickly exceeds what a subject might
reasonably be expected to tackle.

In order to overcome this combinatorial explosion,
Novello et al [6] suggest the use of a balanced incomplete
block design (BIBD). Firstly, no combination of three
pieces is reordered and presented in more than one per-
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Figure 4. Main control from web interface to empirical
study. (a) Before and after playback the control shows
three numbers with equal emphasis. (b) During playback
the control shows which piece is playing, e.g., piece 2
in this example. (c) After playback the user is asked to
choose which two are most similar: here the mouse is hov-
ering between tracks 1 and 3 and the control has changed
to indicate that clicking here will select 1 and 3 as being
most similar.

mutation. Secondly, only a subset of such combinations
are presented: instead of presenting each pair of tracks
6(n− 2) times (i.e., each pair alongside each other track),
each pair is only presented λ times. Novello et al suggest
λ = 2 which gives 102 triads for n = 18, as opposed to
4896 triads for the CBD. The tracks presented alongside
each pair are balanced as far as possible, and the presen-
tation order is varied to compensate for presenting only a
single permutation of each triad: for a full description, see
[12].

However, we believe that these steps are insufficient
for the task at hand. Tversky [11] argues that presenta-
tion order alters the context in which similarity is judged.
When a subject is asked to judge the similarity of tracks
A, B and C, in that order, after hearing tracks A and B he
has their common features in mind, and is likely to judge
C along those same lines; whereas if he had heard B, C
and A he would be judging A against the common fea-
tures of B and C. Therefore it is not inconsistent for tri-
ads ABC and BCA to be given different judgments by the
same subject. Although Novello et al try to balance the
presentation order as far as possible, we believe that a full
balancing for the incomplete design can only be achieved
through knowledge of the relative perceptual salience of
the aspects shared by the first two tracks in each triad,
which is not known before the study (a circular depen-
dency: Catch-22). Tversky also details other types of
asymmetry, e.g., one piece may be considered a referent
(such as an older or more well-known piece). Further-
more there is an inherent asymmetry in presenting a triad
because the first and the third tracks are necessarily sep-
arated in time by the second, whereas the other two pairs
run onto each other (even if the subject repeats listening
to the triad immediately thereby running the third and first
pieces together, there will still be a bias towards the other
pairs). Therefore we propose that balancing can only re-
ally be achieved by presenting all the permutations of each
combination of triad.

Similarly, the incomplete block design for λ < n − 2
also leaves gaps which cast doubt on the validity of com-
plete pairwise distances being calculated from the study

data. For example with λ = 2, if each of the two tracks
presented alongside a given pair are similar in any aspect
to at least one of the tracks in that pair, the pair will be
judged completely dissimilar regardless of its actual sim-
ilarity. That is, if the pair AB is presented in the contexts
of C and D, if AC is judged the most similar of ABC and
BD the most similar of BCD, A and B are taken to be have
zero similarity, whereas if they had been presented in fur-
ther contexts (E, F, etc.) they might have proved similar to
some extent. Conversely, if AB and CD are very dissim-
ilar, BC will receive the maximal similarity rating even
if B and C are not particularly similar. Only a complete
block design provides for enough granularity to construct
a complete pairwise distance matrix.

As previously mentioned, for any number of pieces n
more than just a handful, it is unreasonable to expect a
single subject to tackle the complete block design. We
therefore propose partitioning the block over multiple sub-
jects. This is not ideal on account of the possibility of dif-
ferent listeners favouring different aspects, but as we are
attempting to capture average listener characteristics, the
compromise is justified. We should certainly be able to do
better than a flat equal initial weighting.

The partitioning must also be balanced to maximise the
return of information gathering (although redundancy for
subject consistency testing must be re-incorporated later).
The most obvious partitioning involves six subjects, each
with a different permutation of each combination (see Fig-
ure 5). We can also partition each row further with the
constraints that each piece is presented the same number
of times to each user (see Figure 6). However, we can
improve the balance by ensuring that there is no correla-
tion between pieces and their positions in the triads (see
Figures 7 and 8). We refer to this design as the Balanced
Complete Block Partitioning (BCBP).

Our implementation of BCBP uses best-first search [8]
to allocate a full combination of triads into groups as if for
a single combination, according to the second balancing
constraint described above (see Figure 9), then allocates
permutations according to the third constraint.

Splitting a complete block design for n = 18, giving
each subject 102 triads (51 minutes) each requires 48 sub-
jects. Note that a fully balanced BCBP partitioned over 48
subjects is equivalent to a BIBD with n = 18 and λ = 2
given to 48 subjects if the BIBD is balanced between sub-
jects as well as within them. (Novello et al use 36 subjects
which gives a maximum coverage of 0.75)

Only some group sizes are suitable for balancing. The
constraints are as follows: the combinations must be di-
visible into groups of equal size (Equation 2), and each
group must contain an equal number of occurrences of
each piece (Equation 3).(

n

3

)
mod g = 0 (2)

(
n
3

)
g

mod n = 0 (3)



ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE
ACB ADB AEB ADC AEC AED BDC BEC BED CED
BAC BAD BAE CAD CAE DAE CBD CBE DBE DCE
BCA BDA BEA CDA CEA DEA CDB CEB DEB DEC
CAB DAB EAB DAC EAC EAD DBC EBC EBD ECD
CBA DBA EBA DCA ECA EDA DCB ECB EDB EDC

Figure 5. Full permutations for five pieces. Partitioning
for six subjects is straightforward: one row for each sub-
ject, ten pieces each.

ACD ABE ACE BCD BDE ABD ABC ADE BCE CDE
ADC AEB AEC BDC BED ADB ACB AED BEC CED
CAD BAE CAE CBD DBE BAD BAC DAE CBE DCE
CDA BEA CEA CDB DEB BDA BCA DEA CEB DEC
DAC EAB EAC DBC EBD DAB CAB EAD EBC ECD
DCA EBA ECA DCB EDB DBA CBA EDA ECB EDC

Figure 6. Full permutations for five pieces, partitioned for
twelve subjects, balanced so that each piece appears three
times for each subject.

ABC DAE CEA BCD EDB ABD CDA EAB BCE DEC
ACB DEA CAE BDC EBD ADB CAD EBA BEC DCE
BAC ADE ECA CBD DEB BAD DCA AEB CBE EDC
BCA AED EAC CDB DBE BDA DAC ABE CEB ECD
CAB EDA ACE DBC BED DAB ACD BEA EBC CDE
CBA EAD AEC DCB BDE DBA ADC BAE ECB CED

Figure 7. Balanced Complete Block Partitioning (BCBP).
Full permutations for five pieces, partitioned for twelve
subjects, balanced so that each piece not only appears
three times for each subject, but also appears once in each
position.

ADF EAC DCB BFE ABD FAC CEB DFE AEB DAE CBF FCD
AFD ECA DBC BEF ADB FCA CBE DEF ABE DEA CFB FDC
DAF AEC CDB FBE BAD AFC ECB FDE EAB ADE BCF CFD
DFA ACE CBD FEB BDA ACF EBC FED EBA AED BFC CDF
FAD CEA BDC EBF DAB CFA BCE EDF BAE EDA FCB DFC
FDA CAE BCD EFB DBA CAF BEC EFD BEA EAD FBC DCF

ACD BAF DEB EFC ABC EAF BFD CDE
ADC BFA DBE ECF ACB EFA BDF CED
CAD ABF EDB FEC BAC AEF FBD DCE
CDA AFB EBD FCE BCA AFE FDB DEC
DAC FBA BDE CEF CAB FEA DBF ECD
DCA FAB BED CFE CBA FAE DFB EDC

Figure 8. Balanced Complete Block Partitioning (BCBP).
Full permutations for six pieces, partitioned into thirty
groups, balanced so that each piece appears twice in
each group. Note that although each piece cannot appear
once in each position as per Figure 7, the positioning is
nonetheless balanced; e.g., in the bottom right hand group,
pieces D and F both appear in positions 1 and 2, pieces A
and B in positions 2 and 3, and pieces C and E in positions
1 and 3.

1. Distribute all combinations of n pieces over g groups by adding one to
each group in turn from an alphabetically ordered list of all combinations
until the list is exhausted. This produces a partitioning closer to being
balanced than if the first n pieces had gone to the first group, the second n
to the second group, and so on. Create an initial node for a priority queue,
with this grouping as the node’s state and with the average variance of the
number of times each piece appears in each group as its score.

2. Remove a node from the head of the queue and perform the following on
it:

For each group Gi (i = 1 . . . g):

Count the number of each piece in the group
For each triad Ta containing each piece appearing more
than the average number of times:

For each other group Gj (j = 1 . . . g, i 6= j):
Count the number of each piece in the group
For each triad Tb containing each piece appearing
fewer than the average number of times:

Create a copy of the node with Ta and Tb ex-
changed, and add it to the priority queue with
its score as described in the step above.

Repeat this step until the score of the node at the head of the queue is zero
(i.e., its grouping is fully balanced).

Figure 9. Algorithm for balancing a complete block par-
titioning, based on a priority queue [3]. This algorithm
balances the partitioning of the unordered combination of
n pieces over g groups (i.e., a single row in Figure 6). A
similar algorithm (not detailed here) is employed to bal-
ance the ordering of pieces within each triad (as per Fig-
ures 7 and 8).

A third constraint may be added to ensure perfect balanc-
ing: that for each group, each piece appears exactly the
same number of times in each position (Equation 4).

3
(
n
3

)
n · g

mod 3 = 0 (4)

However, a partitioning can still be considered balanced if
each position is occupied an equal number of times by an
equal number of pieces (see Figure 8).

To test for consistency, each subject should also be
given a number of triads (e.g. 5) more than once (within-
subject consistency) and a number of common triads (e.g.
5) should be given to every subject (between-subjects con-
sistency). These courses of action will violate the balanc-
ing constraints, but are important for determining the ad-
missibility of results. The extra triads will be injected into
each subject’s partitions roughly equally spaced through-
out.

The BCBP method is by no means limited to the study
for our initial weighting; it is suitable for any task to which
a BIBD might be applied, such as attempting to determine
a ground truth. We are also intending to use a triadic de-
sign based on the same web interface for the evaluation of
the aspect weighting system described in Section 2.

4 CONCLUSION

We have presented an examination of the methodology
of studies in musical similarity, and outlined why incom-
plete block designs for user studies, even if balanced, may



not capture enough information for determining a com-
plete pairwise distance measure. We have described the
Balanced Complete Block Partitioning which is designed
to address these issues and described how a study based
on this design might be implemented. We have also pre-
sented a novel system for context-based specification of
musical similarity and a user-centric interface for such a
system. We are currently undergoing a study to parame-
terise this system using pieces from our database of more
than 14,000 MIDI-encoded pieces of western popular mu-
sic, the results of which will be presented at ISMIR 2007
and published in a later paper.
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