

VISA: THE VOICE INTEGRATION/SEGREGATION ALGORITHM

Ioannis
Karydis

Alexandros
Nanopoulos

Apostolos N.
Papadopoulos

Emilios
Cambouropoulos

Department of Informatics
Aristotle University of Thessaloniki

{karydis, ananopou, papadopo}@csd.auth.gr

Dept. of Music Studies
Aristotle Univ. of Thessaloniki

emilios@mus.auth.gr

ABSTRACT

Listeners are capable to perceive multiple voices in
music. Adopting a perceptual view of musical ‘voice’
that corresponds to the notion of auditory stream, a
computational model is developed that splits musical
scores (symbolic musical data) into different voices. A
single ‘voice’ may consist of more than one
synchronous notes that are perceived as belonging to
the same auditory stream; in this sense, the proposed
algorithm, may separate a given musical work into
fewer voices than the maximum number of notes in the
greatest chord. This is paramount, among other, for
developing MIR systems that enable pattern recognition
and extraction within musically pertinent ‘voices’ (e.g.
melodic lines). The algorithm is tested against a small
dataset that acts as groundtruth.

1. INTRODUCTION

Recently, there have been a number of attempts [3, 5, 9,
10, 11, 12, 13] for the computational modelling of the
segregation of polyphonic music into separate voices.
Much of this research is influenced by empirical studies
in music perception [1, 6, 7] as well as by musicological
concepts such as melody, counterpoint, voice-leading
and so on.

It appears that the term ‘voice’ has different
meanings for different research fields (traditional
musicology, music cognition and computational
musicology). A detailed discussion is presented in [1].
A single musical example is given in Fig. 1 that
presents three different meanings of the term voice.

Figure 1 How many voices in each example?

Standard understanding of the term voice refers to a
monophonic sequence of successive non-overlapping
musical tones; a single voice is thought not to contain
multi-tone sonorities. However, if ‘voice’ is seen in the

light of auditory streaming, then, it’s clear that the
standard meaning is not sufficient. It's possible that a
single monophonic sequence may be perceived as more
than one voice/stream (e.g., pseudopolyphony or
implied polyphony) or that a passage containing
concurrent notes may be perceived as a single
perceptual entity (e.g., homophonic passages in Fig.1c).

The perceptual view of voice adopted in this study,
allows for multi-tone simultaneities in a single ‘voice’,
while bearing the most significant difference of the
proposed model with existing ones. In Fig. 1, all
existing algorithms (see exception regarding Kilian and
Hoos’s algorithm in the next section), that are based on
purely monophonic definitions of voice, would find two
voices in the second example (Fig. 1b) and three voices
in the third example (Fig. 1c). It is clear that such
voices are not independent voices. In terms of harmonic
voices, all examples can be understood as comprising of
three voices (triadic harmony). In terms of perceptual
voices/streams, each example is perceived as a single
auditory stream (harmonic accompaniment); it makes
musical sense to consider the notes in each example as
a single coherent whole, as a unified harmonic
sequence. The proposed algorithm determines a single
‘voice’/stream in all three examples.

In this paper, initially, a number of recent voice
separation algorithms are briefly described and their
main differences to the current proposal are
highlighted. Then, the fundamental auditory streaming
principles, forming the basis of the proposed model, are
presented. The description of the proposed algorithm
follows, concluded by evaluation of the algorithm and
results on ten different musical works.

2. RELATED WORK

Voice separation algorithms such as [3, 5, 10, 11,
12, 13] assume that ‘voice’ is a monophonic sequence
of successive non-overlapping musical tones. The
underlying perceptual principles that organise tones in
voices are the principles of temporal and pitch
proximity (cf. Huron’s [7] Temporal Continuity and
Pitch Proximity principles). In essence, these models
attempt to determine a minimal number of monophonic
lines/voices such that each line consists of successions
of tones that are maximally proximal in the temporal
and pitch dimensions.

© 2007 Austrian Computer Society (OCG).

mailto:@csd.auth.gr
mailto:emilios@mus.auth.gr

Kilian and Hoos’s [9] model is pioneering in the
sense that multi-note sonorities within single voices are
allowed. The pragmatic goal of the algorithm is the
derivation of reasonable score notation - not
perceptually meaningful voices (see [9], p.39). The
results are not necessarily perceptually valid (e.g., a 4-
part homophonic piece may be ‘forced’ to split into two
musical staves that do not correspond to perceptually
pertinent streams). The algorithm does not discover
automatically the number of independent musical
‘voices’ in a given excerpt; if the user has not defined
the maximum number of voices, the algorithm
automatically sets the maximum number equal to the
maximum number of co-sounding notes – in this case
the algorithm becomes similar to all other algorithms
mentioned above (see discussion in [8]).

3. PERCEPTUAL PRINCIPLES FOR VOICE
SEPARATION

Bregman [1] offers an in depth exploration of processes
relating to perceptual integration/segregation of
simultaneous auditory components. Coordinated and
synchronously evolving in time sounds tend to be
perceived as components of a single auditory event.
Concurrent tones that start, evolve and finish together
tend to be merged perceptually. The proposed principle
(below) relates to Huron’s Onset Synchrony Principle
[7] but it differs in a number of ways as discussed by
Cambouropoulos [2].

Synchronous Note Principle: Notes with synchronous
onsets and same inter-onset intervals IOIs (durations)
tend to be merged into a single sonority.

The horizontal integration of musical elements
(such as notes or chords) relies primarily on two
fundamental principles: Temporal Continuity and Pitch
Proximity [7].

It is suggested, that a voice separation algorithm
should start by identifying synchronous notes that tend
to be merged into single sonorities and then use the
horizontal streaming principles to break them down
into separate streams (most algorithms ignore the
vertical component). This is an optimisation process
wherein various perceptual factors compete for the
production of a ‘simple’ interpretation of the music in
terms of a minimal number of streams.

4. VISA: THE VOICE
INTEGRATION/SEGREGATION ALGORITHM

This section describes the proposed voice separation
algorithm VISA.

4.1. Merging Notes into Single Sonorities

During vertical integration, according to the
synchronous note principle, we have to determine when
to merge concurrent notes and thus require a merging
criterion.

Given a set of concurrent notes S, the algorithm
examines the frequency of appearing concurrency in a
certain musical excerpt (window) around them. If
inside the window most co-sounding notes have
different onsets/offsets, then it is most likely that we
have independent monophonic voices so occasional
synchronous notes should not be merged. Thus, by
having a user-defined threshold T that signifies
frequency, if the ratio of concurrency is more than T,
we merge the notes of S as a single sonority.

4.2. The Algorithm

The Voice Integration/Segregation Algorithm (VISA)
receives as input the musical piece in the form of a list
L of notes that are sorted according to their onset times,
a window size w, and the threshold T. The output is a
set of lists V (initially empty). After termination, each
list contains the notes of each detected voice, sorted by
onset time. Notice that VISA does not demand a-priori
knowledge of the number of voices. The proposed
algorithm is illustrated in Fig. 2.

Figure 2 The VISA algorithm.

In VISA, a sweep line, starting from the beginning
of L, proceeds in a step-wise fashion to the next onset
time in L. The set of notes having onsets equal to the
position of the sweep line is denoted as sweep line set
(SLS). Next, every SLS is divided into clusters by
partitioning the notes in the SLS into a set of clusters C.
The ClusterVertically procedure, detects contextual
information, accepting, thus, w and T as parameters. If,
based on context, we decide to merge concurrent notes,
each cluster contains all notes with the same IOI.
Otherwise, if merging is not decided, each cluster
contains a single note.

Given the set of clusters, C, a bipartite graph is
formed in order to assign them to voices, where one set
of vertices corresponds to the currently detected voices
and the other set corresponds to the clusters in C.
Between every pair of vertices in the graph, we draw an
edge to which we assign a cost. Having determined the
cost on every edge, we can solve the assignment
problem by finding the matching with the lowest cost in
the bipartite graph. Two cases are possible: (i) If |V| <
|C|, then we match voices to clusters. This is done by

assigning to each of the currently detected voices a
cluster, in a way that the total cost is minimised. The
remaining clusters that have not been assigned to a
voice constitute new voices that are added to V. This is
handled inside procedure MatchVoicesToClusters. (ii)
Conversely, if |V| ≥ |C|, we match clusters to voices, i.e.,
each cluster is assigned to one of the currently detected
voices, in a way that the total cost is minimised.
Nevertheless, a matching may not be feasible, in which
case new voices, enabling a matching, are created.

Finally, we introduce two extra constraints to the
problem of a matching; (a) voice crossing should be
avoided and (b) the top voice should be minimally
fragmented [12]. Section 4.3 presents more details for
the inclusion of constraints in the matching procedure.

4.3. The Matching Process

For convenience, we convert the minimisation problem
to an equivalent maximisation one. For this reason, the
assignment of the cost w(eij) between a voice vi and a
cluster cj is converted to max{ekl} – w(eij), where
max{ekl} is the maximum edge cost determined for the
specific instance of the matching problem (and this cost
is due to the edge connecting voice vk and cluster cl) .

(a) pair-wise costs

v1

v2

v3

v1

v2

v3

c1

c2

c3

c4

c5

c1

c2

c3

c4

c5

v1 9 1 9 1
v2 9 1 1 5
v3 0 1 0 5

c1 c2 c3 c4 c5

1
0
8

(b) best matching (c) best crossing-free matching
Figure 3 Maximum matching examples

Traditional bipartite matching algorithms do not
preserve the order of the matching. In our case, order
preservation is important (voice crossing), formulating
a new problem that can not be directly tackled by
bipartite matching algorithms. Figure 3 illustrates three
voices, five clusters and the pair-wise cost for their
assignment. A maximum weighted matching (Fig. 3b),
with a total cost of 23 does not necessarily avoid voice
crossing, while a crossing-free maximum weighted
matching with cost of 22 is depicted in Fig. 3(c). The
proposed matching can handle larger number of
voices/clusters, and is based on [4].

The matching process is depicted in Fig. 4(a), where
each cell of the matrix M represents the total matching
cost. The matrix is filled according to the recurrence
equation (see [8]) of the dynamic programming.

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

 c1 c2 c3 c4 c5

v1
v2
v3

(a) matching path

 c1 c2 c3 c4 c5

 v1 __ __ v2 v3

(b) final assigment
Figure 4 The matching process

The best matching cost itself does not provide for the
assignment of voices to clusters. To determine the
matching path (Fig. 4a) we perform a trace-back process
starting at the cell which contains the best matching
value. In the trace-back process we never choose a
vertical cell, since no gaps are allowed to be placed on
the cluster sequence, meaning that all voices must be
matched. The final assignment is given in Fig. 4(b).

According to the previous discussion, the running
time of the algorithm is O(n*m) (n>=2, m>=2) where n
is the number of voices and m the number of clusters.
Evidently, we need O(n*m) time to calculate all
elements of the matrix M, and O(n+m) time to
reconstruct the matching path.

5. EXPERIMENTS AND RESULTS

The proposed algorithm has been tested on ten pieces
with clearly defined streams/voices which are used as
groundtruth. The first six pieces include four fugues
and two inventions by J.S.Bach; these polyphonic works
consist of independent monophonic voices. Two
mazurkas and a waltz by F.Chopin consist of a melody
(upper staff) and accompanying harmony (lower staff).
Finally, the “Harmony Club Waltz” by S.Joplin has two
parallel homophonic streams (chordal ‘voices’) that
correspond to the two piano staves. See excerpts in Figs
5, 6, 7.

In this pilot study, our aim is to examine if a single
algorithm can be applied to two very different types of
music (i.e. pure polyphonic music and music containing
clear homophonic textures). All the parameters of the
algorithm are the same for all ten pieces, while the
number of streams/voices is determined automatically.
It should be noted that for the pieces by Chopin and
Joplin all other voice separation algorithms would
determine automatically at least four different voices
(up to eight voices) that do not have perceptual validity
(and musicologically are problematic).

Figure 5 Four independent streams/voices are present in this
excerpt from the Fugue No.1 in C major, WTCI, BWV846 by
J.S.Bach. The algorithm performs voice separation correctly
except for the last five notes of the upper voice which are
assigned to the 2nd voice rather than the first voice, as these
are closer by a semitone to the last note of the second voice.

Figure 6 In the opening of the Mazurka, Op.7, No.5 by
F.Chopin, the algorithm detects correctly one voice (low
octaves) and, then, switches automatically to two voices
(melody and accompaniment).

Figure 7 Two independent chordal streams/voices are
correctly determined by the algorithm in this excerpt from the
“Harmony Club Waltz” by S.Joplin; the only mistake is
indicated by the circled note which is placed ‘erroneously’ in
the upper stream (because of pitch proximity).

The evaluation metrics used is the precision of the
obtained result. For the previously described musical
dataset, Table 1 shows the results. The effectiveness of
the proposed methodology is evident by the high
precision rates achieved for all ten pieces.

Musical Work Precision

J.S.Bach, Fugue No.1 in C major, BWV846 92,38%
J.S.Bach, Fugue No.14 in F# major, BWV859 95,56%
J.S.Bach, Fugue No.11 in F major, BWV 856 87,31%
J.S.Bach, Fugue No.7 in E major, BWV 852 97,52%
J.S.Bach, Invention No.1 in C Major, BWV 772 99.34%
J.S.Bach, Invention No.13 in A Min, BWV 784 96.45%
F. Chopin, Mazurka, Op.7, No.5 100%
F. Chopin, Mazurka in A Minor, Op. 67, No.4 88.8%
F. Chopin, Waltz in B Minor, Op. 69, No. 2 90.31%
S. Joplin, “Harmony Club Waltz” 98.12%

Table 1 Results in terms of precision for the dataset.

The results were examined in detail (qualitative
analysis). Most wrong results were given in cases where
the number of voices changes and erroneous
connections are introduced primarily due to pitch
proximity (e.g., see last upper five notes in Fig. 5).
Kilian and Hoos [9] address this same problem
claiming that, in essence, it is unsolvable at the note
level. A second kind of problem involves voice
crossing. Since voice crossing is disallowed, notes at
points where voices cross (in the Bach fugues) are
assigned to wrong voices. A third type of mistake
relates to the breaking of vertically merged notes into
sub-sonorities and allocating these to different voices;
in this case the breaking point in the sonority may be
misplaced (e.g., circled note in Fig. 7).

6. CONCLUSIONS

In this paper, the notions of voice and auditory stream
have been examined. It is suggested that, if ‘voice’ is
understood as a musicological parallel to the concept of
auditory stream, then multi-note sonorities should be
allowed within individual ‘voices’. It is proposed that a
first step in voice separation is identifying synchronous
note sonorities and, then, breaking these into sub-
sonorities incorporated in horizontal streams or
‘voices’.
 The proposed voice separation algorithm, VISA,
incorporates the two principles of temporal and pitch
proximity, and additionally, the Synchronous Note

Principle, performing in the general case where both
polyphonic and homophonic elements are mixed
together.

7. REFERENCES

[1] Bregman, A (1990) Auditory Scene Analysis: The
Perceptual Organisation of Sound. The MIT Press,
Cambridge (Ma).

[2] Cambouropoulos, E. (2006) ‘Voice’ Separation:
theoretical, perceptual and computational perspectives.
In Proceedings of the 9th International Conference in
Music Perception and Cognition (ICMPC2006), 22-23
August, Bologna, Italy.

[3] Cambouropoulos, E. (2000) From MIDI to Traditional
Musical Notation. In Proceedings of the AAAI
Workshop on Artificial Intelligence and Music, July 3 -
Aug. 3, Austin, Texas.

[4] Cormen, T., Leiserson, C.E., Rivest, R.L. and Stein, C
(2001). Introduction to Algorithms, The MIT Press,
Cambridge (Ma).

[5] Chew, E. and Wu, X. (2004) Separating voices in
polyphonic music: A contig mapping approach. In
Computer Music Modeling and Retrieval: Second
International Symposium (CMMR 2004), pp. 1-20.

[6] Deutsch, D. (1999) Grouping Mechanisms in Music. In
D. Deutsch (ed.), The Psychology of Music (revised
version). Academic Press, San Diego.

[7] Huron, D. (2001) Tone and Voice: A Derivation of the
Rules of Voice-Leading from Perceptual Principles.
Music Perception, 19(1):1-64.

[8] Karydis, I., Nanopoulos, A., Papadopoulos, A.,
Cambouropoulos, E. and Manolopoulos Y. (2007)
Horizontal and Vertical Integration/Segregation in
Auditory Streaming: A Voice Separation Algorithm for
Symbolic Musical Data. In proceedings of the confernce
Sound and Music Computing (SMC07), Lefkada.

[9] Kilian j. and Hoos H. (2002) Voice Separation: A Local
Optimisation Approach. In Proceedings of the Third
International Conference on Music Information
Retrieval (ISMIR 2002), pp.39-46.

[10] Kirlin, P.B. and Utgoff, P.E. (2005) VoiSe: Learning to
Segregate Voices in Explicit and Implicit Polyphony. In
Proceedings of the Sixth International Conference on
Music Information Retrieval (ISMIR 2005), Queen
Mary, Univ. of London (pp. 552-557).

[11] Madsen, S. T. and Widmer, G. (2006) Separating
Voices in MIDI. In Proceedings of the 9th International
Conference in Music Perception and Cognition
(ICMPC2006), 22-26 August 2006, Bologna, Italy.

[12] Temperley, D. (2001) The Cognition of Basic Musical
Structures. The MIT Press, Cambridge (Ma).

[13] Szeto, W.M. and Wong, M.H. (2003) A Stream
Segregation Algorithm for Polyphonic Music Databases.
In Proceedings of the Seventh International Database
Engineering and Applications Symposium (IDEAS’03).

