

A SIMPLE ALGORITHM F
GENERATION

Alia Al Kasimi
Dept. of Computer Science

Indiana Univ.
alia.alkasimi@gmail.com

ABSTRACT

We present a novel method for assigning fingers to notes
in a polyphonic piano score. Such a mapping (called a
“fingering”) is of great use to performers. To
accommodate performers’ unique hand sha
our method relies on a simple, user
function. We use dynamic programming to search the
space of all possible fingerings for the optimal fingering
under this cost function. Despite the simplicity of the
algorithm we achieve reasonable and useful results.

1. INTRODUCTION

Several different algorithms have been proposed in
recent decades for automatic generation of musical
instrument fingerings [1,2,3,4,5]. We propose to build on
this previous work in two ways. First, in keeping with
the nature of most piano music, our algorithm handles
polyphonic input – the lack of a polyphonic algorithm in
the literature is lamented in [2]. Second, we formulate
the solution in an elegant manner that facilitates rapid
implementation and computation.

2. AUTOMATIC FINGERING

2.1. Representation of Solution Space

Beginning with a symbolic representation of a musical
score, we generate a trellis graph1 with one layer for
each time point where a note begins or ends
each layer a set of nodes representing all possible
fingerings for the notes sounding at that time point

Figure 1. Trellis Graph of Solution Space

1 A trellis graph is a multilayer directed acyclic graph
where nodes are only connected between adjacent layers.

© 2007 Austrian Computer Society (OCG).

A SIMPLE ALGORITHM FOR AUTOMATIC
GENERATION OF POLYPHONIC PIANO FINGERINGS

Eric Nichols Christopher Raphael
Dept. Of Computer Science

Indiana Univ.
epnichol@indiana.edu

School of Informatics
Indiana Univ.

craphael@indiana.edu

We present a novel method for assigning fingers to notes
in a polyphonic piano score. Such a mapping (called a
“fingering”) is of great use to performers. To
accommodate performers’ unique hand shapes and sizes,
our method relies on a simple, user-adjustable cost
function. We use dynamic programming to search the
space of all possible fingerings for the optimal fingering
under this cost function. Despite the simplicity of the

asonable and useful results.

INTRODUCTION

Several different algorithms have been proposed in
recent decades for automatic generation of musical

We propose to build on
this previous work in two ways. First, in keeping with
the nature of most piano music, our algorithm handles

the lack of a polyphonic algorithm in
]. Second, we formulate

solution in an elegant manner that facilitates rapid

AUTOMATIC FINGERING ALGORITHM

Beginning with a symbolic representation of a musical
with one layer for

time point where a note begins or ends, and for
a set of nodes representing all possible

fingerings for the notes sounding at that time point.

. Trellis Graph of Solution Space

A trellis graph is a multilayer directed acyclic graph
where nodes are only connected between adjacent layers.

The numbers correspond to fingers, where ‘1’ represents
the thumb and ‘5’ is the little finger
possible fingerings as follows:

1. Within each node, fingers are assigned in order
from lowest pitch to highest pitch

2. The same finger must
persists (no finger substitution is allowed).

3. Each finger may only depress one note.
Each path from ‘start’ to the ‘end’ is a possible fingering
solution. A weight (cost) is assigned
between nodes in the graph, and
used to compute the optimal fin

Previous monophonic fingering
used a cost function based on
between two notes. We call this the
extend it to the polyphonic case. Additionally, we
introduce the vertical cost quantifying the
fingers involved in playing a particular chord
of transitioning between two nodes is the sum of the
horizontal and vertical costs.

2.2. Vertical Cost

The vertical cost depends on the combination of pitches
that are present at a given point in time.
always rewrite polyphonic music as a collection of
chords by using the tie symbol (

Figure 2. Excerpt from Aufschwung (
op.12) by Schumann

Figure 3. Vertical analysis of the same excerpt

To compute the vertical cost of a
decompose the fingering in the node
of notes. For example, in the F Major triad
associated fingering 1-3-5, we consider the two pairs
A (1-3) and A-C (3-5). Each pair
which two fingers are involved and the distance between
the two notes being played, yielding the node cost

cv(p,d) gives the cost for playing two notes separated by
distance d with a particular pair

iv nCost)(

OR AUTOMATIC
FINGERINGS

Christopher Raphael
School of Informatics

Indiana Univ.
craphael@indiana.edu

The numbers correspond to fingers, where ‘1’ represents
little finger. We constrain the

possible fingerings as follows:
Within each node, fingers are assigned in order

from lowest pitch to highest pitch (no crossover).
 be used as long as a note

(no finger substitution is allowed).
Each finger may only depress one note.

Each path from ‘start’ to the ‘end’ is a possible fingering
is assigned to each connection

, and the Viterbi algorithm is
optimal fingering sequence.

fingering approaches have
used a cost function based on the stretch in the hand
between two notes. We call this the horizontal cost and
extend it to the polyphonic case. Additionally, we

quantifying the spread of the
fingers involved in playing a particular chord. The cost

two nodes is the sum of the

depends on the combination of pitches
point in time. Note that we can

always rewrite polyphonic music as a collection of
l (Figures 2 and 3):

Excerpt from Aufschwung (Phantasiestuck

Vertical analysis of the same excerpt

To compute the vertical cost of a node, we first
the fingering in the node into adjacent pairs

of notes. For example, in the F Major triad F-A-C with
5, we consider the two pairs F-
ach pair’s cost is determined by

which two fingers are involved and the distance between
, yielding the node cost:

(1)

) gives the cost for playing two notes separated by
with a particular pair p of fingers.

∑
=

=
pairs

k
kv dPc

#

1

),(

2.3. Horizontal Cost

The horizontal cost between two nodes is defined to be
the average transition cost taking into account all pairs of
notes consisting of one note from each chord:

 ∑
∈∈

→=→
ba njni
hbah djic

N
nnCost

,

),(
1

)((2)

Specifically, in Figure 4, the horizontal cost ch(p,d) is
the sum of the costs for transitioning from C to F, C to
A, E to F, E to A, G to F, and G to A, divided by 6.

Figure 4. Horizontal cost example

One might expect that ch and cv are equivalent – after all,
playing an ascending third (e.g. C up to E) with fingers 1
and 3 is just as easy as playing C and E simultaneously.
However, there are two situations where this is not true.
First, hand motion is allowed between the notes in
horizontal cost. Second, if the direction of motion is
reversed, a crossover occurs and difficulty increases.

In our implementation we ignore the first of these
problems, and set ch=cv. In the case of a crossover
situation, however, ch is defined by a separate function.
Crossovers involving the thumb are assigned lower cost.

2.4. User Specification of Cost Functions

In order to generate fingerings tailored to a specific user,
we ask the user a series of questions about the difficulty
of playing various intervals with particular pairs of
fingers. The responses are used to define cost functions
cv and ch for each pair of fingers. Each cost function has
the same general shape as the example in Figure 5,
which represents all possible costs of stretches involving
fingers 2 and 5. In this example, the user has specified
the following information:

• The smallest interval that is easily playable by
fingers 2 and 5 is 4 half steps (smaller intervals result in
uncomfortable compression of the hand).

• The comfort zone lies between 4 and 7 half steps.
• After eleven half steps the stretch is nearly

impossible.

Figure 5. Cost function cv for finger pair 2,5

3. RESULTS

We tested our system on several different music excerpts
and considering the simplicity of the approach we are
pleased that this algorithm generates quite plausible
polyphonic piano fingerings. Additional improvements
would include allowing finger substitution during a
sustained note and modelling the difference between
white and black keys. We also would like to extend the
system to determine which hand (left or right) should
play each note. See Figure 6 for sample output.

4. REFERENCES

[1] Hart, M., Bosch, R., & Tsai, E. (2000). “Finding
Optimal Piano Fingerings.” The UMAP Journal,
21(2), 167-177.

[2] Lin, C. And Liu, D. “An Intelligent Virtual Piano
Tutor”. Proceedings of VRCIA 2006. 353-356. Hong
Kong, June 14-17, 2006.

[3] Parncutt, R., Sloboda, J. A., Clarke, E. F., Raekallio,
M., & Desain, P. (1997). “An Ergonomic Model of
Keyboard Fingering for Melodic Fragments”. Music
Perception, 14(4), 341-382.

[4] Radicioni et. al. “A segmentation-based prototype to
compute string instruments fingering”. Proceedings
of the Conference of Interdisciplinary Musicology
(CIM04). Graz, Austria, April 15-18, 2004.

[5] Sayegh, S. (1989). “Fingering for String Instruments
with the Optimal Path Paradigm”. Computer Music
Journal. 13(3), 76-84.

Figure 6. System output: Excerpt from Ellmenreich’s Spinning Song

Cost of Stretch Between Fingers 2 and 5

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distance in Half-Steps

C
os

t t

