
TOWARDS MUSICDIFF: A FOUNDATION FOR IMPROVED OPTICAL

MUSIC RECOGNITION USING MULTIPLE RECOGNIZERS

Ian Knopke

Music Informatics Program

School of Informatics

Indiana University

iknopke@indiana.edu

Donald Byrd

School of Informatics &

Jacobs School of Music

Indiana University

donbyrd@indiana.edu

ABSTRACT

This paper presents work towards a “musicdiff” program

for comparing files representing different versions of the

same piece, primarily in the context of comparing versions

produced by different optical music recognition (OMR)

programs. Previous work by the current authors and oth-

ers strongly suggests that using multiple recognizers will

make it possible to improve OMR accuracy substantially.

The basic methodology requires several stages: documents

must be scanned and submitted to several OMR programs,

programs whose strengths and weaknesses have previously

been evaluated in detail. We discuss techniques we have

implemented for normalization, alignment and rudimen-

tary error correction. We also describe a visualization tool

for comparing multiple versions on a measure-by-measure

basis.

1 INTRODUCTION

This paper describes work on “musicdiff” program for

music notation. There are many potential applications for

such a program, just as there are for the text-file compar-

ison programs that are ubiquitous these days. However,

the one we are most interested in here is for use in an

“engine” for a multiple-recognizer Optical Music Recog-

nition (MROMR) system of the type described by Byrd

and Schindele (2006). In fact, their work was part of a

feasibility study for our MeTAMuSE project.

A large part of the musicdiff problem is alignment,

where the musical documents to be aligned can be ex-

pected to be relatively similar. In particular, they should

have exactly the same structure, except in terms of details.

So, if sections A and B in one version appear in reverse

order in the other, ideally, the program would detect that;

but if it doesn’t and instead says a section A before B was

deleted and a new section (in fact, A) was inserted after it,

it is not a serious problem.

The first well-known UNIX diff program dates back to

the seventies (Hunt and McIlroy, 1976), and many varia-

tions have been created since. Some do line-level compar-

isons, some do character-level, and some, e.g., Microsoft

c© 2007 Austrian Computer Society (OCG).

Word, do both. The rough analogue of lines in this con-

text is probably measures. But a measure can contain a lot

of information. For direct use by people, something with

finer granularity is highly desirable; for use in a MROMR

engine, it is absolutely essential.

For MROMR, we need to compare music-notation files

generated by different programs. As of this writing, Mu-

sicXML is far and away the best choice because of its

widespread support: we will soon say more about this.

While we are most interested in a fully-automatic mu-

sicdiff as a component of an MROMR engine, we believe

it also has great promise for interactive use by musicians.

We shall say more about this application at the end of the

paper.

2 MUSICXML AS AN OMR COMPARISON

FORMAT

Clearly a diff program requires its input files to be in for-

mats it can compare. Until the recent widespread adoption

of MusicXML for programs handling music notation, in

practical terms, such formats did not exist. Now, with an

intermediate conversion step, it is possible to write Mu-

sicXML from just about any OMR program, and to read it

for editing or error-checking with most notation programs.

XML is rapidly becoming one of the most prominent

formats for data interchange, especially in the context of

the Internet. An XML document can specify a format

it uses; document formats are defined by specifications

like the Document Type Definition (DTD). A DTD speci-

fies the available element types, the relationships between

them, and the attributes and ranges of values for elements

and attributes.

MusicXML is an XML document format, defined by

its DTD. It takes its inspiration primarily from the Muse-

Data (Selfridge-Field, 3 4) and Humdrum music encod-

ings (Huron, 1997). MusicXML seeks to create a common

interchange format between programs that use symbolic

music data. The adoption of MusicXML by many popular

notation programs has accelerated its usage significantly,

to the point where it is showing signs of becoming a de

facto standard.

The nested-element layout of XML files is best rep-

resented as a tree data structure. Tree structures and tree



\ \\ \ \l KKK ö \ \\

�\ � \KKK ö \l \ \\\ \

Figure 1. Correct and Incorrect Encoding

comparisons are one of the most-studied problems in com-

puter science, so it would seem on the surface that cre-

ating a “diff” program for MusicXML documents would

be easy, especially since there has been a fair amount of

research specifically on comparing XML (Cobena et al.,

2001). However, this assumption is incorrect. In all, three

types of comparison difficulties can be identified:

1. Stylistic differences in MusicXML coding

2. Errors as a product of the OMR procedure

3. Errors in interpreting the MusicXML standard

MusicXML is fairly well-defined, but does allow con-

siderable latitude in the use of optional elements and at-

tributes. These differences in encoding “style” make di-

rect comparison of XML trees unworkable. For instance,

MusicXML has MIDI elements, but they may or may not

be included in a file, regardless of the notational informa-

tion. In effect, overlaid on every MusicXML file is a sec-

ond structure that in many situations does not map espe-

cially well onto the underlying XML. Another problem is

that many XML tools, including the standard XSLT tools,

are based around a stateless data processing model, which

may be difficult or impossible to use for many MusicXML

tasks, such as those involving its extremely general “for-

ward” and “backward” elements, or items such as slurs

that stretch between branches.

A more subtle set of errors occurs in some MusicXML

files from misinterpretations of the MusicXML DTD. One

of the most alarming examples occurred in the case of one

program writing pitches as they are notated, instead of

how they sound as MusicXML requires. This would re-

sult in measures where the accidental of a note is indicated

on the first occurrence of a pitch, but is incorrect through-

out the remaineder of the measure. Figure 1 shows both

the correct and incorrect encodings. While this problem

has been fixed in the most recent version of this program,

other interpretational errors remain. An ad-hoc survey of

MusicXML documents produced by other programs, in-

cluding many open source programs, revealed a host of

other interpretational issues. In defense of MusicXML, it

should be noted that its authors support an active mailing

list and are working to resolve many such problems within

the music notation community as a whole, and there have

been many improvements even within the life of this proj-

ect. However, anyone seeking to use MusicXML as an in-

terchange format at the time of this writing should resign

themselves to a certain amount of experimenting. As an

indication of the extent of the problem, counts of certain

elements from the feasibility study document collection

are given in Table 1; note the many discrepancies.

Table 1. MusicXML element counts from the feasibility

study documents

Element PhotoScore SharpEye SmartScore

accidental 394 452 471

alter 260 1400 1432

backup 16 6 32

barline 28 30 21

beam 6809 6937 6485

duration 5530 5588 5396

dynamics 85 165 121

fermata 0 5 18

fifths 153 30 36

forward 1 13 24

key 153 30 36

measure 869 868 895

midi-instrument 20 0 21

pitch 5016 5158 4888

slur 1105 1366 846

stem 5016 5106 4843

tie 132 136 226

tuplet 48 8 2

OMR OMR

Alignment

Combine using rules

Final check stage

OMR

MusicXML conversion

Scan in score

Figure 2. Scanning and document correction procedure

3 METHODOLOGY

Our methodology is based on the assumption that different

OMR programs have different strengths and weaknesses,

and that we can determine what they are and take advan-

tage of that knowledge to improve recognition rates. The

basic procedure is described in Figure 2. The process can

be described as follows: a score is scanned in at a suit-

able resolution, normally 300 dpi, and then converted to

MusicXML using several different OMR programs. The

results are normalized and aligned at the measure level.

All versions of each measure are then compared, and rules

for combining them so as to minimize errors are applied,

based on the situation. Finally, an optional check stage

may be used; this could involve human checking or an au-

tomated heuristic of some sort.

At the moment, the procedure of scanning scores is be-

ing done by hand. However, we are experimenting with

code for mouse gesture control that, in combination with

some other scripting, aims to automate the entire process.

The core of the process is “combining using rules”, the

error correction stage. This requires an “error map” of

textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:8:0:0
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:8:5:5
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:7:7:7
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:7:17:17
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:8:12:12
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:29:3:24
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:7:12:12
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:8:16:16
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example1.ly:7:0:0
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:7:12:12
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:8:5:5
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:29:3:24
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:7:17:17
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:7:0:0
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:8:15:15
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:8:0:0
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:7:7:7
textedit:///home/ian/musicdiff/paper/mypaper/media/forpaper/example2.ly:8:11:11


the strengths and weaknesses of each program; such maps

were manually created, albeit in a rudimentary form, in

the original feasibility study for this project (Byrd and

Schindele, 2006). Unfortunately, ours is a “moving tar-

get”: new versions of programs appear regularly, and dif-

ferent combinations of programs may be available to dif-

ferent users of the final system. What is required is a sys-

tem for automatically creating such an error map. Our

approach to this is to use a set of “regression” test files

for which we have both scans and ground truth files. A

comparison of what the output should be and what it is for

these files can then be used to map out likely errors.

For these purposes, two test collections have been cre-

ated. The first is the original collection of pieces from the

feasibility study by Byrd and Schindele (2006). Most of

these are normal selections from the classical canon, and

as such have many articulations, editorial marks, rehearsal

numbers, and other markings that occur in common prac-

tice notation. However, the presence of these additional

symbols makes the job of the OMR programs more diffi-

cult because of the increased opportunities for confusion

between symbols. Consequently, for developmental pur-

poses, we were interested in creating additional test ma-

terial with very little other than notes, barlines, clefs, and

key signatures. As an initial step, a second data set was

created from a collection of unaccompanied recorder mu-

sic (Van Eyck, 1986) consisting of 62 brief pieces. Three

different OMR programs were used for these tests: Photo-

Score, SharpEye, and SmartScore. These are occasionally

designated in the text as ps, se, and ss respectively.

3.1 Normalization

Normalization is required because MusicXML supports

multiple ways to encode the same content. Our normal-

ization stage consists primarily of converting all durations

to a common timebase. We also make default values ex-

plicit, and we put simultaneous MusicXML elements like

notes in a chord into a standard order.

3.2 Alignment

Many of the OMR errors we have seen are missing bar-

lines, or misinterpreting them for other vertical structures

like note stems or vice-versa. The result is missing or ex-

tra measures, a serious problem because proper alignment

of measures is essential before any kind of comparison

can be undertaken.

Our first attempt to solve this problem computed a num-

ber summarizing the content of each measure, then used

these numbers to find the proper alignment of measures.

While partially successful, we found cases where each

program made slightly different mistakes in a series of

measures, producing a string of slightly different scores;

as a result, the algorithm tends to get lost and produce im-

proper alignments.

Our current alignment system uses edit distance with

a dynamic programming algorithm (Durbin et al., 1998;

(i,j,k)
(i,j−1,k)

(i,j−1,k−1)
(i,j,k−1)

(i−1,j−1,k) (i−1,j,k)

(i−1,j,k−1)
(i−1,j−1,k−1)

Figure 3. Three-dimensional global scoring “cube”

Gusfield, 1997) that is heavily weighted to preserving mea-

sure alignment. This is similar to many other systems used

for computing music similarity (Smith et al., 1998), except

that we align three (or perhaps more) note streams at the

same time. Instead of the normal two dimensions, here

the alignment for both the local and global matrices oc-

curs in a multi-dimensional space, with the output of each

program assigned to a different axis.

Each value in the local score matrix is computed as

follows:

p(i, j, k) = [avg(pi +pj +pk)−min(pi +pj +pk)] (1)

d(i, j, k) = [avg(di +dj +dk)−min(di +dj +dk)] (2)

l(i, j, k) = q × p(i, j, k) + (1 − q) × d(i, j, k); (3)

where p is pitch and d is duration. q is an adjustment

factor that controls the weighting between the pitch and

duration components: a value of 0 pays attention to pitch

alone, 1 to duration alone.

A two-dimensional dynamic programming algorithm

considers the insertion, deletion, and substitution costs be-

tween any pair of notes in the two melodies. Each step can

be thought of as involving four points at the corners of a

square, producing an answer in the lower right from scores

calculated for the other three. In the three-dimensional

case, the square becomes a cube, requiring the calcula-

tion of seven scores instead of three, as shown in Figure

3. Additionally, we assign a high cost to substitutions

between a barline and a note, which essentially prevents

note/barline mismatches. For each token, this provides a

collection of eight values; the minimum is taken and as-

signed to the global score matrix.

This algorithm gives significantly better results in our

tests so far. In practice, we have found that higher q values

tend to produce better results. This appears to be because

mistakes in pitch (besides missing accidentals) are less

common than duration errors with OMR; furthermore, in

our experience, pitch errors are almost always the result



of missing notes entirely, which also produces duration

errors.

One problem with the above algorithm is that each ad-

ditional stream to align doubles the amount of work needed,

so it does not scale well in this respect. However, it should

still perform acceptably with, say, five versions, which is

probably near the practical limit anyway.

3.3 Error Correction

Once proper measure alignment has been achieved, cor-

rective rules must be applied on a case by case basis to

any errors. For this purpose, we define an error as any

situation where the the programs do not all agree.

Errors can be corrected in one of several ways. The

program can simply decide to disregard the output of some

of the programs in that circumstance. In situations where

all programs disagree the context becomes more impor-

tant, and actual corrective code must be applied.

There is much work to do in this area, and this system

is still quite rudimentary. Nevertheless, our initial exper-

iments show that even a small set of corrections and se-

lection procedures can greatly improve the quality of the

output.

3.4 Document Visualization and Non-OMR Applica-

tions

We have created a tool that can convert multiple aligned

MusicXML fragments to traditional notation for easy vi-

sual inspection. The output format is images embedded

in a standard HTML page stored on a web server. Our

tool also provides MIDI playback and offers access to the

MusicXML used to produce the notation.

Turning to the question of using music interactively

rather than as part of an MROMR engine, the work on an

“Electronic Variorum Edition” of Don Quixote described

by Kochumman et al. (2004) might serve as a model. They

have written a standalone multisource editor (designed for

scholars) and a web-based “virtual edition” viewer (for

readers). In music, as far as we know, nothing similar has

been done with symbolic comparison, but quite a bit via

superimposing one (semi-transparent) image on a similar

one and letting the user find any differences. For exam-

ple, the Online Chopin Variorium Edition OCVE (2007)

is relying solely on image superimposition so far, but their

pilot-project final report shows (and discussion with prin-

cipals of the project supports this) that they appreciate the

advantages of symbolic comparison. Unfortunately, prop-

erly comparing music as complex as Chopin’s is well be-

yond what we expect to accomplish in the near future.

4 CONCLUSIONS

At present, we have a prototype system that uses multiple

OMR recognizers to produce a composite document that

is superior to the output of any one of the programs. While

it has not been tested much thus far, we believe it has the

potential to lead to considerably better OMR systems. As

we were completing this paper, we learned of a new ver-

sion of PhotoScore (“Ultimate 5”) that apparently utilizes

two recognizers. This both supports our intuitions about

MROMR and gives us an opportunity to evaluate the con-

cept in a context more limited than what we envision.

5 ACKNOWLEDGEMENTS

We would like to acknowledge the support of Don Waters

and Suzanne Lodato the Andrew W. Mellon Foundation.

Without their support this work would have been difficult,

if not impossible. We would also like to thank Geraint

Wiggins, Tim Crawford, and Chris Raphael for their help,

conversation, and the occasional brain transplant. Addi-

tional thanks to Bill Guerin for technical support.

References

Byrd, D. and Schindele, M. (2006). Prospects for improv-

ing optical music recognition with multiple recogniz-

ers. In Proceedings of the International Conference on

Music Information Retrieval, pages 41–6.

Cobena, G., Abiteboul, S., and Marian, A. (2001). Detect-

ing changes in XML documents. In BDA.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G.

(1998). Biological Sequence Analysis : Probabilistic

Models of Proteins and Nucleic Acids. Cambridge Uni-

versity Press.

Gusfield, D. (1997). Algorithms on Strings, Trees, and

Sequences. Cambridge University Press.

Hunt, J. W. and McIlroy, M. (1976). An algorithm for dif-

ferential file comparison. Technical Report 41, Com-

puting Science Technical Report, Bell Laboratories.

Huron, D. (1997). Humdrum and Kern: Selective fea-

ture encoding, pages 375–401. MIT Press, Cambridge,

Mass.

Kochumman, R., Monroy, C., Deng, J., Furuta, R., and

Urbina, E. (2004). Tools for a new generation of schol-

arly edition unified by a TEI-based interchange format.

In Proceedings of the 2004 Joint ACM/IEEE Confer-

ence on Digital Libraries, pages 368–9.

OCVE (2007). Online Chopin Variorum Edition. http:

//www.ocve.org.uk/.

Selfridge-Field, E. (1993–4). The MuseData universe: A

system of musical information. Computing in Musicol-

ogy, (9):9–30.

Smith, L., McNab, R. J., and Witten, I. H. (1998).

Sequence-based melodic comparison: A dynamic-

programming approach. Computing in Musicology,

(11):101–18.

Van Eyck (1986). Der Fluyten Lust hof, Volume I. New

Vellekoop Edition.


