
Testing Unsatisfiability of Constraint Satisfaction Problems via Tensor Products

Daya Ram Gaur
Department of Math & Computer Science

University of Lethbridge
Lethbridge, AB, Canada, T1K 3M4

Email: gaur@cs.uleth.ca
http://www.cs.uleth.ca/∼gaur

Muhammad A. Khan
InBridge Inc

3582 30th Street N
Lethbridge, AB, Canada, T1H 6Z4

Email: muhammad@inbridgeinc.com
https://inbridgeinc.com/home-page/team/

Abstract

We study the design of stochastic local search methods to prove
unsatisfiability of a constraint satisfaction problem (CSP). For
a binary CSP, such methods have been designed using the mi-
crostructure of the CSP. Here, we develop a method to decom-
pose the microstructure into graph tensors. We show how to use
the tensor decomposition to compute a proof of unsatisfiability
efficiently and in parallel. We also offer substantial empirical evi-
dence that our approach improves the praxis. For instance, one
decomposition yields proofs of unsatisfiability in half the time
without sacrificing the quality. Another decomposition is twenty
times faster and effective three-tenths of the times compared to
the prior method. Our method is applicable to arbitrary CSPs us-
ing the well known dual and hidden variable transformations from
an arbitrary CSP to a binary CSP.

Keywords: Constraint Satisfaction, Satisfiability

1 Introduction
Constraint satisfaction problems (CSPs) is a general and de-
scriptive paradigm that is used to model and solve a variety of
issues in diverse areas such as scheduling, planning, text anal-
ysis and logic. Satisfiability, graph homomorphism, answer set
programming are all instances of CSPs. A CSP instance is a
set of variables along with a set of relations on subsets of vari-
ables. A solution to a CSP satisfies all these relations. CSPs
model NP-complete problems and are therefore computation-
ally challenging to solve. One of the practical solution methods
is backtracking coupled with constraint propagation. Constraint
propagation aims at reducing the search space by enforcing a
check on some necessary condition for a solution to exists. One
could characterize methods, which use constraint propagation
along with backtracking to solve a CSP, as “complete methods”
(Ghédira and Dubuisson, 2013). Of course, when a complete
method fails to discover a solution to the CSP, we have a “proof”
of the unsatisfiability. One can also use an “incomplete method”
such as local search to check for unsatisfiability of a CSP at each
choice point in the search.

Interest in incomplete methods for detecting unsatisfiabil-
ity arises from the success of incomplete methods for solv-
ing problems; for example, walk-sat for satisfiability problem
(Kautz, Sabharwal, and Selman, 2009). A challenge to develop
an efficient stochastic local search to determine unsatisfiability
for propositional problems was issued by Selman, Kautz, and
McAllester (1997). In the same year, Gaur, Jackson, and Havens
(1997) gave an incomplete method to determine the unsatisfia-
bility of CSPs. The last twenty years have seen a limited suc-
cess in addressing the challenge due to Selman et al. (1992) in
the context of CSPs. We surmise that there are primarily two
reasons for this. The first reason has to do with the size of the
microstructure, which is quadratic in the size of the CSP and

can result in a computational blow-up. The second reason for
limited use of these methods in backtracking is the difficulty in
invoking the incomplete method at each choice point. This is
due to the non-incremental nature of the technique, that is, one
cannot reuse the work done in the prior stages.

In this paper, we exhibit another incomplete method using
tensor product of graphs. The key idea is that the microstructure
can be described as a union of graph tensor products. We re-
late the chromatic number of the microstructure to the chromatic
numbers of the tensor products in the union. The decomposition
of the microstructure into a union of graph tensors implies that
upper bounds on the chromatic number of the microstructure
can be computed more efficiently in practice. This is due to the
facts that the tensor product graphs (i) are smaller than the mi-
crostructure, (ii) can be colored in parallel, and (iii) some very
efficiently computable upper bounds on the chromatic number
are known. Consequently, heuristic algorithms for coloring take
significantly lesser time. The known upper bounds on the chro-
matic number can be used at each choice point. The bookkeep-
ing required for this is extremely fast. Our approach works for
arbitrary k-ary CSPs with no restriction on the type of relations.
In our approach, coloring a microstructure involves coloring a
series of tensor graphs of the same total size as the microstruc-
ture. Each of of these computations can be performed in par-
allel. We give an infinite family of CSPs where the approach
can establish unsatisfiability. Although, the use of efficiently
computable upper bounds reduces the set of instances where the
method can show unsatisfiability, the resulting speed-up is quite
significant.

We also report on experiments on random binary CSPs given
by the not-all-equal relation. Our experiment design overcomes
some of the difficulties (Achlioptas et al., 2001) in the generation
of unsolvable instances in (Gaur, Jackson, and Havens, 1997).
We observe that a half of all the instances can be proved to be
unsatisfiable using the tensor product decomposition for large n
(see Figure 6). We also determine unsatisfiability using the orig-
inal method of Gaur, Jackson, and Havens (1997), which is able
to prove unsatisfiability of slightly less than half of the instances
(see Figure 6). Our method is almost twice as fast compared to
the original method in general. For dense symmetric CSPs our
method is twenty times faster, and is able to prove unsatisfia-
bility of three-tenths of the instances compared to the original
method (see Figure 4).

In Section 4, we describe a way to decompose the microstruc-
ture of a binary CSP into graph tensors. We then relate the chro-
matic number of the microstructure to the chromatic numbers
of constituent tensors. An important property of this decompo-
sition is that the sizes of the individual tensors is smaller than
size of the microstructure. Furthermore, the tensors can be col-
ored in parallel and often very efficiently using theoretical re-

sults on tensor products and graph coloring. A coloring of the
microstructure can be computed very efficiently given a coloring
of the tensors. Our approach works for arbitrary CSPs with ar-
bitrary (symmetric or non-symmetric) relations. In Section 5 we
give infinite families of CSPs for which unsatisfiability can be
detected using the proposed tensor decomposition method. We
evaluate our approach empirically and give an efficient method
of generating unsatisfiable CSP instances across a spectrum. We
observe that the tensor decomposition method proves unsatisfi-
ability of more instances and is twice as fast compared to the
original method of Gaur, Jackson, and Havens (1997) on a com-
prehensive test set. For dense instances it is twenty times faster
on average, though the fraction of instances proved unsatisfiable
drops down. The tensor decomposition method also improves
the incomplete method in (Benhamou and Saı̈di, 2008) as dis-
cussed in Section 3. Thus our approach partially answers chal-
lenge 5 in (Selman, Kautz, and McAllester, 1997). Our tensor
decomposition based framework can for unsatisfiability of arbi-
trary CSPs, not just binary CSPs.

2 Motivation
Constraint solvers have enjoyed resounding success in finding
solutions to large scale optimization problems with order of mil-
lions of variables. The two issues of ‘finding a solution if one
exists’ and ‘showing that there is no solution’ are qualitatively
very different. The former task is in NP and the latter is in Co-
NP. The constraint satisfaction problems generated as shown be-
low do not have a solution. These instances show that the state of
art constraint solvers are woefully inadequate at answering the
second question. Therefore new algorithms have to designed to
show that a CSP does not have a solution.

The instances that we provide come from a conjecture due to
Erdős (1981). The conjecture states that any union of n cliques
each of order n such that no two cliques intersect in more than
one vertex is n-colorable. The conjecture is still open. A natu-
ral question to ask is whether the number of cliques can be in-
creased without increasing the chromatic number. In fact there
are graphs which are union of n + 1 cliques each of order n
pairwise intersecting in at most one vertex which are not n-
colorable.

Let mat be a k + 1× k matrix constructed as follows:

var elem = 1;
for (j =1; j <= k; j++) {

for (i = 1; i <= j ;i++) {
mat[i][j] = elem;
mat[j+1][i] = elem;
elem = elem +1;

}
}

The matrix for n = 8 is

[[1 2 4 7 11 16 22 29]
[1 3 5 8 12 17 23 30]
[2 3 6 9 13 18 24 31]
[4 5 6 10 14 19 25 32]
[7 8 9 10 15 20 26 33]
[11 12 13 14 15 21 27 34]
[16 17 18 19 20 21 28 35]
[22 23 24 25 26 27 28 36]
[29 30 31 32 33 34 35 36]]

The rows of this matrix are the cliques, and any two cliques in-
tersect in exactly one vertex. The number of cliques is one more
than the size of each clique. For each even n = 4, 6, 8, . . . the
corresponding graph is not n-colorable. It is worthwhile to note

that for odd n, the resulting graph is n colorable. The coloring
constraints can be described using pairwise compatibility rela-
tions or using n-ary relations. It has been argued that the n-ary
allDifferent constraint (Régin, 1994) is a better way to model.
An allDifferent constraint on n variables with at most n − 1
different domain values can be never be satisfied (Hall’s Match-
ing Theorem). Therefore, the use of allDifferent constraint in
the model easily shows that the graph is not k colorable for all
k ≤ n− 1.

We use the allDifferent constraint (one for each clique) to
model the coloring problem (with n colors) and solve it us-
ing a state of art constraint solver (CP optimizer in IBM ILOG
CPLEX 12.9), default options with a parallel search using 32
threads on Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz. For
n = 4, 6 the IBM ILOG CPLEX solver took 0.190, 6.570 sec-
onds respectively. For n = 8 the program did not finish within
45 minutes.

For n = 6, the number of branches was 2,023,823 with
996,880 fails. The search speed (number branches/second) was
876,113.9. The search grows exponentially and it would impos-
sible for the current techniques to prune and show that union
of n + 1 cliques of size n each (as constructed above) is not
n-colorable for even n ≥ 8.

3 Related Research
Several constraint propagation methods: arc-consistency, path-
consistency and k-ary consistency (weak and strong) (Monta-
nari, 1974; Mackworth and Freuder, 1985) are in wide spread
use. The idea is to infer additional constraints and eventually
derive a CSP that is quickly shown to be unsolvable. Régin
(1994, 1996) developed constraint propagation methods for all-
different constraints. Van Hentenryck (1989) studied bound con-
straints and cardinality constraints in constraint logic program-
ming.

Various subclasses of CSP are known to be solvable in poly-
nomial time. Freuder (1982) was the first to relate the structure
of the CSP to its complexity and showed that a tree structured
CSP can be solved in polynomial time using arc-consistency.
Dechter and Pearl (1989) introduced the notion of induced-
width and related it to the level of consistency required for a
backtrack-free search. Gottlob, Greco, and Scarcello (2014)
proposed to view the structure of a CSP as a hypergraph, and
proved that a CSP with constant hyper-width is solvable in poly-
nomial time. This result subsumes all the above mentioned re-
sults relating structure to complexity. For a comprehensive sur-
vey on the complexity issues in CSP, see the paper by Carbonnel
and Cooper (2016).

Schaefer (1978) dichotomy theorem states that every fam-
ily of satisfiability instances is either in polynomial time or is
NP-complete. Hell and Nešetřil (1990) proved a similar di-
chotomy theorem for graph homomorphism. Both, satisfiabil-
ity and graph homomorphism are CSPs. Therefore it is natu-
ral to ask the question for CSPs in general. Feder and Vardi
(1998) conjectured the existence of a dichotomy theorem for
CSPs. Bulatov (2017) recently proved, using algebraic meth-
ods, that every family of a non-uniform CSP is either solvable
in polynomial time or is NP-complete, thereby establishing the
Feder–Vardi conjecture.

The microstructure is a Karp reduction from CSP to k-clique.
Therefore, graph-theoretic properties can be used to determine
the solvability of a CSP. For instance, if the microstructure is
perfect then the CSP can be solved in polynomial time (Sala-
mon and Jeavons, 2008). Recently, a very interesting approach
based on patterns, forbidden in the microstructure has been de-
veloped. Cooper, Jeavons and Salamon defined the broken tri-

angle property (BTP) in a microstructure with respect to a given
variable ordering (Cooper, Jeavons, and Salamon, 2010). They
showed that if the microstructure is BTP free with respect to
some ordering then the CSP can be solved in polynomial time.
Furthermore, the existence of a BTP free ordering can also be
determined in polynomial time. Tractability results for several
other forbidden patterns have been established by Cohen et al.
(2012). A dichotomy is not known for the BTP free property.
Hence, several relaxations of the BTP free property have been
studied. In particular, m-fBTP (El Mouelhi, 2017, 2018) im-
plies tractability using arc-consistency or arc-consistency with
forward checking.

Nearly all of the incomplete methods that test for unsatisfi-
ability, rely on the microstructure (Jégou, 1993). The incom-
plete method of Gaur, Jackson, and Havens (1997) is to color
the microstructure of the CSP using a prescribed number of col-
ors. They showed that the method is intrinsically different from
methods based on arc-consistency and also performed a limited
empirical evaluation. Bes and Jegou (2005) performed a de-
tailed assessment and argued for the limited applicability of the
technique. Benhamou and Saı̈di (2008), extended the approach
of Gaur, Jackson, and Havens (1997) to propose a new incom-
plete method based on the notion of dominance in CSPs and
established wide applicability. We comment on the relationship
of our work to the work of Benhamou and Saı̈di (2008). They
integrated the approach of Gaur, Jackson, and Havens (1997)
with generalized arc consistency (GAC) on all-different con-
straint due to Régin (1994). Either the original CSP is shown to
be unsatisfiable using the method of Gaur, Jackson, and Havens
(1997) or a new CSP (a single all-different constraint) is formed
using the original CSP and its coloring. GAC on the new CSP
may reduce the domains in the original CSP. If that happens, a
new microstructure is created and the process iterates. Greedily
coloring the microstructure (Step 5, in Algorithm 1) is a crucial
component in (Benhamou and Saı̈di, 2008). Any improvement
to Step 5, improves their algorithm overall. Our decomposition
provides a faster way to color the microstructure, thereby im-
proving Step 5 of Algorithm 1 in (Benhamou and Saı̈di, 2008).

4 Decomposition into Tensors
We give the definitions and an overview of our approach in this
section. The technical details appear in the next Section. A
binary CSP is a 3-tuple (X,D,R), where X is the set of vari-
ables, D is the set of domain values, and R is a set of binary
relations, called constraints, of pairwise compatible values for
pairs of variables in X . Without loss of generality, we assume
that each variable x ∈ X takes values in the domain D. The
set of pairwise compatible values for variables x, y are speci-
fied by a relation Rxy ⊆ D × D. The relation Rxy is symmet-
ric if (a, b) ∈ Rxy then (b, a) ∈ Rxy . Given an assignment
x = a, y = b, constraint Rxy is satisfied if (a, b) ∈ Rxy . A CSP
is said to be satisfiable if every variable is assigned a value such
that all the constraints are satisfied. If no such assignment of
values to the variables exists, then the CSP is unsatisfiable. As-
sociated with each CSP is a graphG called the constraint graph,
in which the nodes are the variables, and (x, y) is an edge if there
is a relation Rxy ∈ R.

The following reduction due to (Dechter and Pearl, 1989;
Rossi, Petrie, and Dhar, 1990) can be used to transform a non-
binary CSP with n constraints into a binary CSP. For each
allowed k-tuple of values (v1, v2, . . . , vk) in a k-ary relation
R(x1, x2, . . . , xk); we have a node (value). An edge connects
two k-tuples belonging to different relations Ri, Rj if the ”un-
derlying assignment” is compatible. The nodes that belong to
the k-tuples from the same constraint form an independent set.

Each constraint corresponds to a variable, the k-tuples of val-
ues are the values that are allowed by the constraint, in the
new binary CSP. The compatible nodes assign the same value
to the common variables in the original CSP. A clique in the mi-
crostructure of the binary CSP constructed as above corresponds
to a solution of the original CSP. If the microstructure can be col-
ored with < n colors, then the non-binary CSP is not satisfiable.
There is another reduction method due to Peirce, Hartshorne,
and Weiss (1931), which proves that binary CSPs have the same
expressive power as arbitrary CSPs. Please see (Rossi, Petrie,
and Dhar, 1990) for further details of the reductions. Therefore,
from now we will assume without loss of generality that the CSP
is binary.

Definition 1 (Microstructure) Consider a CSP (X,D,R)
with constraint graph G and relations in R. The microstruc-
ture Gµ of the CSP (Jégou, 1993) is a graph defined as fol-
lows: For every unconstrained pair of variables x, y, assume
that Rxy ∈ R is the universal relation allowing all pairs of val-
ues for x, y. There is a node xv for every pair of variable x ∈ X
and value v ∈ D. There is an edge (xu, yw) if and only if x 6= y
and (u,w) ∈ Rxy .

The following observation can be used to test for the unsatis-
fiability of a CSP.

Observation 1 (Gaur, Jackson, and Havens, 1997) An n-
variables CSP is unsatisfiable if the microstructure is (n − 1)-
colorable.

Binary relations can be visualized as directed graphs possi-
bly with loops. If the relation is symmetric we replace the
pair of oppositely directed edges by an undirected edge. The
not-all-equal relation (6=) over domain {1, 2, 3}, is the symmet-
ric relation 6=xy= {(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)},
represented by a triangle graph. The equal (=) re-
lation over domain {1, 2, 3}, is =xy= {(1, 1), (2, 2),
(3, 3)}, represented by a three-node graph with only edges being
loops on the nodes. Let Ck be the complete graph with loops on
every node. This corresponds to a complete relation on k values
(every pair of values is compatible with the relation). Let Nk
be the complete graph without any loops. This corresponds to
the not-all-equal relation over k values. Given a graph G with
k nodes, let G′ denote the complement of G. Finally, the chro-
matic number of a graph G denoted χ(G) is the least number of
colors needed to color the nodes ofG such that all pairs of nodes
that share an edge, have different colors.

Tensor Product of Digraphs
A digraph (or directed graph) G with node set (or vertex set)
V (G) and edges set E(G) is a graph with each edge endowed
with a direction. The (directed) edges of a digraph are typically
called arcs. Here, we make no notational distinction between an
edges joining the nodes a and b and an arc directed from a to
b, denoting both by (a, b). The degree degG(v) of a node v in
a digraph (graph) G is the total number of arcs (edges) meeting
the node with loops at v counted twice. We simply write deg(v)
if G is clear from the context.

A digraph G is symmetric if (a, b) ∈ E(G) implies (b, a) ∈
E(G). A symmetric digraph can be represented by an undi-
rected graph by replacing every pair of symmetric arcs by a sin-
gle undirected edge. In this way, graphs can be considered spe-
cial instances of digraphs. The digraphs (graphs) we consider
have no parallel arcs (edges), that is, more than one arcs (edges)
with the same initial and terminal node (joining the same pair
of nodes), but may possess loops. We refer to Chartrand, Les-
niak, and Zhang (2015) for the standard terminology concerning

Figure 1: Tensor product (⊗) of digraphs Figure 2: Tensor product (⊗) of graphs

graphs and digraphs. It is easy to observe that any binary rela-
tion on a nonempty set can be expressed as a digraph and vice
versa. The underlying graph of a digraph is the graph obtained
by dropping all the arc directions. The chromatic number of a
loopless digraph is defined to be the chromatic number of its
underlying graph.

Introduced as an operation on binary relations in (Whitehead
and Russell, 1912), the tensor product can be naturally defined
for digraphs (and hence for graphs) as follows (Hammack, Im-
rich, and Klavzar, 2016). Given digraphs (resp. graphs) G and
H , the tensor product G ⊗ H has node set V (G) × V (H) =
{ab : a ∈ V (G), b ∈ V (H)}, the Cartesian product of V (G)
and V (H), with an arc directed from ab to cd (resp. an edges
joining ab and cd) if (a, c) ∈ E(G) and (b, d) ∈ E(H).

Clearly, G ⊗ H = H ⊗ G. Also, |V (G ⊗ H)| = |V (G)| ·
|V (H)|, where |S| denotes the size of a set S. Moreover, for
any ab ∈ V (G ⊗ H), deg(ab) = deg(a) · deg(b). For any
digraphs (or graphs) G and H , G ⊗H contains |V (H)| copies
ofG and |V (G)| copies ofH . Figure 1 shows the tensor product
of two digraphs and Figure 2 shows that tensor product of their
underlying graphs. We observe that the latter contains twice as
many edges as the former. A CSP, along with the decomposition
of the microstructure into constituent tensors is shown in Figure
3.

Note that G ⊗ H is loopless irrespective of G or H having
loops or not, and therefore, χ(G⊗H) is well-defined. If G and
H are loopless digraphs, then χ(G) and χ(H) are also well-
defined. Since each copy ofG inG⊗H can be properly colored
using χ(G) colors, we have the following well-known property
of tensor products (Hammack, Imrich, and Klavzar, 2016).
Fact 1 If G and H are loopless digraphs (or graphs), then

χ(G⊗H) ≤ min{χ(G), χ(H)}. (1)

When G and H are loopless graphs (Hedetniemi, 1966) con-
jectured the stronger relation

χ(G⊗H) = min{χ(G), χ(H)}. (2)

The digraph analogue of the conjecture does not hold (Pol-
jak and Rödl, 1981). Hedetniemi’s conjecture has been one
of the most important open problems on graph coloring. It is
known to be true in some cases including if one of the graphs is
4-colorable or the complete graph Nk (Hammack, Imrich, and
Klavzar, 2016). However, the conjecture has been disproved in
general recently (Shitov, 2019).

Decomposition of microstructure
The microstructure graphGµ of a binary k-CSP (X,D,R) with
constraint graph G and |D| = k can also be viewed as a digraph
as follows:

Definition 2 (Microstructure - the general case) The digraph
Gµ has a node xv for every pair of variable x ∈ X and value

v ∈ D. There is an arc (xu, yw) if and only if x 6= y and
(u,w) ∈ Rxy . As before, for every unconstrained pair of vari-
ables x, y, we assume that Rxy ∈ R is the universal relation
allowing all pairs of values for x, y.

Given x, y ∈ X , we denote by Gxy the digraph obtained by
deleting all arcs from G except (x, y). Recall, that Rxy is the
relation that lists compatible values for the variables x, y. Com-
paring the definitions of microstructure and tensor product, we
have the following.

Observation 2 Gµ =
⋃

(x,y)∈E(G)

(Gxy ⊗Rxy)
⋃

(G′ ⊗ Ck).

If every Rxy is the same relation R, one gets the simpler ex-
pression

Gµ = (G⊗R) ∪ (G′ ⊗ Ck).
Using the fact that the chromatic number of a union of di-

graphs is bounded above by the product of their chromatic num-
bers, we get

χ(Gµ) ≤
∏

(x,y)∈E(G)

χ(Gxy ⊗Rxy) · χ(G′ ⊗ Ck),

which reduces to

χ(Gµ) ≤ χ(G⊗R) · χ(G′ ⊗ Ck),
if the relations Rxy are all the same.

Now, relations (1) and (2) can be used to upper bound
χ(Gxy ⊗ Rxy) or χ(G ⊗ R), but not χ(G′ ⊗ Ck) as Ck has
loops. However, note that G′ ⊗ Ck is a graph of significantly
smaller number of edges than Gµ. We therefore, have

χ(Gµ) ≤
∏

(x,y)∈E(G)

min{χ(Gxy), χ(Rxy)} · χ(G′ ⊗ Ck),

or the reduced form

χ(Gµ) ≤ min{χ(G), χ(R)} · χ(G′ ⊗ Ck).
Since Gxy , G, Rxy and G′ ⊗ Ck are all considerably smaller
sized graphs than Gµ, we can obtain an upper bound on χ(Gµ)
rather efficiently.

Loopless k-CSP
If all the relations, considered as digraphs, are loopless in a CSP,
then we can expedite the computation of the upper bound. We
use the following observation regarding the tensor decomposi-
tion and the inequality (1). If a relation (equivalently a digraph)
R is partitioned (edges and not the nodes in the digraph are par-
titioned) into relations Ra and Rb, then for any digraph G,

G⊗R = (G⊗Ra) ∪ (G⊗Rb),
and

χ(G⊗R) ≤ χ(G⊗Ra) · χ(G⊗Rb).

Figure 3: Leftmost graph is the constraint graph G of a CSP with constraints R=, R6=. The subgraph of G in black (blue) is G= (G6=).
The second box contains the three graphs corresponding to relations =, 6=, C2. The third graph is the tensor product G6= ⊗ R 6=. The
fourth graph is the tensor product G=⊗R=. The last graph is the tensor product G′⊗C2. The labels within () on the nodes correspond
to colors.

We partition the complete relation as Ck = Ik ∪ Nk, where
Ik is the ‘=’ relation, and Nk is the ‘6=’ relation. For a k-CSP
(X,D,R) with all the relations in R the same loopless relation
R, and constraint graph G, the decomposition (1) requires us to
compute χ(G⊗R)·χ(G′⊗Ck), which by the observation above
is ≤ χ(G ⊗ R) · χ(G′ ⊗ Ik) · χ(G′ ⊗ Nk). As R and Nk are
loopless, we know by (1) that χ(G⊗R) ≤ min{χ(G), χ(R)} ≤
χ(R) ≤ k. Moreover, since (2) holds when one of the graphs is
Nk (complete graph), χ(G ⊗ Nk) = min{χ(G), χ(Nk)} ≤ k.
The tensor product G′ ⊗ Ik is k copies of G′, which can be
colored by χ(G′) colors. Hence, the following observation.
Observation 3 If for a loopless k-CSP on n variables, k2 ·
χ(G′) < n then the CSP is unsatisfiable. Note that this only
requires us to color the complement of the constraint graph re-
sulting in a substantial speed-up.

As there are infinitely many graphs with a constant chromatic
number k such that k3 < n, we have an infinite family for which
this decomposition method is able to prove unsatisfiability.

5 Experimental Results
Gaur, Jackson, and Havens (1997) generated random CSPs us-
ing the method of Smith (2001). They then identified unsolvable
CSPs using an ILP solver. This set is used for testing. Some of
the unsolvable instances were arc-consistent, and others were
not. The method limits them to small-sized instances (n = 10)
as the solvability of the CSP needs to be determined. Further-
more, the relation between a pair of variables is asymmetric with
a high probability. We conduct our experimental evaluation on
symmetric CSPs resulting in symmetric microstructure graphs.
The instances are arc-consistent, unsolvable, and of large size.
All experiments were implemented on Intel(R) Core(TM) i5-
4210U CPU @ 1.70GHz with 8GB of RAM in julia 0.6.2.

We generate an Erdos and Rényi (1960) random graph Gn,p
over n nodes with an edge probability p. For a constant and fixed
p, the family of graphs is known as dense. The dense graphs
have interesting global properties. For instance, the clique num-
ber (the maximum number of pairwise adjacent nodes) ofGn,1/2
is 2 log n, and the maximum degree is n/2 almost always, and
far away from the chromatic number of Gn,1/2, which is close
to n/(2 log n) almost always (Bollobás, 1988). Thus, for any
k < n/2 log n, the Gn,1/2 is not k-colorable. This gives us an
easy way to obtain unsolvable symmetric k-CSPs, avoiding the
use of an ILP solver as in (Gaur, Jackson, and Havens, 1997).
Recall that a CSP is arc-consistent if, for any pair of variables
(x, y), for all values in the domain of x, there is some consis-
tent value in the domain of y (and vice-versa). The resulting
instances are therefore arc-consistent for all k ≥ 2.

We do not use the method known as Model B (Smith, 2001)
for generation of random CSPs. Model B was studied in

(Achlioptas et al., 2001). They showed that the model is
flawed is the sense that the random CSP instances do not have
asymptotic threshold and almost all instances they are over-
constrained. Unsatisfiability of these can be readily determined
using trivial local inconsistencies. We wanted to avoid unsat-
isfiability detection by an easy use of local consistency check-
ing. Therefore we used Erdos-Reyni random graphs to highlight
cases where local consistency fails, but our method succeeds in
practice.

We consider the loopless symmetric k-CSP corresponding to
the ‘6=’ relation with constraint graph Gn,p. The microstructure
Gµ = Gn,p ⊗ Nk ∪ G′

n,p ⊗ Ck is the union of the two tensor
products. The unsatisfiability of such a CSP can be proved in
three ways.

The pseudo-code for the three methods below is listed in the
appendix.

• µ (microstructure) method: This is the original method of
Gaur, Jackson, and Havens (1997). We color the microstruc-
tureGµ and check if χ(Gµ) < n. If so, the CSP is unsolvable.

• ⊗ (tensor decomposition) method: This is one of the decom-
position methods developed in this paper. If χ(Gn,p ⊗ Nk) ·
χ(G′

n,p ⊗ Ck) < n then the CSP Gn,p is unsolvable. Since,
equation (2) is satisfied when one of the graphs isNk, we have
χ(Gn,p ⊗ Nk) = k. To determine the unsatisfiability using
the second method we only color χ(G′

n,p ⊗ Ck).
• ⊗E (fast tensor decomposition) method: Observation 3 gives

a third way. We obtain a coloring of the complement of the
constraint graph and if k2χ(G′) < n, then the CSP is unsat-
isfiable.

We use the following greedy algorithm as a baseline to color
a graph. We color a node using the first available color, given an
ordering of the nodes. If no color is available, then we increase
the size of the palette. We consider six orderings; the nodes
are ordered in the decreasing order of degree, and five random
ones. One can replace this step with a method that chooses the
next node to color dynamically, such as Brelaz’s method. This
replacement can only improve the results.

We generated Gn,p instances for n in the interval [10, 100]
in steps of 10 and p in [0.1, 1] in steps of 0.1. We
used the above three methods to color the microstruc-
ture. For each p, 1620 instances were generated. The
number of instances in the increasing order of n are
300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 2700. The
number of instances in the increasing order of k ≥ 2 are
3000, 2700, 2400, 2100, 1800, 1500, 1200, 900, 600.

We first present the aggregate results. Next, we examine the
effect of varying the parameters. Finally, we describe the run-
ning times. Table 1 lists the number of instances proved unsat-

µ ⊗ ⊗E #
false false false 6744
true false false 144
true true false 5614
true true true 3216
false true false 482

Table 1: Number of Unsolvable instances Gn,p

isfiable by a subset of methods. A total of 9456 instances of
16200 were proved unsatisfiable using one of the methods. The
µ,⊗,⊗E methods proved unsatisfiability of 8974,9312,3216 in-
stances respectively. The decomposition based methods proved
unsatisfiability of 482 additional instances which were not de-
tected by the old method. The old method detected 144 addi-
tional instances than the other methods.

The number of instances proved unsolvable by the three meth-
ods when grouped by n, p, k are shown in the Table 2. ’X’ in-
dicates missing values. For each grouping by n, p, k we deter-
mine the fraction of the total instances that are proved unsolv-
able by the first two strategies (µ,⊗). The three plots (Figures
4, 5, 6) give the relative performance of the two strategies. The
fraction of the instances determined unsolvable by coloring the
microstructure are represented on the x-axis, whereas the y-axis
represents the fraction of the instances with a proof of unsatisfia-
bility obtained by coloring the tensor product. Figure 7 show the
relative performance of the faster tensor decomposition based
strategy⊗E compared to the⊗ strategy grouped by n, p, k. The
percentage of instances proved unsatisfiable by ⊗ (⊗E) strate-
gies are on the x-axis (y-axis).

Figure 4: Relative Performance w.r.t. p

microstructure

0.0 0.2 0.4 0.6 0.8 1.0

0.50

1.00

0.00

0.25

0.75

p

0.00

0.25

0.50

0.75

1.00

te
n
so

r

Fraction unsolvable wrt p

Figure 5: Relative Performance w.r.t. k

microstructure

0.0 0.2 0.4 0.6 0.8 1.0

7.5

2.5

10.0

1.0

5.0

k

0.0

0.2

0.4

0.6

0.8

1.0

te
n
so

r

Fraction unsolvable wrt k

Finally, a comment on the running times. If both G⊗Nk and
G′ ⊗ Ck are to be colored, then they can be colored in parallel,
thereby reducing the time. The earlier method (Gaur, Jackson,
and Havens, 1997) is inherently sequential. The average times

Figure 6: Relative Performance w.r.t. n

microstructure

0.4 0.5 0.6 0.7 0.8 0.9

50

25

75

100

1

n

0.50

0.55

0.60

0.65

0.70

0.75

te
n
so

r

Fraction unsolvable wrt n

Figure 7: Relative Performance of x = ⊗ and y = ⊗E

x

0.00 0.25 0.50 0.75 1.00

N
P
K

type

0.0

0.5

1.0

y

as a function of n is shown in Figure 8. The curves in the order
from the highest to the lowest are for µ,⊗,⊗E respectively. The
proposed method ⊗ is twice as a fast as the old method µ. The
faster tensor method ⊗E is faster by a factor of 40 for values of
p > 0.75. The ⊗E method is about 20 times faster on average
(over all values of p), and can prove unsatisfiability of 20% of
all the instances considered.

Figure 8: Runtime

n

0 25 50 75 100

0.00

0.05

0.10

0.15

0.20

0.25

se
co
n
d
s

Runtime

6 Discussion
Let us call a CSP, a 2-CSP if all the variable domains are of
size 2. In our experiments, we observe that the relative fraction
of provably unsolvable 2-CSP instances is high (> 0.55) for all
the methods. A coloring 2-CSP can be decided in polynomial
time. We suspect, the randomized coloring method proves un-
satisfiability, almost always for 2-CSPs. A proof of this would
be serious progress towards answering challenge 5 in (Selman,
Kautz, and McAllester, 1997).

The tensor decomposition methods are applicable for any
CSP with an arbitrary number of different k-ary relations on
pairs of variables. In our experiments, we assumed that all the
binary relations are the same and symmetric (not-all-equal). It

n µ ⊗ ⊗E p µ ⊗ ⊗E k µ ⊗ ⊗E
10 247 196 68 0.1 216 163 X X X X X
20 460 430 145 0.2 283 261 X 2 2887 2768 1632
30 615 616 237 0.3 416 451 X 3 1964 2028 600
40 753 770 278 0.4 533 593 66 4 1348 1459 264
50 872 932 330 0.5 717 755 192 5 953 1004 210
60 1011 1059 362 0.6 915 997 237 6 674 747 180
70 1141 1186 408 0.7 1170 1289 262 7 473 541 150
80 1230 1295 419 0.8 1484 1563 368 8 343 372 120
90 1297 1387 472 0.9 1620 1620 561 9 212 258 60
100 1348 1441 497 1.0 1620 1530 1530 10 120 135 X

Table 2: Number of provably unsatisfiable instances grouped by n, k, p. Columns µ (⊗)[⊗E] is the number of instances proved
unsolvable by coloring the microstructure (tensor product of G′ with complete relation Ck)[coloring G′]

would be interesting to conduct further experiments in the gen-
eralized setting. If there are r different relations, possibly asym-
metric, then there are r + 1 tensor products that have to be col-
ored. They can be colored in parallel, reducing the running time
by a factor of O(1/(r + 1)). The upper bound on the chromatic
number of the microstructure is computed as a product of the
chromatic numbers of the r + 1 tensor products. A theoretical
analysis, establishing that r = 1 is the worst-case (or prove oth-
erwise) for the tensor decomposition method is the second inter-
esting question. Some immediate progress can be made here by
assuming that m < r relations give rise to loopless digraphs, in
which case we can use Observation 3, and bound the chromatic
number by the number of nodes in the component tensor.

Third, and very interesting question is whether the product
upper bound on the chromatic number in the decomposition can
be strengthened. This requires the development of new heuristic
ways of combining the colorings of the tensor products. Any
progress on this question would immediately increase the ef-
ficacy of our method. This in turn would further speedup the
method of Benhamou and Saı̈di (2008). We end with a note. In
our illustrations the tensor decomposition is based on the rela-
tions in the CSP. However, this does not have to be the case, the
decomposition is not fixed. In fact, a single CSP relation can
be decomposed into multiple relations, (and multiple CSP rela-
tions can be combined into one). This raises the possibility of
the development of other general methods for decomposing the
microstructure graphs into their constituent tensors.

Acknowledgements: The authors thank the referees for the
comments.

7 Appendix
This section lists the pseudo-code for the three methods
µ,⊗,⊗E . We assume the existence of a method color(G),
which colors a graph G greedily, and returns the number of col-
ors used. We also assume existence of the tensor product oper-
ator (⊗). julia language provides the kron operator which can
be used to construct the adjacency matrix of G ⊗ R, given the
adjacency matrices for G,R.

We use the following convention in the listings below. G is
the constraint graph. R1, R2, . . . , Rm are the relation graphs on
the edges of G. G(Ri) is the graph obtained using the subset of
edges in G constrained by relation Ri. The variables have the
same domain D and the number of values in D is k.

Algorithm 1 is the method of Gaur, Jackson, and Havens
(1997). The pseudo-code in Algorithm 2 describes the ten-
sor decomposition based method. We illustrate the paral-
lelism while coloring the tensors in the decomposition using the
@parallel construct in julia. This executes the for loop in

Algorithm 1 µ method (Gaur, Jackson, and Havens, 1997)
Require: Binary CSP, given by G and R′

is.
1: procedure µ(G,R1, R2, . . . , Rm)
2: Gµ = φ . Initialize Gµ to an empty graph.
3: for i ∈ [1..m] do . Compute the microstructure
4: Gµ = Gµ ∪ (G(Ri)⊗Ri)
5: Gµ = Gµ ∪ (G′ ⊗ Ck)
6: return color(Gµ) . Color the microstructure

parallel and the results of individual computations are combined
(reduced) using the * operator.

Algorithm 2 ⊗ method
Require: Binary CSP, given by G and R′

is.
1: procedure ⊗(G,R1, R2, . . . , Rm)
2: colors = 1
3: colors = @parallel (*) . Execute the for loop in

parallel and reduce the results using the (*) operator
4: for i ∈ [1..m] do
5: if Ri is loopless then
6: return min{|G(Ri)|, |Ri|} . Using Eq (1)
7: else
8: return color(G⊗Ri)
9: return colors * color(G′ ⊗ Ck)

Finally, we describe the method based on Observation 3. This
method works only when all the relations are loopless. It colors
just the complement of the constraint graph. The number of
colors needed for the tensors in the decomposition are estimated
using (1).

Algorithm 3 ⊗E method
Require: Binary CSP, given by G and R′

is. R
′
is are loopless.

1: procedure ⊗(G,R1, R2, . . . , Rm)
2: colors = 1
3: for i ∈ [1..m] do
4: colors = colors * min{|G(Ri)|, |D|} . O(1)

computation.
5: . Decompose Ck as Ik ∪Nk
6: return colors * |D| * color(G′)

References
Achlioptas, D.; Molloy, M. S.; Kirousis, L. M.; Stamatiou, Y. C.;

Kranakis, E.; and Krizanc, D. 2001. Random constraint satisfac-
tion: A more accurate picture. Constraints 6(4):329–344.

Benhamou, B., and Saı̈di, M. R. 2008. A new incomplete method for
CSP inconsistency checking. In AAAI, 229–234.

Bes, J.-N., and Jegou, P. 2005. Proving graph un-colorability with a
consistency check of CSP. In Tools with Artificial Intelligence, 2005.
ICTAI 05. 17th IEEE International Conference on, 2–pp. IEEE.

Bollobás, B. 1988. The chromatic number of random graphs. Combi-
natorica 8(1):49–55.

Bulatov, A. A. 2017. A dichotomy theorem for nonuniform CSPs. In
Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual
Symposium on, 319–330. IEEE.

Carbonnel, C., and Cooper, M. C. 2016. Tractability in constraint
satisfaction problems: a survey. Constraints 21(2):115–144.

Chartrand, G.; Lesniak, L.; and Zhang, P. 2015. Graphs and Digraphs.
Chapman and Hall/CRC.

Cohen, D. A.; Cooper, M. C.; Creed, P.; Marx, D.; and Salamon, A. Z.
2012. The tractability of CSP classes defined by forbidden patterns.
Journal of Artificial Intelligence Research 45:47–78.

Cooper, M. C.; Jeavons, P. G.; and Salamon, A. Z. 2010. Generaliz-
ing constraint satisfaction on trees: Hybrid tractability and variable
elimination. Artificial Intelligence 174(9-10):570–584.

Dechter, R., and Pearl, J. 1989. Tree clustering for constraint networks.
Artificial Intelligence 38(3):353–366.

El Mouelhi, A. 2017. A BTP-based family of variable elimination rules
for binary csps. In AAAI, 3871–3877.

El Mouelhi, A. 2018. On a new extension of BTP for binary CSPs.
Constraints 1–28.

Erdős, P. 1981. On the combinatorial problems which i would most
like to see solved. Combinatorica 1:25–42.

Erdos, P., and Rényi, A. 1960. On the evolution of random graphs.
Publ. Math. Inst. Hung. Acad. Sci 5(1):17–60.

Feder, T., and Vardi, M. Y. 1998. The computational structure of mono-
tone monadic snp and constraint satisfaction: A study through data-
log and group theory. SIAM Journal on Computing 28(1):57–104.

Freuder, E. C. 1982. A sufficient condition for backtrack-free search.
Journal of the ACM (JACM) 29(1):24–32.

Gaur, D. R.; Jackson, W. K.; and Havens, W. S. 1997. Detecting
unsatisfiable CSPs by coloring the micro-structure. In AAAI/IAAI,
215.

Ghédira, K., and Dubuisson, B. 2013. Constraint Satisfaction Prob-
lems. John Wiley. chapter CSP solving algorithms, 7398.

Gottlob, G.; Greco, G.; and Scarcello, F. 2014. Treewidth and hypertree
width. Tractability: Practical Approaches to Hard Problems 1.

Hammack, R.; Imrich, W.; and Klavzar, S. 2016. Handbook of Product
Graphs. CRC Press.

Hedetniemi, S. 1966. Homomorphisms of graphs and automata. Tech-
nical report, University of Michigan.

Hell, P., and Nešetřil, J. 1990. On the complexity of h-coloring. Journal
of Combinatorial Theory, Series B 48(1):92–110.

Jégou, P. 1993. Decomposition of domains based on the micro-
structure of finite constraint-satisfaction problems. In AAAI, vol-
ume 93, 731–736.

Kautz, H. A.; Sabharwal, A.; and Selman, B. 2009. Handbook of
Satisfiability. IOS Press. chapter Incomplete algorithms, 185203.

Mackworth, A. K., and Freuder, E. C. 1985. The complexity of some
polynomial network consistency algorithms for constraint satisfac-
tion problems. Artificial intelligence 25(1):65–74.

Montanari, U. 1974. Networks of constraints: Fundamental properties
and applications to picture processing. Information sciences 7:95–
132.

Peirce, C. S.; Hartshorne, C.; and Weiss, P. 1931. Collected papers of
Charles Sanders Peirce. Vol. 3. Belknap Press of Harvard University
Press.

Poljak, S., and Rödl, V. 1981. On the arc-chromatic number of a di-
graph. J. Combin. Theory Ser. B 31(2):190–198.

Régin, J.-C. 1994. A filtering algorithm for constraints of difference in
CSPs. In AAAI, volume 94, 362–367.

Régin, J.-C. 1996. Generalized arc consistency for global cardinality
constraint. In Proceedings of the thirteenth national conference on
Artificial intelligence-Volume 1, 209–215. AAAI Press.

Rossi, F.; Petrie, C. J.; and Dhar, V. 1990. On the equivalence of
constraint satisfaction problems. In ECAI, volume 90, 550–556.

Salamon, A. Z., and Jeavons, P. G. 2008. Perfect constraints are
tractable. In International Conference on Principles and Practice
of Constraint Programming, 524–528. Springer.

Schaefer, T. J. 1978. The complexity of satisfiability problems. In
Proceedings of the tenth annual ACM symposium on Theory of com-
puting, 216–226. ACM.

Selman, B.; Levesque, H. J.; Mitchell, D. G.; et al. 1992. A new method
for solving hard satisfiability problems. In AAAI, volume 92, 440–
446. Citeseer.

Selman, B.; Kautz, H.; and McAllester, D. 1997. Computational chal-
lenges in propositional reasoning and search. In Proceedings of the
Fifteenth International Joint Conference on Artificial Intelligence,
50–54.

Shitov, Y. 2019. Counterexamples to Hedetniemi’s conjecture.
arXiv:1905.02167 [math.CO] 1–3.

Smith, B. M. 2001. Constructing an asymptotic phase transition in ran-
dom binary constraint satisfaction problems. Theoretical Computer
Science 265(1-2):265–283.

Van Hentenryck, P. 1989. Constraint satisfaction in logic programming.

Whitehead, A. N., and Russell, B. 1912. Principia Mathematica, vol-
ume 2. Cambridge University Press.

