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ABSTRACT 7 
In this paper, several soft computing approaches were employed for rainfall prediction. Two aspects 8 

were considered to improve the accuracy of rainfall prediction: (1) carrying out a data-preprocessing procedure, 9 
and (2) adopting a modular modeling method. The proposed preprocessing techniques included moving 10 
average (MA) and singular spectrum analysis (SSA). The modular models were composed of local support 11 
vectors regression (SVR) models or/and local artificial neural networks (ANN) models. In the process of 12 
rainfall forecasting, the ANN was first used to choose data-preprocessing method from MA and SSA. Modular 13 
models involved preprocessing the training data into three crisp subsets (low, medium and high levels) 14 
according to the magnitudes of the training data, and finally two SVRs were performed in the medium and 15 
high-level subsets whereas ANN or SVR was involved in training and predicting the low-level subset. For daily 16 
rainfall record, the low-level subset tended to be modeled by the ANN because it was overwhelming in the 17 
training data, which is based on the fact that the ANN is very efficient in training large-size samples due to its 18 
parallel information processing configuration. Four rainfall time series consisting of two monthly rainfalls and 19 
two daily rainfalls from different regions were utilized to evaluate modular models at 1-day, 2-day, and 3-day 20 
lead-time with the persistence method and the global ANN as benchmarks. Results showed that the MA was 21 
superior to the SSA when they were coupled with the ANN.  Comparison results indicated that modular models 22 
(referred to as ANN-SVR for daily rainfall simulations and MSVR for monthly rainfall simulations) 23 
outperformed other models. The ANN-MA also displayed considerable accuracy in rainfall forecasts compared 24 
with the benchmark.  25 
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1. Introduction 30 

An accurate and timely rainfall forecast is crucial for reservoir operation and 31 

flooding prevention because it can provide an extension of lead-time of the flow forecast, 32 

larger than the response time of the watershed, in particular for small and medium-sized 33 

mountainous basins.  34 

Rainfall prediction is a very complex problem. Simulating the response using 35 

conventional approaches in modelling rainfall time series is far from a trivial task since the 36 

hydrologic processes are complex and involve various inherently complex predictors such as 37 

geomorphologic and climatic factors, which are still not well understood. As such, the 38 

artificial neural network algorithm becomes an attractive inductive approach in rainfall 39 

prediction owing to their highly nonlinearity, flexibility and data-driven learning in building 40 

models without any prior knowledge about catchment behavior and flow processes. They are 41 

purely based on the information retrieved from the hydro-meteorological data and act as 42 

black box. 43 

Many studies have been conducted for the quantitative precipitation forecast (QPF) 44 

using diverse techniques including numerical weather prediction (NWP) models and remote 45 

sensing observations (Davolio et al., 2008; Diomede et al. 2008; Ganguly and Bras, 2003; 46 

Sheng, et al., 2006; Yates et al., 2000), statistical models (Chan and Shi, 1999;Chu and He, 47 
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1995;DelSole and Shukla,2002;Li and Zeng, 2008;Munot, 2007; Nayagam et al., 2008 ), 1 

chaos-based approach (Jayawardena et al., 1994), non-parametric nearest-neighbors method 2 

(Toth et al, 2000), and soft computing-based methods including artificial neural networks 3 

(ANN), support vector regression (SVR) and fuzzy logic (FL) (Brath et al 2002; Dorum et al. 4 

2010;  Guhathakurta 2008; Nasseri et al. 2008;  Pongracz et al. 2001; Sedki et al. 2009; 5 

Silverman and Dracup 2000; Sivapragasam et al. 2001; Surajit, and Goutami, 2007; Talei 6 
et al. 2010; Toth et al 2000; Venkatesan et al. 1997). The contemporary studies focused on 7 

soft computing-based methods. Several examples of such methods can be mentioned. 8 

Venkatesan et al. (1997) employed the ANN to predict the all India summer monsoon 9 

rainfall with different meteorological parameters as model inputs. Chattopadhyay and 10 

Chattopadhyay (2008a) constructed an ANN model to predict monsoon rainfall in India 11 

depending on the rainfall series alone. The fuzzy logic theory was applied to monthly rainfall 12 

prediction by Pongracz et al. (2001). Toth et al. (2000) applied three time series models, 13 

auto-regressive moving average (ARMA), ANN and k-nearest-neighbors (KNN) method, to 14 

short-term rainfall prediction. The results showed that the ANN performed the best in the 15 

improvement of the runoff forecasting accuracy when the predicted rainfall was used as 16 

inputs of the rainfall-runoff model. ANN has also been applied on general circulation model 17 

(GCM). Chadwick et al. (2011) employed an artificial neural network approach to 18 

downscale GCM temperature and rainfall fields to regional model scale over Europe. 19 

Sachindra et al. (2011) developed a model with various soft computing techniques capable 20 

of statistically downscaling monthly GCM outputs to catchment scale monthly streamflows, 21 

accounting for the climate change.  22 

 Recently, models based on combining concepts have been paid more attention in 23 

hydrologic forecasting. Depending on different combination methods, combining models 24 

can be categorized into ensemble models and modular (or hybrid) models. The basic idea 25 

behind the ensemble models is to build several different or similar models for the same 26 

process and to combine them in a combining method (Abrahart and See, 2002; Kim et al, 27 

2006; Shamseldin et al., 1997; Shamseldin, and O’Connor, 1999; Xiong et al., 2001). For 28 

example, Xiong et al. (2001) used a Takagi-Sugeno fuzzy technique to combine several 29 

conceptual rainfall-runoff models. Coulibaly et al. (2005) employed an improved weighted-30 

average method to coalesce forecasted daily reservoir inflows from the KNN model, 31 

conceptual model and ANN model.  Kim et al. (2006) investigated five combining methods 32 

for improving ensemble streamflow prediction.  33 

Physical processes in rainfall and/or runoff are generally composed of a number of 34 

sub-processes so that their accurate modeling by the building of a single global model is 35 

often not possible. Modular models are therefore proposed where sub-processes are first of 36 

all identified and then separate models (also called local or expert model) are established for 37 

each of them (Solomatine, and Ostfeld, 2008). In these modular models, the split of training 38 

data can be soft or crisp. The soft split means the dataset can be overlapped and the overall 39 

forecasting output is the weighted-average of each local model (Shrestha and Solomatine, 40 

2006; Zhang and Govindaraju, 2000; Wang et al., 2006; Wu et al., 2008). Zhang and 41 

Govindaraju (2000) examined the performance of modular networks in predicting monthly 42 

discharges based on the Bayesian concept. Wu et al. (2008) employed a distributed SVR for 43 

daily river stage prediction. On the contrary, there is no overlap of data in the crisp split and 44 

the final forecasting output is generated explicitly from one of the local models (Corzo and 45 
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Solomatine, 2007; Jain and Srinivasulu,2006; See and Openshaw, 2000; Sivapragasam and 1 
Liong, 2005; Solomatine and Xue, 2004). Solomatine and Xue (2004) used M5 model trees 2 

and neural networks in a flood-forecasting problem.  Sivapragasam and Liong (2005) 3 

divided the flow range into three regions, and employed different SVR models to predict 4 

daily flows in high, medium and low regions.  5 

Apart from the adoption of the modular model, the improvement of predictions may 6 

be expected by suitable data preprocessing techniques. Besides the conventional rescaling or 7 

standardization of training data, preprocessing methods from the perspective of signal 8 

analysis are also crucial because rainfall time series may be also viewed as a quasi-periodic 9 

signal, which is contaminated by various noises. Hence techniques such as singular spectrum 10 

analysis (SSA) were recently introduced to hydrology field by some researchers (Marques et 11 

al., 2006; Partal and Kişi, 2007; Sivapragasam et al., 2001). Sivapragasam et al. (2001) 12 

established a hybrid model of support vector machine (SVM) and the SSA for rainfall and 13 

runoff predictions. The hybrid model resulted in a considerable improvement in the model 14 

performance in comparison with the original SVM model. The application of wavelet 15 

analysis to precipitation was undertaken by Partal and Kişi (2007). Their results indicated 16 

that the wavelet analysis was highly promising. In addition, the issue of lagged predictions in 17 

the ANN model was mentioned by some researchers (Dawson and Wilby, 2001; Jain and 18 

Srinivasulu, 2004; de Vos and Rientjes, 2005; Muttil and Chau, 2006). A main reason on 19 

lagged predictions was the use of previous observed data as ANN inputs (de Vos and 20 

Rientjes, 2005). An effective solution was to obtain new model inputs by moving average 21 

over the original data series. 22 

The scope of this study was to investigate the effect of the MA and SSA as data-23 

preprocessing techniques and to couple with modular models in improving model 24 

performance for rainfall prediction. The modular model included three local models which 25 

were associated with three crisp subsets (low-, medium- and high-intensity rainfall) clustered 26 

by fuzzy C-mean (FCM) method. Tthe ANN was first used to choose data-preprocessing 27 

method from MA and SSA. Depending on the selected data-preprocessing technique, 28 

modular models were employed to perform rainfall prediction. Generally, the ANN is very 29 

efficient in processing large-size training samples due to its parallel information processing 30 

configuration. The biggest drawback is that the model outputs are variable because of the 31 

random initialization of weights and biases.  The SVR holds a good generalization and more 32 

stable model outputs. However, it is suitable for a small-size training sample (e.g. below 200) 33 

because the training time exponentially increases with the size of training samples. For the 34 

current rainfall data, the majority of subsets after data split belong to a small-size sample 35 

except for the low-intensity daily rainfall. Therefore, three local SVRs (hereafter referred as 36 

to MSVR) were employed for monthly rainfall data whereas two local SVRs and one ANN 37 

(hereafter referred to as ANN-SVR) were adopted for daily rainfall data. For daily rainfall 38 

record, the low-intensity subset was modeled by the ANN because it was overwhelming in 39 

the training data. For the comparison purpose, the global ANN and the persistence model 40 

were used as benchmarks. To ensure generalization of this study, four cases consisting of 41 

two monthly rainfall series and two daily rainfall series from India and China, were explored.  42 
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2. Methodology 1 

2.1 Data-preprocessing techniques   2 

(1) Moving Average (MA) 3 
 The moving average method smoothes data by replacing each data point with the 4 

average of the K neighboring data points, where K may be called the length of memory 5 

window. The basic idea behind the method is that any large irregular component at any point 6 

in time will exert a smaller effect if we average the point with its immediate neighbors 7 

(Newbold et al., 2003). The most common moving average method is the unweighted 8 

moving average, in which each value of the data carries the same weight in the smoothing 9 

process. For time series 1 2, , , Nx x x , the K-term unweighted moving average is written as 10 

 ( ) when 11 

the backward moving mode is adopted (Lee et al., 2000). The choice of the window length K 12 

is by a trial and error procedure to minimize the ANN prediction error.  13 

(2)  Singular spectrum analysis (SSA)  14 
The SSA is able to decompose the daily rainfall series into several additive 15 

components that typically can be interpreted as ‘trend’ components, various ‘oscillatory’ 16 

components, and ‘noise’ components (Golyandina et al. 2001). The basic algorithm of the 17 

SSA can be referred to Vautard et al. (1992) and Golyandina et al. (2001). Following the 18 

methodology in Vautard et al. (1992), four steps are performed for the explanation of the 19 

SSA algorithm on a univariate time series 1 2, , , Nx x x . The first step is to construct the 20 

‘trajectory matrix’. The ‘trajectory matrix’ results from the method of delays. In the method 21 

of delays, the coordinates of the phase space will approximate the dynamic of the system by 22 

using lagged copies of the time series. The ‘trajectory matrix’, denoted by X , therefore 23 

reflects the evolution of the time series with a suitable choice of ( , m ) window, where m  is 24 

the window length (also called singular number) and   is the delay time.  25 

The next step is the singular value decomposition (SVD) of X . Let TS X X (called 26 

the lagged-covariance matrix). With SVD, X  can be written as TX DLE where D and E  27 

are left and right singular vectors of X , and L  is a diagonal matrix of singular values. E  28 

consists of orthonormal columns, and is also called the ‘empirical orthonormal functions’ 29 

(EOFs). Substituting X  into the definition of S  yields the formula of 2 TS = EL E . Further 30 
T= S E E since 2 =L  where   is a diagonal matrix consisting of ordered 31 

values 1 20 m     . Therefore, the right singular vectors of X  are the eigenvectors of 32 

S . In other words, the singular vectors E  and singular values of X  can be respectively 33 

attained by calculating the eigenvectors and the square roots of the eigenvalues of S .  34 

The third step is to calculate the principal components ( k
ia ’s) by projecting the 35 

original time record onto the eigenvectors as follows, 36 

                                         ( 1)
1

L
k k
i i j j

j

a x e 


  , for 1,2 , 1i N m                                  (1) 37 

where k
je  represents the jth component of the kth eigenvector. Each principal component is 38 

a filtered process of the original series with length n, where n 1N m   .  39 
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The last step is to generate reconstruction components (RCs) with the length size 1 

being the same as the original series. The generation of each RC depends on a convolution of 2 

one principal component with the corresponding singular vector (Vautard et al. 1992). 3 

Therefore, The m  RCs can be achieved if all m  principal components and their associated 4 

eigenvectors are employed in the process of signal reconstruction. Also, the original record 5 

can be filtered by choosing p ( m ) RCs.   6 

2.2 Forecasting models  7 

(1) Persistence model 8 
  The persistence method takes the last observed value as the future rainfall estimate, 9 

i.e. , for ,F
t T tx x T   where tx  is the observed record at instant time t , and F

t Tx   stands for 10 

the estimated rainfall at the lead-time T . For a modified version of the persistence model, 11 

each forecasted rainfall at the lead-time T  equals to the mean value over the last T  12 

observations, given by
T

1i=1

F
t T t ix x T    .  The modified version was adopted in this study.  13 

(2) Artificial neural networks 14 
The feed-forward multilayer perceptron (MLP) among many ANN paradigms is by 15 

far the most popular, which usually uses the technique of error back propagation to train the 16 

network configuration. The architecture of the ANN consists of the number of hidden layers 17 

and the number of neurons in input layer, hidden layers and output layer. ANNs with one 18 

hidden layer are commonly used in hydrologic modeling (Dawson and Wilby, 2001; de Vos 19 

and Rientjes, 2005) since these networks are considered to provide enough complexity to 20 

accurately simulate the nonlinear properties of the hydrologic process. A three-layer ANN is 21 

chosen for the current study, which comprises the input layer with m nodes (i.e., m past daily 22 

rainfall), the hidden layer with h nodes (neurons), and the output layer with one node. The 23 

hyperbolic tangent functions are used as transfer functions in the hidden layer and the output 24 

layer. The model architecture is described by the equation: 25 

                   0 1
1 1

( , , , , ) tanh( )
j

h m
F out
t T ji t i j

j i

x f w m h w w x    
 

    tX                  (2) 26 

where 1t ix   , 1, ,i m  are the m elements in the input vector tX .
 jiw  are the weights 27 

defining the link between the ith  node of the input layer and the jth of the hidden layer; j  28 

are biases associated to the jth node of the hidden layer; 
j

outw are the weights associated to 29 

the connection between the jth node of the hidden layer and the node of the output layer; 30 

and 0 is the bias at the output node. The Levernberg-Marquardt (LM) training algorithm is 31 

used to adjust the w  and   in view of being faster and less easily trapped in local minima 32 

compared with some local optimization methods (Toth et al., 2000).  33 

(3) Support vector regression 34 
SVR performs structural risk minimization (SRM) that aims at minimizing a bound 35 

on the generalization error (Gunn, 1998; Kecman, 2001; Yu et al, 2006; Wu et al., 2008). It 36 

creates a model with good generalization. The SVR can be divided into linear and nonlinear 37 

depending on the kernel function being linear or nonlinear. A nonlinear SVR was used in 38 

this study. Similar to Eq. (1), the underlying function ( )f �  in the context of the nonlinear 39 

SVR is given by 40 
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                                                      ( , ) ( )F
t Tx f b      t tX X                                  (3) 1 

where the input vector tX  in the input space is mapped to a high dimensional feature space 2 

via a nonlinear mapping function ( ) tX . The objective of the SVR is to find optimal , b  3 

and some parameters in kernel function ( ) tX  so as to construct an approximation function 4 

of the ( )f � .   5 

When introducing Vapnik’s  -insensitivity error or loss function, the loss function 6 

(y, ( , ))L f tX  on the underlying function can be defined as 7 

 
0

(y, ( , )) y ( , )
y ( )

L f f
b 

 
  

       
t t

t

X X
X

  y ( )if b

otherwise

     tX

 
 (4) 8 

where y  represents observed value. The nonlinear SVR problem can be expressed as the 9 

following optimization problem (Kecman, 2001; Yu et al., 2006):  10 

                         

*

2 *

, ,
i =1

i i

*
i

*

1
( )

2

y ( ( ), )

( ( ), ) y

, 0

i i

n

i i

i

i i

i i

minimize R C

f b

subject to f b

  
  

   

   

 

  

   


   
 


X

X

                                          (5) 11 

where iX  represents tX  for simplicity, the term of 
21

2
  reflects generalization, and the 12 

term of *

1

( )
n

i i
i

C  


  stands for empirical risk. The objective in Eq. (5) is to minimize them 13 

simultaneously, which implements SVR to avoid underfitting and overfitting the training 14 

data. i  and *
i  are slack variables for measurements “above” and “below” an   tube. Both 15 

slack variables are positive values. C  is a positive constant that determines the degree of 16 

penalized loss when a training error occurs.  17 

By introducing a dual set of Lagrange multipliers, i  and *
i , the objective function 18 

in dual form can be represented as (Gunn, 1998) 19 

              

       * * * * *
i j

i=1 i=1 i, j=1

*

i=1

*

1
, ( )( ) ( ) ( )

2

( ) 0

0 , 1, ,

0 , 1, ,

n n n

d i i i i i i i j j

n

i i

i

i

maximize L y

subject to C i n

C i n

            

 





        

  

   

   


  



X X





 (4) 20 

By using a “kernel” function  i j( , ) ( ) ( )j iK   X X X X  to yield inner products in feature 21 

space, the computation in input space can be performed. In the present study, Gaussian radial 22 

basis function (RBF) was adopted in the form of
2 2

i( , ) exp( 2 )j i jK   X X X X . Once 23 

parameters i , *
i , and 0b  are obtained, the final approximation function of the ( )f �  becomes  24 
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*
i 0

i=1

( ) ( ) ( )
n

i k k kf K b    X X X , 1, ,k s                                (5) 1 

where kX  stands for the support vector, k  and *
k  are parameters associated with support 2 

vector kX , n  and s represent the number of training samples and support vectors 3 

respectively. Three parameters ( , ,C   ) need to be optimized in order to identify the optimal 4 

( )f �  as Eq. (5). In the current study, a two-step genetic algorithm method was adopted for 5 

the optimization (Wu et al., 2008).  6 

 (4) Modular model  7 
 As described at the end of the introduction, the modular model consisted of three 8 

local models which were based on the crisp data split. The three models simulated three-type 9 

rainfall events, i.e., no (dry period) or low-intensity, medium-intensity, and high-intensity 10 

rainfalls (or storm events). The final output of the hybrid models was obtained directly from 11 

the output of a triggered local model. For daily rainfall simulation, the modular model was 12 

referred to as ANN-SVR, and the modular model was denoted as MSVR for monthly rainfall 13 

simulation.  14 

2.3 Models coupled with MA or SSA  15 

 The combination of studied models (i.e. ANN or modular models) with MA was very 16 

simple where a new series was obtained by the moving average over the raw rainfall data 17 

and then the new series was used to construct the model inputs. On the other hand, the 18 

combination of studied models with the SSA was somewhat complex. The methodological 19 

procedures of the combination were summarized in the following steps: 20 

 First, the raw rainfall series was decomposed into m components by the SSA.  21 

 The cross-correlation functions (CCFs) between each RC and the raw rainfall series 22 

were computed. The mean CCF was then generated by averaging over all CCFs at 23 

the same lag. 24 

 The CCFs were sorted in a descending or ascending order depending on the mean 25 

CCF was negative or positive (e.g. An ascending order was adopted if the mean 26 

CCF is negative) 27 

 The sorted RCs were filtered by systematically deleting the RCs where all m RCs 28 

were originally remained and only the first RC was left in the end. A new series was 29 

constituted by summing the remaining RCs each time. The new series was used to 30 

construct model inputs. Repeating the filtering operation, the optimal RCs can be 31 

attained, which was associated with the optimal model performance.  32 

2.4 Evaluation of model performances 33 

 As suggested by Legates and McCabe (1999), a complete assessment of model 34 

performance at least include absolute error measure and relative error measure. Therefore, 35 

the measures of model performance evaluation for the present study comprise root mean 36 

square error (RMSE), the Nash-Sutcliffe coefficient of efficiency (CE), the persistence index 37 

(PI) (Kitanidis And Bras, 1980), and Willmott's index (d) (Chattopadhyay and 38 

Chattopadhyay 2008b). They are respectively formulated 39 

as: n 2
i ii=1

1
ˆRMSE (y - y )

n
  ),

n n
2 2

i i i
i=1 i=1

ˆCE 1- (y - y ) (y - y)   , 
n n

2 2
i i i i-T

i=1 i=1

ˆPI 1- (y - y ) (y - y )   , and 40 
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







 



2

1

2

1

|)||ˆ(|/)ˆ(1 yyyyyyd i

n

i
ii

n

i
i .In these formula, n =number of 1 

observations, iŷ =forecasted rainfall, iy =observed rainfall, y =average observed rainfall, 2 

and i-Ty is the rainfall estimate from the persistence model. CE and PI values of 1 stand for 3 

perfect fits. Higher d indices would be more efficient predictive models than those with 4 

lower d values. 5 

3. Case study 6 

Two daily mean rainfall series (at Zhenwan and Wuxi raingauge stations, 7 

respectively) from Zhenshui and Da’ninghe watersheds of China, and two monthly mean 8 

rainfall series from India and Zhongxian raingauge station of China, were analyzed in this 9 

study.  10 

The Zhenshui basin is located in the north of Guangdong province and adjoined by 11 

Hunan province and Jianxi Province. The basin belongs to a second-order tributary of the 12 

Pearl River and has an area of 7554 km2. The daily rainfall time series data of Zhenwan 13 

raingauge was collected between 1 January 1995 and 31 December 1998 (hereafter the 14 

rainfall series is referred to as Zhenwan).   15 

The Da’ninghe basin, a first-order tributary of the Yangtze River, is located in the 16 

northwest of Hubei Province. The daily rainfall data from Jan. 1, 2004 to Dec. 31, 2007 were 17 

measured at six raingauges located at the upstream of the study basin. The upstream part of 18 

the Da’ninghe basin is controlled by Wuxi hydrology station, with a drainage area of around 19 

2 000 km2. The rainfall was spatially average with the Thiessen polygon method (hereafter 20 

the averaged rainfall series is referred to as Wuxi).  21 

The all Indian average monthly rainfall was estimated from area-weighted 22 

observations at 306 land stations uniformly distributed over India.  The data period spanned 23 

from January 1871 to December 2006 available at the website http://www.tropmet.res.in run 24 

by the Indian Institute of Tropical Meteorology.  25 

The other monthly rainfall series was from Zhongxian raingauge which is located in 26 

Chongqing city, China. The basin containing this raingauge belongs to a first-order tributary 27 

of the Yangtze River. The monthly rainfall data were collected from January 1956 to 28 

December 2007.   29 

Hence, Zhenwan and Wuxi series are of daily rainfall and India and Zhongxian are of 30 

monthly rainfall. Each rainfall series was partitioned into three parts as training set, cross-31 

validation set and testing set. The training set served the model training and the testing set 32 

was used to evaluate the performances of models. The cross-validation set aimed to 33 

implement an early stopping approach for avoiding the overfitting.  The same data partition 34 

format was adopted in four rainfall series: the first half of the entire data as training set and 35 

the first half of the remaining data as cross-validation set and the other half as testing set. 36 

4. Applications to the rainfall data 37 

4.1 Decomposition of rainfall data 38 

 The decomposition of the daily average rainfall series requires identifying the 39 

window length m (or the singular number) if the interval of neighboring points in discrete 40 
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time series is defaulted as the lag time (i.e.  =1 day for daily rainfall data or 1 month for 1 

monthly rainfall data). The reasonable value of m should give rise to a clear resolution of the 2 

original signal. The present study does not need accurately resolve any trends or oscillations 3 

in the raw rainfall signal. A rough resolution can be adequate for the separation of signals 4 

and noises.  Therefore, a small value of m was chosen for the present analysis.  Fig. 1 5 

displays the singular spectrum as a function of lag using various window lengths m from 5 to 6 

10 for four rainfall series. Results show that the decomposition of the Wuxi rainfall was 7 

insensitive to m because singular values were distinguishable for all m. Thus, we set a 8 

criterion to decide the value of m, i.e. the SSA with the targeted m can generate clearly 9 

identified singular values. Therefore, the value of m for Wuxi was arbitrarily chosen from 5 10 

to 10, say 5 here. The values of m were respectively 7, 6, and 7 for India, Zhongxian, and 11 

Zhenwan.   12 

Taking Wuxi as an example, Fig. 2 presents five RCs and the raw rainfall records 13 

excluding the testing data. The RC1 represents an obvious low-frequency oscillation, which 14 

exhibits a similar mode to the raw rainfall. The other RCs reflect high-frequency oscillations, 15 

part of which can be deleted to improve the mapping between the ANN inputs and output. 16 

Fig. 3 depicts cross-correlation functions (CCF) between RC and the original rainfall data. 17 

The last plot in Fig. 3 denotes the average CCF, which was generated by averaging over all 18 

five CCFs at the same lag.  19 

4.2 Identification of the ANN architecture  20 

 The ANN was used to choose data-preprocessing method from MA and SSA for 21 

modular models. Therefore, it is imperative to identify a reasonable ANN architecture before 22 

evaluating MA and SSA.  23 

The architecture identification included the determination of model inputs and the 24 

number of nodes (or neurons) in the hidden layer when there was one model output. Input 25 

selection is one of the important tasks in the identification but is very subjective although 26 

many methods have been documented (Bowden et al., 2005). The statistical approach to 27 

examine auto- and partial-auto-correlation of the observed time series was recognized as a 28 

good and parsimonious method in the determination of model inputs (Kişi, 2008; Sudheer et 29 

al., 2002).  The model inputs in the approach are mainly determined by the plot of partial-30 

auto-correlation function (PACF). According to the approach, model inputs were 31 

respectively previous 12-month observations for India, 13-month observations for 32 

Zhongxian, 7-day observations for Wuxi, and 3-day observations for Zhenwan because the 33 

PACF values decayed within the confidence band around at these lags (Fig. 4). The ensuing 34 

task was to optimize the size of the hidden layer with identified model inputs and one output. 35 

The optimal size h of the hidden layer was found by systematically increasing the number of 36 

hidden neurons from 1 to 10. The identified ANN architectures were: 12-5-1 for India, 13-6-37 

1 for Zhongxian, 7-6-1 for Wuxi and 3-4-1 for Zhenwan.  38 

In the process of forecasting, the training data was rescaled to [-1, 1] due to the use of 39 

hyperbolic tangent function as transfer function in this study.  Considering the instability of 40 

the ANN output, the ANN prediction was an average of the best 10 outputs from entire 30 41 

runs. In addition, the same ANN was applied to multi-step lead-time forecasting in which a 42 

static method (directly having the multi-step-ahead prediction as output) was adopted.  43 
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4.3 Implementation of models 1 

(1) ANN-MA 2 
 The window length K in MA can be determined by trial and error with various K 3 

from 1 to 10. The targeted value of K was associated with the optimal ANN performance in 4 

terms of RMSE. Table 1 shows the values of K at one-, two-, and three-day-ahead 5 

predictions for all studied cases.  6 

(2) ANN-SSA 7 
Following the methodological procedure in Section 2.3, the filter of RCs for one-day-8 

ahead prediction was described below using the Wuxi rainfall data.  9 

 First, the average CCF at lag 1 can be found 0.13 (Fig. 3).   10 

 Then, RCs 5 was sorted in a descending order according to the CCF value at lag 1 11 

of each RC plot in Fig 3. The new order was RC1, RC2, RC3, RC4, and RC5, 12 

which was the same as the original order.  13 

 A five-time trial and error was finally used to select the p ( m ). It was found that 14 

the ANN had the minimum RMSE when p was 3 (i.e. the preserved RCs were RC1, 15 

RC2 and RC3).  16 

Fig.5 shows the results of the SSA filter at three prediction horizons using the rainfall 17 

data from India and Wuxi. It can be seen that the number of the remained RCs can be 18 

different at various prediction horizons. For instance, the numbers of chosen RCs in three 19 

forecasting horizons were respectively 3, 4, and 3 for India, and 3, 1, and 3 for Wuxi. The 20 

results of the SSA filter for all four rainfall case are presented in Table 1.  21 

 (3) Modular models 22 
The MA was more effective than the SSA when they were in conjunction with the 23 

ANN (see Tables 2 and 3 below). Therefore, modular models were only coupled with the 24 

MA in the current rainfall prediction. Moreover, the identified parameter K in MA by the 25 

ANN was also applied to modular models.   26 

5. Results and discussion 27 

5.1 Results 28 
 The overall performances of each model in terms of RMSE, CE, and PI are presented 29 

in Table 2 for two monthly rainfall series and Table 3 for two daily rainfall series. It can be 30 

seen that two benchmark models of persistence and ANN demonstrated very poor 31 

performances for all four cases except for India. The performances from ANN-MA and 32 

ANN-SSA indicate that data-preprocessing methods resulted in considerable improvement 33 

in the accuracy of the rainfall forecasting. Moreover, the MA seems superior to the SSA 34 

except for the Zhongxian rainfall at three-month lead prediction, even where the MA and the 35 

SSA also showed similar performance. Coupled with the MA, modular models performed 36 

the best among all models for each rainfall series.        37 

 Fig. 6 shows the hyetograph graphs and scatter plots of the results of one-month lead 38 

prediction from the ANN, ANN-MA, and MSVR using the Zhongxian data.  For Zhenwan, 39 

one-day lead rainfall estimates of the ANN, ANN-MA, and ANN-SVR are depicted in Fig. 7 40 

in the form of hyetographs and scatter plots (the former was plotted in a selected range for 41 

better visual inspection).  As seen from the hyetograph graphs that the modular models, 42 

MSVR or ANN-SVR, were able to reproduce the corresponding observed rainfall data better 43 
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than ANN and ANN-MA. It can be also seen from the scatter plots that the predictions of the 1 

modular models were much closer to the exact fit line than those of ANN and ANN-MA. 2 

The scatter plots from the modular model and ANN-MA indicate that three local models 3 

better approximated different rainfall characteristics than a single global model. It is worth 4 

noting that the modular model generated some negative estimates at low-intensity rainfall 5 

points although it well pursued most of observed rainfall data. As far as ANN-MA is 6 

concerned, the prediction accuracy was substantially improved. However, the model 7 

underestimated quite a number of moderate peak rainfalls although low-intensity rainfalls 8 

were mostly well simulated. 9 

5.2 Discussion  10 
The poor performances of ANN (Tables 2 and 3) imply that the ANN fed by the 11 

original data is less viable for the rainfall forecasting, in particular using daily rainfall data. 12 

Actually, the ANN mainly captured the zero or low-intensity rainfall patterns (dry periods) 13 

in daily rainfall series because the type of pattern was dominant when using the original 14 

rainfall data to construct model input/output pairs. The MA and the SSA filter on the raw 15 

rainfall records substantially eliminated those patterns. Therefore, the trained ANN coupled 16 

with the MA or SSA was able to pay more attention to medium or high-intensity rainfall 17 

patterns, which improve the ANN generalization.   18 

It may be noted that, the ANN performed better using the India data than using the 19 

Zhongxian data although both of them were monthly rainfall series (Table 2). This implies 20 

that the data characteristic may be an important factor to the performance of ANN. Some 21 

studies have indicated that considerations of statistical principles may improve ANN model 22 

performance (Cheng and Titterington, 1994; Sarle, 1994).  For example, the training data 23 

was recommended to be normally distributed (Fortin et al., 1997). Sudheer et al. (2003) 24 

suggested that the issue of stationarity should be considered in the ANN development 25 

because the ANN cannot account for trends and heteroscedasticity in the data. Their results 26 

showed that data transformation to reduce the skewness of data can significantly improve the 27 

model performance. Depending on the statistical properties of the studied data series, the 28 

method of n-th root data transformation was used. In the meantime, for the purpose of 29 

comparison with the rescaling method, the standardization/normalization was also 30 

considered as a data-preprocessing approach for transfer functions in the ANN. When the 31 

standardization approach was adopted, we used the linear transfer function (e.g. purelin) 32 

instead of the hyperbolic tangent function in the output layer. Therefore, four preprocessing 33 

procedures including the original rescaling were addressed:  34 

 Rescaling the raw data (referred to as Resc_raw); 35 

 Rescaling the n-th root transformed data (referred to as Resc_nth_root);  36 

 Standardizing the original data (referred to as Std_raw); 37 

 Standardizing the n-th root transformed data (referred to as Std_nth_root). 38 

The ANN forecasts with these procedures are presented in Table 4. Compared with the 39 

Resc_raw, it can be seen that using the root of n-th degree as data transformation was 40 

ineffective for the improvement of the ANN performance. However, the standardization 41 

method was effective for the Zhongxian data, which considerably improved the forecast 42 

accuracy.  It can be concluded that standardization/normalization is a good alternative to 43 

rescaling for the ANN in the present study.  44 
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 Table 5 compares the statistical parameters of rainfall series, skewness coefficient 1 

and kurtosis, in three scenarios of no treatment, moving average and root of n-th degree. 2 

Each original rainfall series were extremely non-stationary except for the India data being 3 

more stationary.  The nth-root data transformation did not result in an expected improvement 4 

of the ANN performance although the transformed rainfall series was closer to a normal 5 

distribution.  On the contrary, the moving average truly improved the ANN performance but 6 

the transformed rainfall series was still far from a normal distribution. Seemingly, the 7 

requirement of a normal distribution on studied data is not necessary. 8 

The combination of SSA and MA was also investigated by using the moving average 9 

over the filtered rainfall series. Table 6 demonstrates one-day lead prediction for four case 10 

studies.  The ANN with the single MA still outperformed the ANN with the combination of 11 

SSA and MA.  12 

In summary, the optimal data-preprocessing for the ANN was the MA and the 13 

standardization in the present study. The former was for the purpose of smoothing the raw 14 

rainfall whereas the latter was needed by the transfer function in the ANN.  15 

6. Conclusions 16 

The purpose of this study was to investigate the effect of modular models coupled 17 

with data-preprocessing techniques in improving the accuracy of rainfall forecasting. The 18 

modular models consisted of three local SVR and/or ANN. A three-layer feed-forward ANN 19 

was used to examine two data-preprocessing techniques, MA and SSA. Results show that 20 

the MA was superior to the SSA. Four rainfall records, India, Zhongxian, Wuxi and 21 

Zhenwan, from India and China, were used as testing cases.  22 

With the help of the MA, modular models showed the best performance when 23 

compared with the ANN-MA and two baseline models, the persistence model and the ANN. 24 

Reasonable rainfall estimates were also obtained from the ANN-MA model. The model, 25 

however, underestimated quite a number of moderate peak rainfalls although low-intensity 26 

rainfalls were mostly well simulated. The ANN model, directly fed by the original data, 27 

seemed unsuitable for the current rainfall series except for India.  As far as the daily rainfall 28 

data were concerned, the ANN mainly captured the zero or low-intensity rainfall patterns 29 

(dry periods) in daily rainfall series because the type of pattern was dominant when using the 30 

original rainfall data to construct model input/output pairs. The MA or the SSA filter on the 31 

raw rainfall records substantially eliminated those patterns. Therefore, the trained ANN with 32 

the help of MA or SSA was able to pay more attention to medium or high-intensity rainfall 33 

patterns, which improve the ANN generalization. 34 

In addition, the effect of other data-preprocessing techniques including data-35 

transformation and standardization on the ANN performance was also examined. It was 36 

found that the standardization method was able to substitute for the rescaling method from 37 

the perspective of the transfer function in the ANN. However, the data-transformation 38 

method to meet an approximately normal distribution seemed to be unnecessary for the ANN.   39 
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Figure 1. Singular Spectrum as a function of lag using various m for (1) India, (2) Zhongxian, (3) Wuxi and (4) 3 
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Figure 3. Plots of CCF between each RC and the raw rainfall data for Wuxi 2 
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Figure 4. Plots of ACF and PACF of four rainfall series with the 95% confidence bounds denoted by the 4 
dashed lines (ACF at the left column and PACF at the right column) 5 
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Figure 5. Performances of ANN-SSA as a function of p ( m ) at various prediction horizons using (1) India 2 

rainfall data and (2) Wuxi rainfall data  3 
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Figure 6. One-month lead predictions of ANN, ANN-SSA and MSVR for Zhongxian 5 
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Figure 7. One-day lead predictions of ANN, ANN-SSA and ANN-SVR for Zhenwan 2 

 3 

 4 

 5 



Engineering Applications of Artificial Intelligence 26 (3): 997-1007 2013 

21 

Table 1 Parameters in MA and SSA at various forecasting steps for four rainfall series 1 

watershed Model 
K in MA p from m RCs in SSA 

1-step 2-step 3-step 1-step 2-step 3-step 
India         
 ANN-MA 3 5 7     
 ANN-SSA 3/7* 4/7 3/7 
 DSVR 3 5 7     
Zhongxian         
 ANN 3 5 7     
 ANN-SSA     2/6 2/6 1/6 
 DSVR 3 5 7     
Wuxi         
 ANN-MA 3 5 7     
 ANN-SSA     3/5 1/5 3/5 
 ANN-SVR 3 5 7     
Zhenwan         
 ANN 3 5 9     
 ANN-SSA     4/7 3/7 4/7 
  ANN-SVR 3 5 9       

* Denominator stands for all RCs, and numerator represents the number of selected RCs. 2 
3 
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Table 2 Comparison of model performances at various forecasting horizons using monthly 3 

rainfall data from India and Zhongxian 4 

watershed 
Model RMSE CE PI d 

 1  2  3*a  1  2  3  1 2 3 1 2 3 

India                           

 Persistence 643.1  1210.2  1483.8 0.52  -0.70 -1.55  0.00  -0.24  -0.14  0.24 0.20  0.18  

 ANN 259.3  256.6  253.6  0.92  0.92  0.93  0.84  0.94  0.97  0.39  0.39  0.37  

 ANN-SSA 156.6  141.0  177.5  0.97  0.98  0.96  0.94  0.98  0.98  0.42  0.42  0.41  

 ANN-MA 69.2  80.9  99.9  0.99  0.99  0.99  0.99  0.99  0.99  0.43  0.43  0.43  

 MSVR*b 48.7  55.1  76.6  1.00  1.00  0.99  0.99  0.99  0.99  0.44  0.43  0.42  

Zhongxian              

 Persistence 75.7  93.6  110.0  -0.03 -0.56 -1.14  0.00  -0.04  -0.03  0.06 0.06  0.06  

 ANN 61.6  75.9  76.5  0.32  -0.02 -0.04  0.35 0.31  0.50  0.15  0.14 0.13  

 ANN-SSA 55.7  57.1  49.1  0.45  0.42  0.57  0.46  0.42  0.79  0.21  0.20  0.19  

 ANN-MA 35.6  54.9  54.7  0.77  0.46  0.47  0.78  0.64  0.74  0.34  0.30  0.31  

  MSVR*b 11.6  24.4  21.4  0.98  0.89  0.92  0.98 0.90  0.92  0.42 0.40  0.41  

*a The number of ‘1, 2, and 3’ denote one-, two-, and three-day-ahead forecasts; *b MSVR was coupled with 5 
MA. 6 

 7 

8 
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Table 3 Comparison of model performances at various forecasting horizons using daily 1 

rainfall data from Wuxi and Zhenwan 2 

watershed Model 
RMSE CE PI d 

1  2  3*a  1  2  3  1 2 3 1 2 3 

Wuxi                        

  Persistence 12.2  15.1  15.0  0.05  -0.43 -0.40 0.00 0.11  0.18  0.16 0.15 0.16 

 ANN 11.5  12.6  12.7  0.17  0.01  -0.01 0.12 0.38  0.41  0.24 0.23 0.23 

 ANN-SSA 5.8  8.5  8.5  0.79  0.55  0.54  0.77 0.72  0.73  0.36 0.28 0.30 

 ANN-MA 5.3  5.7  6.4  0.82  0.80  0.74  0.81 0.87  0.85  0.37 0.36 0.34 

 ANN-SVR*b 3.3  5.0  5.1  0.93  0.84  0.84  0.94 0.91  0.91  0.40 0.38 0.39 

Zhenwan              

 Persistence 12.4  11.4  11.8  -0.53 -0.28 -0.37 0.00 0.14  0.26  0.11 0.13 0.14 

 ANN 9.8  10.0  10.1  0.04  -0.01 -0.01 0.37 0.33  0.45  0.19 0.17 0.20 

 ANN-SSA 7.2  6.7  6.2  0.48  0.55  0.62  0.66 0.70  0.79  0.23 0.24 0.27 

 ANN-MA 4.4  5.2  4.4  0.81  0.73  0.81  0.81 0.82  0.90  0.36 0.32 0.35 

  ANN-SVR*b 2.4  3.8  3.1  0.94  0.86  0.91  0.96 0.91  0.94  0.41 0.37 0.38 

*a The number of ‘1, 2, and 3’ denote one-, two-, and three-day-ahead forecasts; *b ANN-SVR was coupled 3 
with MA.4 
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Table 4 Model performances at various data preprocessing methods using the ANN model 3 

watershed 
Data 

preprocessing 

RMSE CE PI d 

1  2  3*a 1  2  3  1  2  3  1  2  3  

India                           

 Resc_raw 259.3  256.6  253.6 0.92  0.92  0.93  0.84  0.94  0.97  0.39 0.39 0.40 

 Resc_nth_root 259.1  254.9  252.8 0.92  0.92  0.93  0.84  0.94  0.97  0.39 0.40 0.41 

 Std_raw 259.2  254.1  252.8 0.92  0.92  0.93  0.84  0.95  0.97  0.39 0.41 0.41 

 Std_nth_root 265.0  254.8  253.0 0.92  0.92  0.93  0.83  0.94  0.97  0.40 0.40 0.41 

Zhongxian              

 Resc_raw 61.6  75.9  76.5  0.32  -0.02 -0.04 0.35  0.31  0.50  0.12 0.12 0.13 

 Resc_nth_root 62.8  76.4  75.2  0.30  -0.04 0.00  0.32  0.30  0.52  0.13 0.14 0.14 

 Std_raw 52.4  52.7  53.2  0.51  0.51  0.50  0.53  0.67  0.76  0.18 0.19 0.22 

 Std_nth_root 52.3  55.0  54.2  0.51  0.46  0.48  0.53  0.64  0.75  0.19 0.21 0.23 

Wuxi              

 Resc_raw 11.5  12.6  12.7  0.17  0.01  -0.01 0.12  0.38  0.41  0.17 0.18 0.19 

 Resc_nth_root 11.5  13.5  13.3  0.16  -0.15 -0.11 0.12  0.29  0.36  0.17 0.20 0.19 

 Std_raw 11.5  13.3  13.0  0.17  -0.10 -0.06 0.13  0.31  0.38  0.23 0.19 0.21 

 Std_nth_root 11.9  13.2  13.2  0.11  -0.10 -0.10 0.06  0.32  0.36  0.21 0.22 0.22 

Zhenwan              

 Resc_raw 9.8  10.0  10.1  0.04  -0.01 -0.01 0.37  0.33  0.45  0.16 0.16 0.20 

 Resc_nth_root 10.3  10.6  10.7  -0.06 -0.11 -0.13 0.31  0.25  0.38  0.18 0.16 0.18 

 Std_raw 9.9  10.6  10.6  0.03  -0.12 -0.10 0.37  0.25  0.40  0.21 0.16 0.21 

  Std_nth_root 10.3  10.6  10.7  -0.05 -0.11 -0.13 0.32  0.25  0.38  0.18 0.17 0.19 

*a The number of ‘1, 2, and 3’ denote one-, two-, and three-day-ahead forecasts.4 
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Table 5 Statistical parameters of data transformation 2 

watershed 
Methods of data 

 transformation 
Skewness  Kurtosis  Data length 

India         

 No treatment 0.9  2.5  
Jan.,1871- 

Dec.,2006 
 Moving average 0.7  2.0  

 Cubic root 0.3  1.8  

Zhongxian     

 No treatment 1.2  5.6  
Jan.,1956- 

Dec.,2007 
 Moving average 0.5  2.6  

 Square root 0.2  2.4  

Wuxi     

 No treatment 5.8  49.7  
Jan. 1,1995- 

Dec. 31,1998 
 Moving average 4.4  29.8  

 Fifth root 0.6  2.3  

Zhenwan     

 No treatment 5.2  47.2  
Jan. 1,2004- 

Dec. 31,2007 
 Moving average 2.8  12.8  

  Fifth root 0.6  2.0  

 3 

 4 

Table 6 Performances of the ANN using combined data-preprocessing method of SSA 5 

and MA and relevant parameters 6 

 7 

watershed 
Methods of data 

preprocessing 
RMSE CE PI 

 

d 
 p from m in 

SSA 
K in MA 

India            

 MA 69.2  0.99  0.99  0.43  3 

 SSA+MA 104.4  0.99  0.97  0.41 3/7* 7 

Zhongxian        

 MA 35.6  0.77  0.78  0.34  3 

 SSA+MA 44.9  0.64  0.65  0.33 2/6 5 

Wuxi        

 MA 5.3  0.82  0.81  0.38  3 

 SSA+MA 5.8  0.79  0.77  0.37 3/5 1 

Zhenwan        

 MA 4.4  0.81  0.81  0.37  3 

  SSA+MA 5.6  0.69  0.80  0.35 4/7 3 

* Denominator stands for all RCs, and numerator represents the number of selected RCs.  8 




