
Passive OS Fingerprinting by DNS Traffic Analysis
Takashi MATSUNAKA†, Akira YAMADA‡ and Ayumu KUBOTA†

†KDDI R&D Laboratories Inc.
Saitama, Japan

{ta-matsunaka, kubota}@kddilabs.jp

‡KDDI CORPORATION
Tokyo, Japan

ai-yamada@kddi.com

Abstract—Network administrators want to determine which
services and applications are most frequently used, which and
how many devices and operating systems (OSs) are used, and
when and where the highest peak of network traffic is to
overcome the massive traffic demand. However, it is hard to
recognize the situation in large and complicated networks. It
requires massive additional monitoring nodes or systems and
large volumes of traffic data analysis. Moreover, in the case of
using NAT or tethering, the number of IP addresses used does
not coincide with the number of devices because IP addresses is
shared with devices in the behind of NAT-boxes or tethering
devices.
In this paper, we propose a new passive OS fingerprinting
method which requires analyzing only DNS traffic. The
method utilizes characteristics on DNS queries that each OS
sends DNS queries related to specific domains, and each OS
sends these queries with specific patterns of time interval
between them. The method can estimate the number of devices
with each OS from the number of queries by utilizing the
characteristics of the time interval patterns. The method
considers the likelihood of irregular events that some queries
are sent less than regular time intervals, and some other
queries are sent more than regular time intervals. According to
our examination on our intra-network, some results of our
estimation method are close to the results of DHCP
fingerprinting.

Keywords-Passive OS fingerprinting; Traffic analysis

I. INTRODUCTION

In recent years, data traffic has increased explosively due
to the increase in the number and use of smartphones. To
overcome the massive traffic demand, network
administrators must perceive the status of their networks to
ensure stable network service. Network administrators want
to determine which services and applications are most
frequently used, which devices and operating systems (OSs)
are used, and when and where the highest peak of network
traffic is. In particular, the most important and useful factor
is to recognize the trend in the distribution of operating
systems in use in terms of network management. According
to Ericson’s report [1], different OSs have different trends in
traffic volume. Additionally, different OSs have different
applications installed. However, it is hard to perceive the
status since the network is more complicated due to the
diverse access networks (wire (e.g. FTTH (Fiber To The
Home), xDSL (Digital Subscriber Line)) or wireless
networks e.g. cellular, WLAN (Wireless Local Area)), traffic
off-loading from mobile networks to fixed ones (e.g. via
WLAN (Wireless Local Area Network)), and tethering by
smartphones or mobile routers.

Previous works studied ways to infer network status. In
[11,12], they profiled user activities or classified the traffic
on the network. In [2,3], they studied ways to detect an OS
(OS fingerprinting) by monitoring traffic on the network. For
example, OS fingerprinting is realized by using
characteristics in the TCP/IP header [2], fields in the DHCP
packets [3], and the HTTP header. Some works took another
approach to actively detect an OS by sending or injecting
configured packets to the target hosts or TCP/IP sessions
[4,6]. Another work used a hybrid approach [10] that
combined passive approaches with active ones. However,
these works are unrealistic for large, complicated networks
in terms of storage and computational cost. These works,
except for [3], force network administrators to deploy
massive additional monitors or systems on their networks
and to analyze large volumes of traffic data to profile all
activities. The works utilizing DHCP packets [3] cannot
extract additional information related to user activities. Some
works of reducing the monitoring nodes for network
management and monitoring are to adapt dynamic networks,
such as virtual networks, the Internet, or sensor networks by
selecting appropriate nodes [7,8,9]. However, these works
also have the deployment issue; these works need to improve
or replace existing network devices or nodes to add new
functions. These works also require large volumes of data,
making it difficult to extract information on network status in
terms of not only the volume of traffic but also services and
application trends. Furthermore, all previous works have
difficulty in estimating the number of devices with each OS
in the case that devices are located in the behind of NAT
(Network Address Transform) boxes or tethering devices, or
devices move across access networks by traffic off-loading
from the cellular network to fixed one via WLAN, where a
device is assigned with different IP addresses by access
networks it uses, or a device shares an IP address with other
devices.

To overcome such a difficulty, we focus on DNS traffic
as a tool to be aware of the situation on a network. Analyzing
DNS traffic results in a substantial amount of useful
information about the status of the network, such as popular
services and applications among users and daily traffic trends.
Furthermore, it allows us to presume upcoming traffic since
a user’s device first sends a query to a DNS server to resolve
the IP address of a service provider. Moreover, we argue that
we can effectively realize awareness of the network status by
simply monitoring DNS-related traffic without additional
systems or monitoring points. Then, this is a suitable and
realistic solution for large and complicated networks.

In this paper, we propose a new passive OS
fingerprinting method by analyzing DNS traffic. The method
utilizes characteristics on DNS queries: each OS has specific
queries for domains to which other OSs send no query, and
each OS has characteristics on the time interval distribution
in sending the OS-specific domain queries. The method can
estimate the number of OSs from the number of specific
DNS queries. In order to realize our method, we derive
characteristics regarding DNS traffic by analyzing DNS
queries from each OS. Our analysis shows that each OS has
two important characteristics on DNS queries described
above. We also devise a method for estimating the number of
OSs from the number of queries by utilizing the
characteristics. For the estimation, we derive an estimation
equation which utilizes the characteristics of specific DNS
queries and also considers the irregular time interval case
that some queries are sent less than regular time intervals,
and some other queries are sent more than regular time
intervals. In this paper, we provide the results of our analysis
against DNS queries from the Android OS and the
characteristics of the queries. Furthermore, this paper shows
the results of our examination on our intra-network for
estimating the number of OSs by using our estimation. Some
results show that our method is a close estimation of the
results of DHCP fingerprinting.

A. Contribution and Outline of this Paper

In this paper, we propose a new passive OS
fingerprinting method using DNS traffic. We demonstrate,
for example in the case of the Android OS, characteristics for
OS fingerprinting derived from DNS-related traffic analysis.
We derive a method for estimating the number of OSs by
using the characteristics and considering the likelihood of
irregular events: sending queries much less than the regular
time interval and sending queries much more frequently. We
demonstrate the results of our examination of the estimation
on our intra-network.

The outline of this paper is as follows. We describe the
works related to our study in Section II. We summarize our
proposal for the estimation in Section III. We introduce the
results of our DNS traffic analysis with the Android OS and
the equation for estimating the number of OS devices in
Section IV. We introduce our examination of our estimation
by using DNS traffic on our intra-network in Section V, and
conclude this paper in Section VI.

II. RELATED WORKS

There are some works of OS fingerprinting. In [2],
Zalewski uses a passive approach by monitoring differences
in the TCP/IP headers, TTL (Time To Live), and MSS
(Maximum Segment Size) to distinguish OSs. In the HTTP
headers, the User-Agent field has information about the web
browsers as well as the OSs of the users. In [5], Shah tries to
distinguish HTTP server software and the OS by using
information included in the HTTP responses. However, these
works are not feasible on large, complicated networks, since
these works need to establish traffic monitoring equipment at
all network borders and requires the filtering of usable
information from high volumes of captured traffic data.

Moreover, especially in [2], it does not work in the case of
tethering. In this case, some fields in the TCP/IP headers are
usually rewritten. In [3], Kollmann uses DHCP-related
packets for passive OS fingerprinting. He uses the time
difference between retransmission frames or DHCP fields,
such as Secs. However, there is no information about the
services or applications that users enjoy in the DHCP frames.
So, an additional system is needed to gather information
from another traffic analysis to that from DHCP frames.

There are other works of active OS fingerprinting. In [6],
Lyon uses the network scanning tool, Nmap. This tool has a
remote OS fingerprinting function. Nmap sends probe
packets to the target devices and monitors the response. The
application then determines the OS of the target from the
response packets. In [10], Gagnon takes a hybrid approach
that combines the passive approaches with active approaches
to increase the accuracy of OS fingerprinting. However, the
method does not work when the target devices are located
behind network devices, such as a firewall or NAT box. In
such cases, the application is unable to send probe packets to
the targets. Some works have been studied to overcome the
NAT-like situations. In [13], Beverly used a passive
approach to classify the traffic derived from NAT hosts with
other hosts by using a naïve Bayesian classifier for the
characteristic values in the TCP/IP header fields. In [4],
Schulz enabled active OS fingerprinting in the tethering
environment by injecting ICMP (Internet Control Message
Protocol) error packets into the target client’s TCP session.
However, this approach required an additional system to
monitor all clients networking and, especially in [4], to inject
ICMP packets at the right time. Therefore, the approach is
unfeasible with large, complicated networks.

Other works were studied to profile user activities by
analyzing traffic. In [11], Xu classified Internet backbone
traffic into clusters (servers/services, heavy hitter hosts,
scans/exploits) with source/destination IP addresses. This
approach is unrealistic for large networks because of the
need to analyze the volume of traffic data to profile all
activities in terms of storage and computational cost.
Furthermore, there is a problem with the deployment of
monitors to obtain all traffic data on a large network. In [12],
Zhang tried to infer online user activities (browsing, online
game, video, etc.) by analyzing MAC-level traffic on a
wireless LAN and extracting the feature of
data/control/management frames (data rate, frame interval
time, etc.). This approach specialized in wireless LAN traffic
but had a monitor deployment issue.

III. DESCRIPTION OF PROPOSED METHOD

Figure 1 shows our assumption of the network
environment for passive OS fingerprinting. There are some
access networks (cellular, FTTH, etc.) on the whole network,
and each device can connect to any access network. There is
a (set of) DNS server on a core network. Whichever access
network a device connects to, a device sends a query to the
same DNS server. We also assume that there are some
devices that connect to an access network through another
device, such as tethering-enabled ones or NAT-boxes. This

i
d

n

a
a
d
c
r
T
e
f
i
f
a
q

o
(
t
r
e
I
e
n

c
O
u
a
I
a
w
h
t
o

A

n
w
T
w
t
c

implies that a
device; it is sh

The outlin
number of OS

1. (In t
traffi

2. Extra
a spe
interv
comp

3. Make
4. (In th

estim
using

The follow

and examinati
an example o
denote an
characteristics
results with th
Through the
estimation: (A
for which any
in Section IV
flows where fi
an A record, a
query for one
Section IV-A)
of queries in
(denoted in Se
the signature
represents a ch
estimation of
In Section V,
estimation of
network.

IV. R

To extract
capture DNS-
OS left witho
use four smart
and the other
Internet using
allow auto-up
with the other
have some ap
traffic evolved
on our intra-ne

A. OS-specifi

We extract
no query. Tab
which only th
Table I, the
which any oth
that when
clients.android

an IP address
hared by some
ne of our pro
Ss from DNS tr
the experimen
c from each m

act characterist
ecific domain,
val between
plete a name re
e a signature fr
he service ne

mate the numbe
g the signature

wing sections
ion of the esti
of proof of o
example of

s from DNS
he Android O

analysis, we
A) the Android
y other OSs se
V-A); (B) the
first it sends an
and after rece
of the IP addr

); and (C) the
nvolved with
ection IV-B).

as an equa
haracteristic (t
the number of
we show the

f the number

RESULT OF OU

t signatures fo
-related traffic
out any operat
tphone device
rs have differ
g wireless LAN
pdate of applic
r configuration
pplications in
d from device
etwork.

fic DNS query

t domain nam
ble I shows an
he Android O
Android OS

her OSs send n
the Androi

d.google.com

s is not used
devices.

oposal for the
raffic is as foll
ntal environm

mobile OS devi
tics from DNS
a specific patt

each query
esolution tasks
from the extrac
etwork) Gathe
er of OSs from
.

show the res
imation about
our proposal.

our analys
traffic. Sect

S as an exam
e found char
d OS has spec
ends no query
Android OS

n AAAA recor
eiving a respon
resses in the re
Android OS h
time interval
We represent

ation with ea
time interval p
f OSs (denote
results of our
of Android

UR DNS TRAFF

or passive OS
c from mobile
tion and the c
s, two of whic
ent OSs. All
N. All device

cations and en
ns set to the d

nstalled by de
es is captured

mes for which a
an example of
OS sends que
has specific
no query. Mo
id OS sen

(or some

only by a c

e estimation o
lows:

ment) Gather
ice.
S traffic: queri
tern of queries
y, query flo
s).
cted characteri
er DNS traffi
m the traffic d

sult of our an
the Android
In Section IV

sis for extr
ion IV show

mple of our ana
racteristics fo
cific domain n
y regularly (de

has specific
rd query, then
nse, it sends a
esponse (deno
has specific pa
ls between q
a general mo

ach parameter
pattern) used f
ed in Section I
r examination

OS on our

FIC ANALYSIS

S fingerprintin
e devices with
captured traffic
ch have Andro

devices acce
es are configur
nable GPS fun
default. All de
efault. DNS-r
on the DNS

any other OSs
f domain nam
eries. Accordi
domain name
reover, it is n

nds a query
other googl

certain

of the

DNS

ies for
s (time
ow to

istics.
ic and
ata by

nalysis
OS as
V, we
acting

ws the
alysis.
or the
names
enoted
query
sends

a PTR
oted in
atterns
queries
odel of
r that
for the
IV-C).
of the
intra-

ng, we
h each
c. We

oid 2.3,
ss the
red to

nctions
evices
related
server

sends
mes for

ing to
es for
otable
y to
le.com

sub
The
mil
OS
is in

regu
sett
serv
by
only
que
take
Liv
obs
sen

B.

for
clie
whe
and
pro
que
num
day
Dev
sen
sec
aga

clie
take
88,2
day
que
to 8
ove
cha

bdomains), the
en, the OS se
lliseconds late
 sends a query
n response to t
Android OS
ularly. The do
ting the doma
ver domain. H
other OSs (Lin
y once when

ery whenever
e time interva

ve) value of the
served. It diffe
nds queries at a

Interval time p

We then anal
OS-specific

ents.android.go
en the first que

d 2 have the s
oduced by di
eries are ofte
mber 0 every
y or there are
vice 2 sends m

nding a query,
onds again. M

ain after more t
Figure 3 sho

ents.android.go
e time interv
200 seconds).

y (more than
eries take time
88,200 second
er one day.
aracteristics D

TABLE I. EX

domain name c
c

Figure 1.

e OS first send
ends a query
er, after a resp
y for the PTR
the A record q

S also sends
omain is likely
ain as an NT

However, accor
nux OS, Wind

n configuring
the OSs send

als over one d
e DNS server
ers from the be
about 14,400 s

pattern of DN

lyze the interv
domain. Figu

oogle.com A
ery (query num

same Android
ifferent vendo
en evolved at
day. Sometim
 some querie

more queries th
, Device 2 se

Moreover, Devi
than an hour (
ows frequency
oogle.com. At

vals near 86,4
. 42.9% of qu

88,200 secon
e intervals near
ds). A total of 1

Moreover, F
Device 2 only

XAMPLES OF OS-S
OS

clients.google.com
com

. Our assumption

ds a query for
for A records

ponse has arriv
record of an IP

query.
s queries to

y to be queried
TP (Network
rding to our ex
dows™), the O
an NTP serv
NTP-related

day because of
of ntp.org dom
ehavior of An
seconds interva

NS queries

val time betwe
ure 2 shows

record from
mber is 0) is ev
OS version 2

ors. Accordin
t the same ti

mes, there is no
s at different
han Device 1 i
ends a query a
ice 2 sometim

(3,600 seconds
y distribution
t Device 1, 2

400 seconds (
ueries take int
nds). At Dev
r 86,400 secon
13.0% of quer
Figure 2(b)
owns, 33.0%

SPECIFIC DNS QUE
S)

m, *.pool.ntp.org

of the network en

r AAAA recor
s. Less than 2
ved, the Andro
P address, wh

o *.pool.ntp.o
d by other OSs

Time Protoc
xtra examinati

OSs send a que
ver and send
traffic. The O
f TTL (Time
main as far as
ndroid OS, wh
al.

een DNS quer
query time

m the base tim
volved. Devic

2.3, but these
ng to Figure
ime with que
o query within
times in a d

in 30 days. Af
after less than

mes sends a que
s).
n of queries
21.4% of quer
(from 84,600
tervals over o

vice 2, 8.7%
nds (from 84,6
ries take interv

shows speci
% of queries ta

ERY (ANDROID

g, mtalk.google.

nvironment

rds.
200
oid
ich

org
by

col)
ion
ery
no

OSs
To
we
ich

ries
for
me
e 1
are
2,

ery
n a

day.
fter
n 3
ery

for
ries

to
one

of
600
vals
ific
ake

interval less than 1,800 seconds (most of these queries send
at less than 3 seconds interval) and 16.5% of queries at less
than 5,400 seconds (in fact, these queries’ intervals take from
3,600 to 4,000 seconds). Device 2 also takes intervals near
82,800 seconds (from 81,000 to 82,800 seconds) at 6.1% of
queries. This appears that if a previous query takes intervals
near 3,600 seconds, the next interval is near 82,800 seconds
in order to adjust the query time at the same time in a day.

Through our analysis described above, we summarize
characteristics on DNS queries for
clients.android.google.com as follows:

 After a query for the A record of
clients.android.google.com, the Android OS sends a
PTR query for an IP address, which is in response to
an A record query at an interval of less than 200
milliseconds.

Figure 3. Query time interval (domain name: clients.android.google.com, days: 60)

(a) Device 1

(b) Device 2

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

0
18

00
36

00
54

00
72

00
90

00
10

80
0

12
60

0
14

40
0

16
20

0
18

00
0

19
80

0
21

60
0

23
40

0
25

20
0

27
00

0
28

80
0

30
60

0
32

40
0

34
20

0
36

00
0

37
80

0
39

60
0

41
40

0
43

20
0

45
00

0
46

80
0

48
60

0
50

40
0

52
20

0
54

00
0

55
80

0
57

60
0

59
40

0
61

20
0

63
00

0
64

80
0

66
60

0
68

40
0

70
20

0
72

00
0

73
80

0
75

60
0

77
40

0
79

20
0

81
00

0
82

80
0

84
60

0
86

40
0

88
20

0
≥8

82
00

cu
m

u
la

ti
ve

 r
el

at
iv

e
fr

eq
u

en
cy

n
u

m
b

er
 o

f
qu

er
ie

s

query time interval [second]

0

0.2

0.4

0.6

0.8

1

0
5

10
15
20
25
30
35
40

0
18

00
36

00
54

00
72

00
90

00
10

80
0

12
60

0
14

40
0

16
20

0
18

00
0

19
80

0
21

60
0

23
40

0
25

20
0

27
00

0
28

80
0

30
60

0
32

40
0

34
20

0
36

00
0

37
80

0
39

60
0

41
40

0
43

20
0

45
00

0
46

80
0

48
60

0
50

40
0

52
20

0
54

00
0

55
80

0
57

60
0

59
40

0
61

20
0

63
00

0
64

80
0

66
60

0
68

40
0

70
20

0
72

00
0

73
80

0
75

60
0

77
40

0
79

20
0

81
00

0
82

80
0

84
60

0
86

40
0

88
20

0
≥8

82
00

cu
m

u
la

ti
ve

 r
el

at
vi

e
fr

eq
u

en
cy

n
u

m
b

er
 o

f
q

u
er

ie
s

query time interval [second]

(a) Device 1

0

5

10

15

20

0 5 10 15 20 25 30

q
u

er
y

n
u

m
b

er

relative query time from query #0 [day]

Figure 2. DNS query evolved time (domain name: clients.android.google.com, days: 30)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

q
ue

ry
 n

um
be

r

relative query time from query #0 [day]

(b) Device 2

 Android OS often sends queries for
clients.android.google.com at the same time every
day. However, the Android OS sometimes sends no
query in a day (42.9% of Device 1 queries, 13.0% of
Device 2 queries).

 The Android OS sometimes sends queries for
clients.android.google.com at different times from
the regular time in a day. Some devices have a
specific pattern for the different time (e.g. Device 2
sends the queries at intervals near 3,600 seconds
(16.5%) or less than 3 seconds (33.0%)).

We analyze another query domain, *.pool.ntp.org. Figure

4 shows query time for *.pool.ntp.org A record from the

base time when the first query is evolved. In Figure 4,
vertical axes between days are drawn at 14,400 seconds.
According to Figure 5, queries are often evolved at time
intervals of multiples of 14,400 seconds (4 hours). Figure 5
shows frequency distribution of queries for *.pool.ntp.org.
Most of queries are sent at the time intervals of near the
multiples of 14,400 seconds, 78.0% of Device 1 queries and
78.5% of Device 2 queries. Some queries take intervals less
than 7,200 seconds, 8.7% of Device 1 and 9.3% of Device 2.
These queries appear to be for the alignment of the timing of
sending queries. Some queries take intervals over one day,
2.9% of Device 1 queries and 2.3% of Device 2 queries.
Through our analysis described above, we summarize
characteristics of DNS queries for

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

0
18

00
36

00
54

00
72

00
90

00
10

80
0

12
60

0
14

40
0

16
20

0
18

00
0

19
80

0
21

60
0

23
40

0
25

20
0

27
00

0
28

80
0

30
60

0
32

40
0

34
20

0
36

00
0

37
80

0
39

60
0

41
40

0
43

20
0

45
00

0
46

80
0

48
60

0
50

40
0

52
20

0
54

00
0

55
80

0
57

60
0

59
40

0
61

20
0

63
00

0
64

80
0

66
60

0
68

40
0

70
20

0
72

00
0

73
80

0
75

60
0

77
40

0
79

20
0

81
00

0
82

80
0

84
60

0
86

40
0

88
20

0
≥8

82
00

cu
m

u
la

ti
ve

 r
el

at
iv

e
fr

eq
u

en
cy

n
u

m
b

er
 o

f
q

u
er

ie
s

query time interval [second]

(a) Device 1

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

0
18

00
36

00
54

00
72

00
90

00
10

80
0

12
60

0
14

40
0

16
20

0
18

00
0

19
80

0
21

60
0

23
40

0
25

20
0

27
00

0
28

80
0

30
60

0
32

40
0

34
20

0
36

00
0

37
80

0
39

60
0

41
40

0
43

20
0

45
00

0
46

80
0

48
60

0
50

40
0

52
20

0
54

00
0

55
80

0
57

60
0

59
40

0
61

20
0

63
00

0
64

80
0

66
60

0
68

40
0

70
20

0
72

00
0

73
80

0
75

60
0

77
40

0
79

20
0

81
00

0
82

80
0

84
60

0
86

40
0

88
20

0
≥8

82
00

cu
m

u
la

ti
ve

 r
el

at
vi

e
fr

eq
u

en
cy

n
u

m
b

er
 o

f
q

u
er

ie
s

query time interval [second]

(b) Device 2

Figure 5. Query time interval (domain name: *.pool.ntp.org, days: 60)

0

5

10

15

20

25

0 1 2 3 4 5 6 7

q
u

er
y

n
u

m
b

er

relative query time from query #0 [day]

0

5

10

15

20

0 1 2 3 4 5 6 7

q
u

er
y

n
u

m
b

er

relative query time from query #0 [day]

Figure 4. DNS query evolved time (domain name: *.pool.ntp.org, days: 7)

(b) Device 2 (a) Device 1

clients.android.google.com as follows:
 The Android OS often sends queries for

*.pool.ntp.org at multiples of 14,400 seconds.
However, the Android OS sometimes sends queries
over a day (2.9% of Device 1 queries, 2.3% of
Device 2 queries).

 The Android OS sometimes sends queries for
*.pool.ntp.org at less than 7,200 seconds (8.7% of
Device 1 queries, 9.3% of Device 2’ queries) for
perhaps timing alignments.

C. Estimating the number of OSs

To estimate the number of OSs, we consider the
characteristics described above: (A) regularly, query time
intervals have a cyclic nature, (B) irregularly, some queries
are sent less than regular time intervals, and (C) some other
queries are sent more than regular time intervals.
Furthermore, for estimating the number of OSs, we have to
consider how to estimate the number of OSs using the data
captured during the less than the regular cyclic time interval.
This means that there are some OS devices that do not send
queries during the captured time interval, and we estimate
the number of such devices by using the captured data that
includes no query sent from the devices. In this section, we
first introduce how to estimate the number of OSs using the
data captured during the less than regular cyclic time interval.
Then, we introduce how to consider the irregular
characteristics described above. For the purpose of the
following explanation, Figure 6 is an example of the
situation of the following explanations. Table II summarizes
the notations we use in the following explanations.

First, we introduce the estimation equation which
utilizing the regular cyclic nature of queries (A). Let the
cyclic interval time for a domain d be ௗܶ, and the interval
time for capturing traffic data be ܶሺ൏ ௗܶሻ. A probability
,ௗ ் that an OS device sends a query for domain d in the
capture interval ܶ satisfies ௗ, ் ൌ ܶ/ ௗܶ. Therefore, let the

number of queries for domain d in the interval ܶ be ௗܰ, ், if
all queries are sent at the cyclic interval ௗܶ, the number of
OSs ܱ ܵ , ைܰௌ , satisfies ைܰௌ ∙ ,ௗ ் ൌ ௗܰ, ் . So, ைܰௌ can
estimate by the following equation,

 ைܰௌ ൌ
ே,
,

ൌ ௗܰ, ்
்

்
	.

For example, in Figure 6, the number of queries for
domain d,	 ௗܰ, ் , is 3 (query ܳଵ,, ܳଵ,ଵ, ܳଵ,ଶ and ܳଶ,). If ܶ
satisfies ܶ ൌ 1/2 ∙ ௗܶ , the number of OS devices is
estimated that ைܰௌ ൌ 3/ሺ1/2ሻ ൌ 6	.

Then, we introduce how to consider the irregular
characteristics (B). In the queries in the captured data during
ܶ, there are the queries that are sent by the same OS device.

So, we should remove such duplicated queries from the
number ௗܰ, ் before the estimation of ைܰௌ by the equation
(1).

First, we consider the irregular characteristic (B) to the
estimation equation (1). Let ௗܰ, ்

ଵ be the number of OS
devices that send only one query in the capture interval ܶ,

ௗܰ, ்
ଶ be the number of OS devices that send more than one

query in the capture interval ܶ. Let ߤௗ
 be the mean of the

number of queries sent by OS devices, which send more than
one query in the capture interval ܶ, in the capture interval ܶ.
The number of queries in the capture interval ܶ , ௗܰ, ் , is

denoted as ௗܰ, ் ൌ ௗܰ, ்
ଵ ሺߤௗ

 െ 1ሻ ∙ ௗܰ, ்
ଶ . ௗܰ, ்

ଶ satisfies

ௗܰ,்
ଶ ൌ ௗܰ,்

ଵ ∙ ,ௗ ்
 , where ௗ, ்

 is the probability that an
OS device sends a query for domain d at less than the capture
interval ܶ . So, the number of devices that send only one
query ௗܰ, ்

ଵ is denoted as ௗܰ,்
ଵ ൌ ௗܰ, ்/ሺ1 ,ௗ ்

 ሺߤௗ
 െ 1ሻሻ.

Therefore, the equation (1) is revised as,

Figure 6. An example of the estimation situation

a query at less than
capture interval

a query over the
cyclic interval

device 1

device 2

capture interval

TABLE II. NOTATIONS

ௗܶ Cyclic interval time for a domain d

ܶ Interval time for capturing traffic data

ௗܰ, ் The number of queries for domain d that are sent in the
interval ܶ

ௗܰ, ்
ଵ The number of OS devices that sends only one query for

domain d during the interval ܶ

ௗܰ, ்
ଶ The number of OS devices that sends more than one

query for domain d during the interval ܶ

ௗߤ
 Mean of the number of queries sent by OS devices in

the interval ܶ, that send more than one query in the
interval ܶ

,ௗ ் Probability that a OS device sends queries for domain d
in the interval ܶ

,ௗ ்
 Probability that a OS device sends queries for domain d

at less than the interval ܶ

ௗ,்
 Probability that a OS device sends queries for domain d

over the cyclic interval ௗܶ

ைܰௌ The number of OS devices only that send at least one
query in the cyclic interval ௗܶ

ைܰௌ
 The number of all OS devices

 ைܰௌ ൌ
ே,
భ

,
ൌ

ே,
ሺ ்/்ሻሺଵା,

ై ሺఓ
ైିଵሻሻ

	. (2)

In Figure 6, the probability that an OS device sends a
query at less than the capture interval ܶ, ௗ, ்

 , is 2/6 ൌ 1/3
derived from Device 1 pattern (queries that sent at less than
the interval ܶ is ܳଵ,ଵ and ܳଵ,ଶ). The mean of the number of
queries that is sent in the capture interval ܶ, ߤௗ

, is 3 derived
from the Device 1 pattern. So, the number of OS devices is
estimated as ைܰௌ ൌ

ଷ

ሺଵ/ଶሻሺଵାଵ/ଷ∙ሺଷିଵሻሻ
ൌ 18/5.

Then, we consider the irregular characteristic (C) to the
equation (2). ைܰௌ in the equation (2) denotes the number of
OS devices that send at least one query in the cyclic time
interval ௗܶ. However, according to characteristic (C), there
are some OS devices that send no query over the cyclic time
interval. So, let ௗ,்

 be the probability that an OS device
sends a query over the cyclic time interval ௗܶ , and the
estimated number of all OS devices ைܰௌ

 is denoted as

follows, ைܰௌ
 ൌ ைܰௌ/ሺ1 െ ௗ,்

 ሻ . Therefore, the equation
(2) is revised as,

ைܰௌ
 ൌ

ைܰௌ

1 െ ௗ,்
 ൌ

ௗܰ, ்
ଵ

,ௗ ்൫1 െ ௗ,்
 ൯

 ൌ
ே,

ሺ ்/்ሻሺଵା,,
ై ሺఓ

ైିଵሻሻሺଵି,
ో ሻ

	

In Figure 6, the probability that an OS device sends a
query over the cyclic time interval ௗܶ, ௗ,்

 , is 1/6 derived
from Device 1 pattern (queries that sent over the cyclic time
interval ௗܶ is ܳଵ,ହ). So, the number of OS devices is

estimated as ைܰௌ
 ൌ ଷ

ሺଵ/ଶሻሺଵାଵ/ଷ∙ሺଷିଵሻሻሺଵିଵ/ሻ
ൌ 108/25.

V. EXAMINATION IN OUT INTRA-NETWORK

We examine our estimation equation (3) by estimating
the number of Android OSs on our intra-network. We
capture the DNS traffic data and DHCP-related traffic in our
intra-network. DHCP traffic is used for DHCP fingerprinting
[3] to compare the estimation result by using DNS traffic. In
this examination, we use two DNS queries that are for
android.clients.google.com and *.pool.ntp.org. We derive
each parameter in the equation (3) from our DNS traffic
analysis described in Section III-B. Table III summarizes the
parameters for the equation (3) related to queries for
android.clients.google.com and *.pool.ntp.org, respectively.

Figure 7 shows the difference in the estimation results by
using queries for clients.android.google.com with the
captured time interval ܶ and parameters from device 1
analysis and device 2. We derive a number of queries, ௗܰ, ்
in the equation (3) from the captured DNS traffic data during
one day. Each value of ௗܰ, ் related to the captured time
interval ܶ is shown in Table IV. Each value of ௗܰ, ் is
derived by calculating an average of the number of queries in
each interval where the start time is shifted hour by hour.
The dashed line in Figure 7 indicates the result of the DHCP
fingerprinting, which estimates that 8 OS devices exist in the
network. According to Figure 7, the results from the Device
2 parameters are closer to the DHCP fingerprinting result.
Therefore, Device 2 parameters are more suitable for the
characteristics of Android OS queries. Device 1 parameters
derive worse estimation results since the probability that an
OS device sends a query over the cyclic time interval ௗ,்

 is
much higher than Device 2 due to device specific
characteristics or irregularly factors. Figure 7 also indicates
the feature that the longer the captured time interval ܶ, the
closer the estimation results are to the DHCP fingerprinting
result.

Figure 8 shows the estimation results by using queries for
*.pool.ntp.org. Each value of ௗܰ, ் is shown in Table V.
According to Figure 8, both estimation numbers of OS
devices are less than the DHCP fingerprinting result. It is
because some Android OS devices send no query for
*.pool.ntp.org by default, and we presume that there are
some Android OS devices that are set to choose another
domain or method for time synchronization in the network.
Our extra observation shows that 2 devices of 5 devices send
no query for that domain. If we consider the rate of such
devices to the estimation, the results of the estimation
become closer to the DHCP result.

TABLE III. PARAMETERS FOR THE EQUATION (3)

(A) DOMAIN: ANDROID.CLIENTS.GOOGLE.COM

 Device 1 Device 2

ௗܶ ܶ ௗ, ்
 ௗ,்

 ௗߤ
 ௗ, ்

 ௗ,்
 ௗߤ

86400

86400 0.357 0.429 2.00 0.783 0.130 2.86
43200 0.262 0.429 2.00 0.626 0.130 2.34
21600 0.143 0.429 2.00 0.539 0.130 2.05
10800 0.095 0.429 2.00 0.513 0.130 2.05
5400 0.071 0.429 2.00 0.348 0.130 2.00

(B) DOMAIN: *.POOL.NTP.ORG

 Device 1 Device 2

ௗܶ ܶ ௗ, ்
 ௗ,்

 ௗߤ
 ௗ, ்

 ௗ,்
 ௗߤ

14400
14400 0.104 0.549 2.00 0.116 0.581 2.00
7200 0.087 0.549 2.00 0.076 0.581 2.00
3600 0.046 0.549 2.00 0.052 0.581 2.00

TABLE IV. VALUES OF THE NUMBER OF QUERIES IN EACH CAPTURED
TIME INTERVAL

(DOMAIN: ANDROID.CLIENTS.GOOGLE.COM)

ܶ 86400 43200 21600 10800 5400

ௗܰ, ் 16.0 8.58 4.61 2.29 1.14

TABLE V. VALUES OF THE NUMBER OF QUERIES IN EACH CAPTURED
TIME INTERVAL

(DOMAIN: *.POOL.NTP.ORG)

ܶ 14400 7200 3600

ௗܰ, ் 1.50 0.73 0.35

VI. CONCLUSION

In this paper, we study ways to passive OS fingerprinting
from the analysis of DNS traffic and we derive a method to
estimate the number of OSs in the network.

We first reveal characteristics to determine OSs from
DNS traffic by analyzing DNS queries from each OS. Each
OS, especially the Android OS, has useful characteristics for
the estimation, each OS has specific domains to which other
OSs send no query, and each OS has characteristic time
interval distributions in sending the OS-specific domain
queries. Our analysis also shows that the OS-specific domain
queries are sometimes sent irregular time intervals; some
queries are sent less than regular time intervals, and some
other queries are sent more than regular time intervals.

We then propose a method for estimating the number of
OSs from a number of specific DNS queries in a captured
DNS traffic data during a time interval. We derive an
equation for estimating the number of OSs, which considers
not only the cyclic nature of queries for specific domains but
also the irregular time interval cases described above.

Finally, we provide the results of our examination on our

intra-network. Some results show our estimation method can
result in close estimation number of OSs to the results of
DHCP fingerprinting. The result indicates that the accuracy
of our estimation method depends on the parameters for the
equation. In the case of using DNS queries to
clients.android.google.com, we can obtain closer estimation
number of OSs by using the parameters which are derived
from our DNS traffic analysis regarding Device 2 than ones
regarding Device 1. Furthermore, the results also reveal the
feature that the shorter the data captured time interval, the
worse the precision of the estimation. Additional methods
should be studied to raise the precision of the estimation
from captured data with shorter time intervals and to derive
the adequate parameters that correctly describe OS
characteristics.

ACKNOWLEDGMENT

We would like to thank Mr. Yamashita from KDDI R&D
Laboratories Inc. for sharing his works.

REFERENCES
[1] Ericsson, “Traffic and Market Report”, Available at

http://www.ericsson.com/res/docs/2012/traffic_and_market_report_ju
ne_2012.pdf, Jun. 2012.

[2] M. Zalewski, “p0f v3”,Available at http://lcamtuf.coredump.cx/p0f3/.

[3] E. Kollmann, “Chatter on the Wire: A look at DHCP traffic”,
Available at http://myweb.cableone.net/xnih/download/Chatter-
DHCP.pdf, 2007.

[4] S. Schulz, A. Sadeghi, M. Zhdanova, H. A. Mustafa, W. Xu and V.
Varadharajan, “Tetherway: A Framework for Tethering Camouflage”,
Proc. ACM Wireless Network Security (WISEC 2012), pp. 149-160,
2012.

[5] S. Shah, “HTTP Fingerprinting and Advanced Assessment
Techniques”, Blackhat 2003 USA, Available at
http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-shah/bh-
us-03-shah.ppt, 2003.

[6] G. F. Lyon., “Remote OS Detection via TCP/IP stack fingerprinting”,
Available at http://nmap.org/book/osdetect.html, 2011.

[7] C. Popi, O. Festor, “A Scheme for Dynamic Monitoring and Logging
of Topology Information in Wireless Mesh Networks”, Proc. IEEE
Network Operations and Management Symposium (NOMS 2008), pp.
759-762, 2008.

[8] D. Tuncer, M. Charalambides, G. Pavlou and N. Wang, “DACoRM:
A Coordinated, Decentralized and Adaptive Network Resource
Management Scheme”, Proc. IEEE Network Operations and
Management Symposium (NOMS 2011), pp. 417-425, 2011.

[9] R. G. Clegg, S. Clayman, G. Pavlou, L. Mamatas and A. Galis, “On
the selection of management/monitoring nodes in highly dynamic
networks”, IEEE Trans. on Computers, vol. 99, pp. 1-15, Mar., 2012.

[10] F. Gagnon and B. Esfandiari, “A Hybrid Approach to Operating
System Discovery Based on Diagnosis Theory”, Proc. IEEE Network
Operations and Management Symposium (NOMS 2012), pp. 860-865,
2012.

[11] K. Xui, Z. Zhang and S. Bhattacharyya, “Profiling Internet Backbone
Traffic: Behavior Models and Applications”, Proc. ACM SIGCOMM
2005, pp. 169-180, 2005.

[12] F. Zhang, W. He, X. Liu and P. G. Bridges, “Inferring Users’ Online
Activities Through Traffic Analysis”, Proc. ACM conference on
Wireless Network Security (WISEC 2011), pp. 59-70, 2011.

[13] R. Beverly, “A Robust Classifier of Passive TCP/IP Fingerprinting”,
Proc. Workshop Passive and Active Network Measurement (PAM
2004), pp. 158-167, 2004.

Figure 7. Estimation results with queries for
clients.android.google.com

Figure 8. Estimation results with queries for *.pool.ntp.org

0

5

10

15

20

25

30

35

40

45

0 20000 40000 60000 80000

es
ti

m
at

ed
 n

um
be

r
of

 O
S

de
vi

ce
s

captured time interval (Tq)

Device 1's parameters

Device 2's parameters

DHCP fingerprinting

0

1

2

3

4

5

6

7

8

9

10

0 2500 5000 7500 10000 12500 15000

es
ti

m
at

ed
 n

u
m

be
r

of
 O

S
 d

ev
ic

es

captured time interval (Tq)

Device 1's parameters
Device 2's parameters
DHCP fingerprinting

