
Efficient Matrix Multiplication Based on

Discrete Stochastic Arithmetic∗

Sethy Montan and Christophe Denis
EDF R&D - Département SINETICS - 1, Avenue du
général de Gaulle 92141 Clamart Cedex - France

christophe.denis@edf.fr,sethy.montan@edf.fr

Jean-Marie Chesneaux and Jean-Luc Lamotte
Laboratoire d’Informatique de Paris 6 - Université
Pierre et Marie Curie, 4 place jussieu 75005 - France

jean-marie.chesneaux@lip6.fr,jean-luc.lamotte@lip6.fr

Abstract

Numerical verification of industrial codes, such as those developed at
Électricit e de France (EDF) R&D, requires estimating the precision and
the quality of computed results, which is even more challenging for codes
running in HPC environments where billions of instructions are performed
each second, usually using external libraries (e.g., MPI, BLACS, BLAS,
LAPACK). In this context, one needs a tool that is as nonintrusive as
possible to avoid rewriting the original code. In this regard, the CADNA
library, which implements the Discrete Stochastic Arithmetic, appears to
be a promising approach for industrial applications.

In this paper, we are interested in an efficient implementation of the
BLAS routine DGEMM (General Matrix Multiply) using Discrete Stochas-
tic Arithmetic. The implementation of the basic algorithm for a matrix
product using stochastic types leads to an overhead greater than 1000 for
a matrix of 1024*1024 compared to the standard version and commercial
versions of xGEMM. We present details of different solutions to reduce
this overhead and results we have obtained.

Keywords: Linear Algebra, Matrix Multiply, Round-off Error, Numerical verifi-
cation, Discrete Stochastic Arithmetic

AMS subject classifications: 65G20, 65G40, 65G50, 65Fxx

1 Motivation

Several sources of errors and approximations occur during any numerical simulation:
physical phenomena are observed with measure errors and modelled using mathemat-
ical equations, continuous functions are replaced by discretized ones and real numbers

∗Submitted: February 10, 2013; Revised: October 28, 2014; Accepted: November 7, 2014.

398

christophe.denis@edf.fr,sethy.montan@edf.fr
jean-marie.chesneaux@lip6.fr,jean-luc.lamotte@lip6.fr

Reliable Computing 19, 2014 399

are replaced by finite-precision representations (floating-point numbers). IEEE-754
arithmetic generates round-off errors at each elementary arithmetic operation. These
errors can accumulate to affect the accuracy of computed results, possibly leading to
partial or total inaccuracy.

Figure 1: Numerical simulation process

Numerical verification focuses on round-off error propagation. It is crucial, espe-
cially for industries where it is required to estimate the precision and the quality of
the computed results. It is even more important now when most codes are run in High
Performance Computing environments where billions of instructions are performed per
second. The effect of rounding errors can be analysed by multiple methods including
forward/backward analysis, interval arithmetic or discrete stochastic arithmetic.

In this paper, we focus on the numerical verification of industrial programs. In
this context, practitioners need a tool that is as non-intrusive as possible to avoid
rewriting the original code. In this regard, the CADNA library [15], which imple-
ments discrete stochastic arithmetic, appears to be a promising approach. However,
to improve performance, industrial programs usually use external libraries (e.g., MPI,
BLACS, BLAS, LAPACK) [4]. Theses libraries are highly optimized to obtain good
computational performance, nearly peak performance in some cases. CADNA pro-
vides new numerical types, called stochastic types, on which round-off errors can be
estimated. These new types are not compatible with the aforementioned libraries.
Therefore, it is necessary to develop extensions for these external libraries to perform
a total and efficient numerical verification on industrial programs.

We consider an efficient implementation of the BLAS (Basic Linear Algebra Sub-
programs) Level 3 routines compatible with CADNA. We focused on the xGEMM -
General Matrix Multiply routine, calling our new routine DgemmCADNA. For BLAS
Level 1 and 2 subprograms, sufficient performance can be achieved by using a template
version of BLAS [23]. The implementation of a basic algorithm for a matrix product
compatible with stochastic types leads to an overhead greater than 1000 for a matrix
of 1024×1024 compared to the standard and commercial versions of xGEMM. This
overhead is due to the use of stochastic types, whose rounding mode changes randomly
at each elementary operation (×, /, + , −) and a non-optimized use of memory.

Outline of the paper. In section 2, we present the main numerical validation
tools and especially the CADNA library (section 2.3). After a brief presentation of
BLAS routines (section 3.1), we present the problem of getting an efficient matrix mul-
tiplication routine compatible with CADNA Library (section 3.2) and its implemen-
tation (section 4). We compare our routine with other accurate matrix multiplication
subroutines. Finally, we present the main results in section 5.

400 Montan et al., Efficient Matrix Multiplication

2 Numerical Validation

2.1 Rounding Errors

Rounding errors present an inherent problem to all computer programs in which num-
bers are represented in a finite form: a sequence of symbols (0 and 1 in base 2).
D. Goldberg has pointed out the importance of rounding error propagation in nu-
merical programs with his article “What every computer scientist should know about
floating-point arithmetic” [8]. An excellent overview on rounding error also can be
found in [12, 18]. A numerical program is a sequence of arithmetic operations, where
error can occur at every operation, potentially leading to a loss of accuracy. Since it is
intrinsically impossible to avoid rounding errors, we try to control their propagation
by analysing the errors and by providing a bound on the error of computed results or
by trying to improve the accuracy of results.

2.2 Numerical Verification in an Industrial Context

In an industrial context, numerical verification can be performed in two steps. The
first step analyses a code or an algorithm (e.g., using forward/backward analysis, in-
terval arithmetic or discrete stochastic arithmetic) to identify any potential numerical
instabilities and parts of the code which generate these instabilities. The second step
finds methods and tools to improve the accuracy of the code.

The goal of forward analysis is to estimate or bound the distance between the exact
solution y and the computed solution ŷ, which is called forward error. Backward
analysis computes the distance between the initial problem and a problem that is
solved exactly. The computed solution ŷ is assumed to be the exact solution, and one
seeks the backward error ∆x for which ŷ = f(x+ ∆x).

The principle of interval arithmetic is to enclose every number in an enclosing
interval (a real number x is represented by an interval [x, x]). Results of operations
are intervals covering the range of all possible outcomes. Interval arithmetic offers
guaranteed bounds for each computed result. The main drawback is the necessity to
rewrite codes, often using specialized algorithms to avoid interval overestimation.

Discrete stochastic arithmetic [2] is based on the CESTAC method [24], which is
described briefly in section 2.3 and implemented in the CADNA library.

Improving the numerical accuracy of a code can be achieved by increasing the initial
precision of floating numbers as done in the Multiple Precision Floating-Point Reliable
library - MPFR.1 Based on GNU Multi-Precision library, MPFR is a portable C library
for arbitrary-precision binary floating-point computation with correct rounding [7].
Use of the MPFR library does not guarantee the accuracy of the summation, unlike
the Multiple Precision Floating-point Interval library2 (MPFI) [21], which combines
interval arithmetic and multiple precision.

Another way to improve the accuracy of computed results is to use compensated
algorithms. These algorithms estimate the rounding error and add it to the computed
result with an error-free transformation (see equation 1). Consider the context of IEEE
754 floating-point arithmetic with rounding to nearest. If a and b are two floating
numbers, the rounding error which occurs during fl(a+ b) is a floating number:

x+ δ = a+ b, with x = fl(a+ b) and δ a floating number. (1)

1see http://www.mpfr.org
2see http://mpfi.gforge.inria.fr

Reliable Computing 19, 2014 401

An Error Free Transformation (EFT) can be generalised to multiplication and in
another way to division. The floating point numbers x and δ can be computed easily
and exactly with working precision. An excellent overview of EFT and its applications
can be found in [19].

With any of these approaches, the cost of the numerical verification process is very
important. Especially for industry, a significant cost for development or for execution
implies additional financial costs for the company. Therefore, it is important to find
the best compromise between costs and gains in accuracy. As a consequence, avoiding
rewriting codes should be considered as a priority. In this regard, the numerical verifi-
cation should be performed by a tool which is as inobtrusive as possible. The CADNA
library appears to be one of the most promising candidates for numerical verification
of industrial applications. Inserting it into a code is straightforward compared with
other validation tools. In the next section (2.3), more details on Discrete Stochastic
Arithmetic are given, and its implementation in the CADNA library is described.

2.3 The CADNA Library

The CADNA3 library uses a probabilistic approach to estimate round-off error propa-
gation by in any simulation program written in C/C++ or Fortran and to control its
numerical quality by detecting numerical instabilities that may occur at run time [15].

The CESTAC4 method runs the same code several times synchronously with a
random rounding mode for each operation. Each run generates a different rounding
propagation. The random rounding mode consists of rounding r towards +∞ or
towards −∞ with probability 0.5. When the same code is executed N times, if round-
off errors affect the result, even slightly, N different results are obtained from N
different runs. A statistical test may be applied on these N samples. It has been
proved [24] that each of the N samples (results) Ri can be modelled to the first order
in 2−p by a random variable R as

R ≈ r +

n∑
i=1

ui(d)2−pαi , (2)

where r is the exact result, p is the number of bits in the mantissa, αi are independent
uniformly distributed random variables on [−1, 1] and ui are coefficients depending
exclusively on the data and on the code.

The round-off error of the final floating-point result is estimated from the different
computed results Ri, i = 1, . . . , N . The mean value R of Ri is chosen as the computed
result. The number of exact decimal significant digits CR of R is estimated as

CR = log10

(√
N · |R|
στβ

)
, (3)

where

R =
1

N

N∑
i=1

Ri , σ2 =
1

N − 1

N∑
i=1

(
Ri −R

)2
and τβ is the value of Student’s distribution for N − 1 degrees of freedom and a
probability level 1− β.

3The CADNA library is available for download at http://www-pequan.lip6.fr/cadna/
4The CESTAC method (Contrôle et Estimation Stochastique des Arrondis de Calculs) was

propoed by M. La Porte and J. Vignes in 1974.

402 Montan et al., Efficient Matrix Multiplication

In practice, validation using the CESTAC method requires a dynamic control of
multiplications and divisions during the execution of the code. This leads to the
synchronous implementation of CESTAC (i.e., the parallel computing of the N samples
Ri) and the concept of computational zero [15]. The classical float is replaced by a
3-sample X = (X1, X2, X3). Every elementary operation Ω ∈ (+,−,×, /) is defined
by XΩY = (X1ωY1, X2ωY2, X3ωY3), where ω is the floating-point operation followed
by a random rounding.

Definition 2.1 During the run of a code using the CESTAC method, an intermediate
or a final result R is a computational zero, also called an informatical zero, denoted
by @.0, if CR ≤ 0 or ∀i, Ri = 0.

Definition 2.2 X is stochastically strictly greater than Y if and only if

X > Y and X − Y 6= @.0 .

.

Definition 2.3 X is stochastically strictly greater than or equal to Y if and only if

X ≥ Y or X − Y = @.0 .

.

The CESTAC method, combined with these new definitions, defines Discrete Sto-
chastic Arithmetic (DSA). The elements of DSA, named stochastic numbers, are N -
sets provided by the CESTAC method. CADNA contains the definition of all arith-
metic operations and order relations for the stochastic types. When a stochastic
variable is printed, only its exact significant digits appear. For a computational zero,
the symbol “@.0” is printed. More precisely, during the execution of any code, the
library estimates the inaccuracy due to rounding error propagation to detect numeri-
cal instabilities, to check the sequencing of the program (tests and branching) and to
estimate the accuracy of all the intermediate computations.

3 The DgemmCADNA routine

3.1 The Basic Linear Algebra Subprograms

The BLAS routines provide standard building blocks for performing linear algebra
operations. The routines are divided into three levels: Level 1 for operations on
vectors (ex., xAXPY), Level 2 for matrix-vector operations (ex., xGEMV) and Level
3 for matrix-matrix operations (ex., xGEMM). The xGEMM subprogram performs
matrix multiplication, one of the most common numerical operations, especially in the
area of dense linear algebra. It forms the core of many important algorithms, including
linear systems solvers, least square problems and singular and eigenvalue computation.

There are many BLAS implementations. The Netlib BLAS [17] is the reference
implementation. Other implementations often are optimised for a given architecture.
Well-known implementations include ATLAS (Automatically Tuned Linear Algebra
Software) [3], which automatically generates an optimised version adapted to the ar-
chitecture on which it is installed, GotoBLAS [10, 9] and Intel MKL [13]. Table 1
gives the performance (Gflops) of different BLAS implementations for xAXPY (Level

Reliable Computing 19, 2014 403

1), xGEMV (Level 2) and xGEMM (Level 3) for a 4096 × 4096 matrix and a 4096-
vector. The computer used for all tests is described in Table 3. The two most highly
optimised versions (GotoBLAS and Intel MKL) achieve the best performance, espe-
cially for xGEMM (very close to the machine peak performance). For BLAS levels 1
and 2, performance of the Netlib and the other implementations are close. In general,
only Level 3 subprograms fully exploit the machine characteristics, for reasons given
in [3]. Due to these performance statistics and its importance, we chose to focus on
the DGEMM subprogram.

Table 1: BLAS implementation performance (Gflops) for axpy, gemv and gemm

Single Precision Double Precision

versions saxpy sgemv sgemm daxpy dgemv dgemm

Netlib 1.18482 1.24672 2.6391 1.18482 1.15347 1.35378

Atlas 1.18482 1.82857 3.28395 0.928642 1.50138 5.55025

Mkl 1 threads 6.87195 4.2074 15.1008 2.02116 2.11232 7.53686

Goto 1 threads 8.58993 4.46928 15.38 2.86331 2.12331 7.52166

Mkl 8 threads 2.02116 5.66508 112.89 1.63618 2.79974 58.0523

Goto 8 threads 1.37439 8.95505 115.444 1.63618 4.60287 56.3343

3.2 Direct Implementation of DSA in xGEMM

The objective of this implementation is to identify the possible overhead due to the use
of stochastic types. The direct implementation is a basic algorithm with three inner
loops (See Listing 1). This first version, named dgemmcadnaV1, has been compared
to dgemmcadnaV2, which is the same code, but the calls to random rounding modes
are removed. The difference between the two versions is presented in Table 2. dgemm-
cadnaV1 is compared to the other BLAS implementations and to LinAlg [23], which
is a template (C++) implementation of Netlib BLAS. In our experiment, templates
are replaced by stochastic types.

Listing 1: Direct implementation of DSA in xGEMM

int dgemmcadnaV1(int n, double_st alpha , double_st *A, ←↩
double_st *B, double_st beta ,double_st *C){

int i, j, k;

for (i = 0; i < n; i++){

for (j = 0; j < n; j++){

for (k = 0; k < n; k++){

C[i*n+j] += alpha* A[i*n+k] * B[k*n+j] ;

} /* for k */

} /* for j */

} /* for i */

}

These two experiments point out the poor performance of the dgemmcadnaV1
routine compare to the others. In fact, the time ratio V 1/V 2 is greater than 7. This
important overhead is the direct consequence of the many rounding mode changes.
More than 85% of the execution time of V 1 is due to random rounding mode selec-
tion (see Table 2). Indeed, a system function is used to change the rounding mode,

404 Montan et al., Efficient Matrix Multiplication

Table 2: Overhead due to the discrete stochastic arithmetic: computed mea-
sured time of DgemmCadnaV1 is compared to DgemmCadnaV2; the random
rounding function calls have been removed in DgemmCadnaV2

Size DgemmCadnaV1 DgemmCadnaV2
512 34.728 2.247

1024 320.174 40.660
2048 2636.270 372.290

and it automatically breaks the instructions pipeline. In the worst case, the processor
executes only one instruction per cycle. Besides, the worst performance of dgemmcad-
naV1 and LinAlg compared to Netlib is due to the use of DSA and the three inner
loops. Using DSA, each arithmetic operation is done three times, using three times
more floating point numbers and four times more memory. The loops cause cache and
TLB misses. Note that other versions of DGEMM were highly optimized to exploit
fully the performance offered by the machine.

10-1

100

101

102

103

104

105

 1000 2000 3000 4000

Ti
m

e
(s

ec
)

Size(n*n)

V1 Linalg Goto Netlib

Figure 2: DgemmCadnaV1 compared to other implementations of BLAS
(LinAlg, GotoBLAS, Netlib). GotoBLAS is 1000× faster than DgemmCadnaV1

4 Optimisation of DgemmCADNA

Implementation of a matrix product with optimum performance is a very complex
problem. Kazushige Goto has written in [9]:

“Implementing matrix multiplication so that near-optimal performance is attained
requires a thorough understanding of how the operation must be layered at the macro
level in combination with careful engineering of high-performance kernels at the micro

Reliable Computing 19, 2014 405

level.”
The most important parameter is the block size. Using blocks (tiles) allows a

better use of memory. We can exploit the characteristics of actual machines which are
based on the principle of shared memory with NUMA (Non-Uniform Memory Access).
These machines consist of several processors, each containing multiple cores. Each
core is associated with a memory unit, and they are interconnected by hierarchical
cache memory, giving them transparent access to the entire memory [5, 6]. These
architectures have a very hierarchical structure on which the data access depends on
their location in the memory. The block size must be chosen so that all sub-matrices
involved in the computation fit into the targeted memory area.

Besides the hierarchical structure, the Translation Look-aside Buffer (TLB) stores
the addresses of the data used most recently to accelerate the translation of virtual
address to physical address. The most significant difference between a cache miss and
a TLB miss is that a cache miss does not necessarily stall the CPU.

Many studies have been devoted to the optimization of the computation of matrix
products on various architectures (CPU, GPU, CPU CELL). For example, the emerg-
ing trend in linear algebra is the use of specialized data structures such as Block Data
Layout (BDL) [20] and expression of algorithms directly in terms of kernels [16].

In this paper, our purpose is slightly different from that of the previous work. We
develop an efficient matrix multiplication algorithm adapted to the datatypes used in
the CADNA library to limit its overhead. The floating point datatypes in the classical
matrix multiplication are replaced with CADNA stochastic datatypes composed of

• three double precision floating point numbers and one integer to replace a double
precision floating point datatype; and

• three single precision floating point numbers and one integer to replace a single
precision floating point datatype.

We were largely inspired by [1, 3, 9, 10, 11, 16, 22]. The main motive of all these
implementations was to Reduce the number and the cost of memory access to
reduce TLB and cache misses. The main solution is to use tiled algorithms, optimize
cache locality and exploit temporal and spatial locality. We present the different steps
for the optimisation in the next sections.

4.1 Exploiting Temporal and Spatial Locality

4.1.1 Iterative Tiled Algorithms

To reduce cache and TLB misses, it is very important to reduce data transfers. The
best solution is to use the data as much as we can and as soon as we get it (temporal
locality). A tiled algorithm exploits the spatial locality. Matrices are subdivided into
sub-matrices (Ci,j , Ai,j , Bi,j), and the computations are made by block.
C11 C12 . . . C1N

C21 C22 . . . C2N

...
...

. . .
...

CN1 CN2 . . . CNN

 =


A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN

×

B11 B12 . . . B1N

B21 B22 . . . B2N

...
...

. . .
...

BN1 BN2 . . . BNN

 ,
where every block Cij of matrix C is computed by

Cij =
N∑
k=1

AikBkj .

406 Montan et al., Efficient Matrix Multiplication

Listing 2 shows an implementation for the iterative implementation.

Listing 2: Iterative Tiled algorithm implementation

int SIZEBLOCK =;

int i,j,k,ii,jj,kk ;

for (i = 0; i < n/SIZEBLOCK; i++)

for (j = 0; j < n/SIZEBLOCK; j++)

for (k = 0; k < n/SIZEBLOCK; k++)

for (ii = 0; ii < SIZEBLOCK; ii++)

for (jj = 0; jj < SIZEBLOCK; jj++)

for (kk = 0; kk < SIZEBLOCK; kk++)

C[(i*n + j)*SIZEBLOCK +ii*n + jj] += ←↩
A[(i*n+k)*SIZEBLOCK + ii*n +kk] + ←↩
B[(k*n+j)*SIZEBLOCK + kk*n + jj] ;

On current machines, the cache is divided into three levels: L1, L2 and L3. Dif-
ferences between the three levels of cache and different interactions with the CPU are
explained in [5]. The L1 cache is the smallest and least expensive, and the L3 the
most expensive and the largest in terms of memory size. In our case, we need to store
three stochastic sub-matrices so that they can fit in the L1 cache (64 KB). However,
half of the L1 cache is reserved for machine instructions [14].

With the block size, SIZEBLOCK , the size of a double st, SizeDst, and the avail-
able size of L1 cache, SizeL1, equation 4 must be verified. It holds for SIZEBLOCK =
18, but SIZEBLOCK = 16 is better, avoiding memory alignment problems.

3× SIZEBLOCK × SIZEBLOCK × SizeDst ≤ SizeL1 . (4)

4.1.2 Recursive Tiled Algorithms

The easiest way to exploit temporal locality is recursively [11], which exploits of all
levels of cache memory. A recursive algorithm subdivides matrices into four sub-
matrices and repeats the operation until it obtain blocks which can fit in the L1 cache.[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
×
[
B11 B12

B21 B22

]



At each level of recursion, the partial results of blocks C are

C11 = A11 ×B11 +A12 ×B21

C12 = A11 ×B12 +A12 ×B22

C21 = A21 ×B11 +A22 ×B21

C22 = A21 ×B12 +A22 ×B22 .

Reliable Computing 19, 2014 407

4.1.3 An Iterative Tiled Algorithm Based on the Hardware

The idea here is to adapt the partitioning to fit the hierarchical memory: three levels of
partitioning, one level for every cache level. The matrix (sub-matrices) are partitioned
into sub-matrices. At each step, three blocks must fit in this level of cache memory.

1. First level for Cache L3: A(n× n) is divided into sub-matrices Ai,j

A(n× n) =


A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN


2. Second level for Cache L2: Ai,j is divided into sub-matrices AAi,j

Ai,j =


AA11 AA12 . . . AA1K

AA21 AA22 . . . AA2K

...
...

. . .
...

AAK1 AAK2 . . . AAKK


3. Third level for Cache L1: AAi,j is divided in to sub-matrices AAAi,j

AAii,jj =


AAA11 AAA12 . . . AAA1P

AAA21 AAA22 . . . AAA2P

...
...

. . .
...

AAAP1 AAAP2 . . . AAAPP


Block sizes at each level are determined from the characteristics of our machine

(See Table 3). Our goal is that the data processed in L1 can use the locality of the
data in the L2 cache and those processed at L2 and L3. We have blocks of size 128
for the first level (L3), 32 for level L2 and 16 for the last level (L1); these sizes were
calculated from equation 4.

4.1.4 Using the Block Data Layout

The use of blocks maximizes the benefit of temporal locality of data for a given cache
size. The previous solutions are designed to minimize cache misses by reducing the
size of the matrices involved simultaneously in computation. There are also other
techniques to reduce cache misses such as using padding. However, these techniques
do not have a strong influence on TLB performance. Once the matrix sizes become
larger, TLB performance becomes more important. The more TLB faults there are, the
more the overall performance is degraded. Therefore, to optimize a given application,
it has been proposed [20] to modify matrix storage models and the inner loops.

Traditionally, matrices are stored either in column or row major order:

• Column Major order

M =

1 2 3
4 5 6
7 8 9

 ⇒
[
1 4 7 2 5 8 3 6 9

]

408 Montan et al., Efficient Matrix Multiplication

• Row Major order

M =

1 2 3
4 5 6
7 8 9

 ⇒
[
1 2 3 4 5 6 7 8 9

]
However, when performing a matrix multiplication, the elements of matrix A are
accessed in row major order, and the elements of B are accessed in column major
order. If blocks are used, we need to make a big jump in memory to move from one
row to another or from one column to another. We have the same problem when we
pass from one block to another. As a result of jumps in memory, cache and TLB misses
increase. The BDL defines the data storage model. The key idea of this approach is
to reorganize the layout of matrix data stored in the main memory to make it cache
friendly, and that the data layout matches the data access pattern.

Consider an n× n matrix A partitioned into N ×N submatrices Aij :

A(n× n) =


A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN

 Aij(p× p) =


a11 a12 . . . a1p
a21 a22 . . . a2p
...

...
. . .

...
ap1 ap2 . . . app

 .

Data within one such block Aij are mapped onto contiguous memory:[
a11 a12 . . . a1p a21 a22 . . . a2p . . . ap1 ap2 . . . app

]
,

and theses blocks are arranged in row-major order :[
A11 A12 . . . A1N A21 A22 . . . A2N . . . AN1 AN2 . . . ANN

]
.

This storage model can be called Block Row Major Layout (BRML). Using BDL can
significantly improve performance and minimize TLB and cache misses on hierarchical
memory machines. It involves copying and reorganization of matrices. As matrix B
is accessed by column, the elements of the blocks are stored in column-major order.
The matrix A is stored in BRLM format.

A(4×4) =


1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16

 ⇒ A′(4×4) = [1 2 5 6 3 4 7 8 9 10 13 14 11 12 15 16]

B(4×4) =


1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16

 ⇒ B′(4×4) = [1 5 2 6 3 7 4 8 9 13 10 14 11 15 12 16]

4.2 Reduce the Overhead Due to DSA

4.2.1 New Implementation of the CESTAC Method

In section 2.3, we presented Discrete Stochastic Arithmetic and the random rounding
mode. In practice, the addition of two stochastic numbers a and b is done as

Reliable Computing 19, 2014 409

C[i].x = A[i].x + B[i].x ;

if (random) rnd_switch ();

C[i].y = A[i].y + B[i].y ;

if (random) rnd_switch ();

C[i].z = A[i].z + B[i].z ;

rnd_switch ();

The four rounding modes of the IEEE-754 standard can be reduced to two round-
ing modes: towards +∞ and towards −∞ (see section 2.3). Consequently, we can
consider that a basic mathematical operation between two stochastic data uses only
two different rounding modes. Therefore, if we consider an operation between two
stochastic vectors, we can group operations into two parts and change the rounding
mode only twice, one for each part of the operation. For example, the addition of two
stochastic vectors of four elements Ci = Ai + Bi; 0 ≤ i ≤ 4 could be implemented
as shown in Listing 3. This new implementation improves exploitation of the pipeline
length. It is now possible to execute more than one operation before a call to the
rounding mode changing function rnd Switch(). The idea is to do the maximum of
operations to fully exploit the pipeline. Finally, two rounding mode changes are made
instead of 12 in the original implementation.

Listing 3: New implementation for CESTAC

if(random) rnd_switch ()

C[i].x = A[i].x + B[i].x ;

C[i].z = A[i].z + B[i].z ;

C[i+1].z = A[i+1].z + B[i+1].z ;

C[i+2].x = A[i+2].x + B[i+2].x ;

C[i+2].y = A[i+2].y + B[i+2].y ;

C[i+3].x = A[i+3].x + B[i+3].x ;

rnd_switch ();

C[i].y = A[i].y + B[i].y ;

C[i+1].x = A[i+1].x + B[i+1].x ;

C[i+1].y = A[i+1].y + B[i+1].y ;

C[i+2].z = A[i+2].z + B[i+2].z ;

C[i+3].y = A[i+3].y + B[i+3].y ;

C[i+3].z = A[i+3].z + B[i+3].z ;

4.2.2 On the Validity of the New Implementation

To improve the performance of DgemmCADNA, we have proposed a new implemen-
tation for DSA. We need to be sure that we are still using the CESTAC method and
following the principles of the method.

Few reminders on the CESTAC method. A computed result (a sequence
of arithmetic operations) can be modelled by equation 2. More precisely, equation 2
is derived from equation 5,

R = r +

Sn∑
i=1

gi(d)2Ei−pεi(αi − hi) , (5)

where gi are constant values depending on the data and the algorithm, Ei are expo-
nents of intermediary results, αi are the part lost due to round-off error, hi are random

410 Montan et al., Efficient Matrix Multiplication

perturbations, εi are intermediary results signs, r is the correct mathematical result
and n is the number of operations during the execution.

Equation 2 (respectively, equation 5) has been established on the basis that two
hypotheses hold: i) the round-off error αi (respectively, (αi − hi)) are independent,
centered uniformly distributed random variables; and ii) the approximation to the first
order in 2−p is legitimate.

On the implementation. In the implementation of DSA, R is replaced by a
3-sample Rx,Ry,Rz. Consequently, equation 5 becomes

Rx = r +

Sn∑
i=1

gxi(d)2Exi
−pεi(αxi − hxi)

Ry = r +

Sn∑
i=1

gyi(d)2Eyi
−pεi(αyi − hyi)

Rz = r +

Sn∑
i=1

gzi(d)2Ezi
−pεi(αzi − hzi) .

(6)

In fact, hi ∈ {−1; 1}; hxi and hyi are chosen randomly; hzi = hyi . Choosing hi means
choosing a rounding mode.

On the new implementation. If we consider operations by groups of four,
equation 5 is equivalent to

R = r +

Sn′∑
k=1

4∑
j=1

pkj , (7)

where Sn′ = Sn/4 and pkj = gkj (d)2
Ekj
−p
εkj (αkj − hkj), and then

Rx = r +

Sn′∑
k=1

4∑
j=1

pkxj

Ry = r +

Sn′∑
k=1

4∑
j=1

pkyj

Rz = r +

Sn′∑
k=1

4∑
j=1

pkzj

(8)

with

pkx0
= gkx0

(d)2
Ekx0

−p
εkx0

(αkx0
− hkx0

)

pky0 = gky0 (d)2
Eky0

−p
εky0 (αky0 − hky0)

pkz0 = gkz0 (d)2
Ekz0

−p
εkz0 (αkz0 − hky0)

pkx1
= gkx1

(d)2
Ekx1

−p
εkx1

(αkx1
− hkx1

)

pky1 = gky1 (d)2
Eky1

−p
εky1 (αky1 − hky1)

pkz1 = gkz1 (d)2
Ekz1

−p
εkz1 (αkz1 − hky1)

pkx2
= gkx2

(d)2
Ekx2

−p
εkx2

(αkx2
− hkx2

)

pky2 = gky2 (d)2
Eky2

−p
εky2 (αky2 − hky2)

Reliable Computing 19, 2014 411

pkz2 = gkz2 (d)2
Ekz2

−p
εkz2 (αkz2 − hky2)

pkx3
= gkx3

(d)2
Ekx3

−p
εkx3

(αkx3
− hkx3

)

pky3 = gky3 (d)2
Eky3

−p
εky3 (αky3 − hky3)

pkz3 = gkz3 (d)2
Ekz3

−p
εkz3 (αkz3 − hky3) .

(9)

In equation 9, eight hi have been chosen randomly, and four depend on the last
rounding mode. It is important ihat at every step, there are at least two different hi’s.
Therefore, with the new implementation, Equation 9 can be rewritten as

pkx0
= gkx0

(d)2
Ekx0

−p
εkx0

(αkx0
− h1)

pky0 = gky0 (d)2
Eky0

−p
εky0 (αky0 − h2)

pkz0 = gkz0 (d)2
Ekz0

−p
εkz0 (αkz0 − h1)

pkx1
= gkx1

(d)2
Ekx1

−p
εkx1

(αkx1
− h2)

pky1 = gky1 (d)2
Eky1

−p
εky1 (αky1 − h2)

pkz1 = gkz1 (d)2
Ekz1

−p
εkz1 (αkz1 − h1)

pkx2
= gkx2

(d)2
Ekx2

−p
εkx2

(αkx2
− h1)

pky2 = gky2 (d)2
Eky2

−p
εky2 (αky2 − h1)

pkz2 = gkz2 (d)2
Ekz2

−p
εkz2 (αkz2 − h2)

pkx3
= gkx3

(d)2
Ekx3

−p
εkx3

(αkx3
− h1)

pky3 = gky3 (d)2
Eky3

−p
εky3 (αky3 − h2)

pkz3 = gkz3 (d)2
Ekz3

−p
εkz3 (αkz3 − h2) ,

(10)

where h2 = h1. Equation 10 is equivalent to equation 11:

1stpart

pkx0
= gkx0

(d)2
Ekx0

−p
εkx0

(αkx0
− h1)

pkz0 = gkz0 (d)2
Ekz0

−p
εkz0 (αkz0 − h1)

pkz1 = gkz1 (d)2
Ekz1

−p
εkz1 (αkz1 − h1)

pkx2
= gkx2

(d)2
Ekx2

−p
εkx2

(αkx2
− h1)

pky2 = gky2 (d)2
Eky2

−p
εky2 (αky2 − h1)

pkx3
= gkx3

(d)2
Ekx3

−p
εkx3

(αkx3
− h1)

2ndpart

pky0 = gky0 (d)2
Eky0

−p
εky0 (αky0 − h1)

pkx1
= gkx1

(d)2
Ekx1

−p
εkx1

(αkx1
− h1)

pky1 = gky1 (d)2
Eky1

−p
εky1 (αky1 − h1)

pkz2 = gkz2 (d)2
Ekz2

−p
εkz2 (αkz2 − h1)

pky3 = gky3 (d)2
Eky3

−p
εky3 (αky3 − h1)

pkz3 = gkz3 (d)2
Ekz3

−p
εkz3 (αkz3 − h1) .

(11)

412 Montan et al., Efficient Matrix Multiplication

In this case, only h1 is chosen randomly. In the original implementation, for 12
operations, eight hi are chosen randomly.

This new formulation affects the hypotheses on which equation 5 has been estab-
lished, but only slightly. It is important that many random rounding modes were used
in the computation. In a real life numerical simulation, even with the new implemen-
tation, they remain available. For example, if we consider the multiplication of two
square 1024×1024 matrices, there are 2×1024×1024×1024 floating-point operations
(2 Gflops). With DSA, there are 3×2 Gflops. With the first implementation, we have
4 Giga random hi; with the new implementation, there are 0.5 Giga random hi.

4.3 Kernel Optimisation

Matrix multiplication performance can be improved by reducing data transfers. Be-
sides the macroscopic optimisation, microscopic optimisations can be done. Perfor-
mance also can be improved by changing the loop order (inner and/or outer loop) and
by optimizing the computation kernel (the inner operation to compute a partial result
of block Cij = Aik×Bkj). Indeed, these loops define how to access sub-matrices. With
an adequate order, the number of memory access to read data (access to elements of
A and B) can be reduced. Note that the number of memory access to write (access
to element C) is constant. The inner loops are for the kernel, and the outer loops
are loops on blocks. The number of branching tests (tests at the end of loops) can be
reduced by unrolling loops. For example, consider Listing 4.

Listing 4: Inner loops
for(int i = 0; i < nb_block; i++){

for(int k = 0; k < nb_block; k++){

for(int j = 0; j < nb_block; j++){

Cij = Aik * Bkj /* kernel */

By unrolling these loops, we obtain

C11 = A11 ×B11

C12 = A11 ×B12

C11 = A12 ×B21

C12 = A12 ×B22

C21 = A21 ×B11

C22 = A21 ×B12

C21 = A22 ×B21

C22 = A22 ×B22 .

These optimisations access the elements of matrix A only once and in a favorable
order. That is what is called “data re-use”. In the next section, we will present the
comparison of all the implementations and the main results.

5 Results

We will present in this section the performance of the previous solutions. Table 3
shows the characteristics of our test machine.

We have implemented all the optimisations proposed in section 4. As we ex-
plained, the optimum size for stochastic sub-matrices is 16. We compare the following
implementations: B16 iterative tiled algorithm (section 4.1.1); DGBR16 recursive tiled

Reliable Computing 19, 2014 413

Table 3: Test machine characteristics.

Name Processor Cores
SIMD

GFlops th.
Date

32
2×4Nehalem

2×Xeon E5504
2×4

SSE 4.2
119.2

2.00 GHz 03/2009

Memory
Cache

L1 L2 L3
4 Go

4×64 Kio 4×256 Kio 4 Mio
DDR3 800 Mhz

algorithm (section 4.1.2) with block loops optimised and inner loops unrolled; DGBI16
adapted iterative tiled algorithm (section 4.1.3) with block loops optimised and the
inner loop unrolled and BRML16 based on BDL (section 4.1.4), with block loops
optimised and the inner loop unrolled. Figure 3 and Table 4 present our main results.

10-1

100

101

102

103

104

105

 1000 2000 3000 4000

T
im

e
 (

se
c
)

Size(n*n)

V1
Linalg

B16
DGBR16

DGBI16
BRLM16

Goto

Figure 3: Different versions of DgemmCADNA compared to GotoBLAS and
LinAlg.

The B16 version is better than DgemmCADNAV1, but the first good performance
is obtained with DGBRI16, which is better than LinAlg. This can be explained by
the fact that this implementation with different sizes of blocks is completely hardware
dependent. However, the best version is the BRML16. Despite the copying and
the reorganization of matrices, we obtain better results than the conventional block
algorithms. These results confirm the importance of the data storage model.

414 Montan et al., Efficient Matrix Multiplication

Table 4: Comparision of DgemmCadnaV1, BRM16 and GotoBlas (one thread).

Taille V1 BRML16 GotoBlas V1/Goto BRML16/Goto

1024 324.54 7.52 0.29 1127.40 26.12
2048 2658.72 58.69 2.27 1168.63 25.81
4096 21818.4 476.23 18.27 1194.06 26.06

Finally, all these optimisations have improved considerably the execution time.
We obtained a gain of 45×, compared to the first version. Compared to GotoBlas, the
primary overhead is about 1100, and now it is about 25. It is important to notice that
our implementation needs three times more floating point operations and four times
more memory due to the stochastic types.

We tried to improve the performance by using vector instructions SSE (Streaming
SIMD Extensions) or AVX (Intel Advance Vector Extensions), but the performance
is not encouraging. The use of vector instructions in a dot product is the easiest way
to improve the execution time in double precision 2× with SSE and 4× with AVX. In
the case of stochastic types, for a vector of size 106, we obtain a speed-up of 0.137575,
which is obviously insufficient.

6 Conclusion

We present several candidates for an efficient implementation of matrix multiplication
based on Discrete Stochastic Arithmetic. This arithmetic introduces an important
overhead. Special data structures (Block Data Layout) are used to improve the matrix
storage, and a new implementation of DSA has been introduced. This implementation
reduces the overhead due to the random rounding mode of DSA. Finally, we have
obtained an overhead about 25 compared to GotoBLAS in a sequential mode.

References

[1] Q. Bourgerie, P. Fortin, and J.L. Lamotte. Efficient complex matrix multiplication
on the synergistic processing element of the cell processor. In Cluster Computing
Workshops and Posters (CLUSTER WORKSHOPS), 2010 IEEE International
Conference on, pages 1–8, Heraklion, Crete, Greece, 2010. IEEE.

[2] J.M. Chesneaux. L’arithmétique stochastique et le logiciel CADNA. PhD the-
sis, Université Pierre et Marie Curie (UPMC), 1995. Habilitation à Diriger des
Recherches.

[3] R. Clint Whaley, A. Petitet, and J.J. Dongarra. Automated empirical optimiza-
tions of software and the ATLAS project. Parallel Computing, 27(1-2):3–35, 2001.

[4] Christophe Denis and Sethy Montan. Numerical verification of industrial nu-
merical codes. ESAIM: Proc., 35:107–113, march 2012. http://dx.doi.org/10.
1051/proc/201235006.

[5] U. Drepper. What every programmer should know about memory. 2007. http:

//people.redhat.com/drepper/cpumemory.pdf.

http://dx.doi.org/10.1051/proc/201235006
http://dx.doi.org/10.1051/proc/201235006
http://people.redhat.com/drepper/cpumemory.pdf
http://people.redhat.com/drepper/cpumemory.pdf

Reliable Computing 19, 2014 415

[6] M. Faverge. Ordonnancement hybride statique-dynamique en algèbre linéaire
creuse pour de grands clusters de machines NUMA et multi-coeurs. PhD the-
sis, LaBRI, Université Bordeaux I, Talence, France, December 2009. http:

//www.labri.fr/~ramet/restricted/these_faverge.pdf.

[7] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Transactions on Mathematical Software, 33(2):13:1–13:15,
June 2007. http://doi.acm.org/10.1145/1236463.1236468.

[8] D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys (CSUR), 23(1):5–48, 1991.

[9] Kazushige Goto and Robert van de Geijn. High performance implementation of
the level-3 BLAS. ACM Transactions on Mathematical Software, 35(1):4:1–4:14,
July 2008. http://doi.acm.org/10.1145/1377603.1377607.

[10] Kazushige Goto and Robert A. van de Geijn. Anatomy of a high-performance
matrix multiplication. ACM Transactions on Mathematical Software, 34(3):12:1–
12:25, May 2008. http://doi.acm.org/10.1145/1356052.1356053.

[11] P. Gottschling, D.S. Wise, and A. Joshi. Generic support of algorithmic and
structural recursion for scientific computing 1. International Journal of Parallel,
Emergent and Distributed Systems, 24(6):479–503, 2009.

[12] N.J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Indus-
trial and Applied Mathematics, 2002.

[13] Intel. Intel Math Kernel Library Reference Manual,Intel MKL 10.3 up-
date 9. Technical report. http://software.intel.com/sites/products/

documentation/hpc/mkl/mklman/index.htm.

[14] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual. 2011.
http://www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-optimization-manual.html.

[15] F. Jézéquel, J.M. Chesneaux, and J.L. Lamotte. A new version of the CADNA
library for estimating round-off error propagation in Fortran programs. Computer
Physics Communications, 181(11):1927–1928, 2010.

[16] J. Kurzak, W. Alvaro, and J. Dongarra. Optimizing matrix multiplication for a
short-vector SIMD architecture-CELL processor. Parallel Computing, 35(3):138–
150, 2009.

[17] C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Transactions on Mathematical Software
(TOMS), 5(3):308–323, 1979.

[18] J.M. Muller, N. Brisebarre, F. De Dinechin, C.P. Jeannerod, L. Vincent, and
G. Melquiond. Handbook of floating-point arithmetic. Birkhauser, 2009.

[19] T. Ogita, S.M. Rump, and S. Oishi. Accurate sum and dot product. SIAM
Journal on Scientific Computing, 26(6):1955–1988, 2005.

[20] Neungsoo Park, Bo Hong, and Viktor K. Prasanna. Tiling, block data layout,
and memory hierarchy performance. IEEE Transactions on Parallel and Dis-
tributed Systems, 14:640–654, 2003. http://doi.ieeecomputersociety.org/10.
1109/TPDS.2003.1214317.

http://www.labri.fr/~ramet/restricted/these_faverge.pdf
http://www.labri.fr/~ramet/restricted/these_faverge.pdf
http://doi.acm.org/10.1145/1236463.1236468
http://doi.acm.org/10.1145/1377603.1377607
http://doi.acm.org/10.1145/1356052.1356053
http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/index.htm
http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/index.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://doi.ieeecomputersociety.org/10.1109/TPDS.2003.1214317
http://doi.ieeecomputersociety.org/10.1109/TPDS.2003.1214317

416 Montan et al., Efficient Matrix Multiplication

[21] N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arith-
metic and the MPFI library. Reliable Computing, 11(4):275–290, 2005.

[22] G. W. Stewart. Matrix Algorithms. Society for Industrial and Applied Mathe-
matics, Philadephia, PA, 1998. http://dx.doi.org/10.1137/1.9781611971408.

[23] Phillipe Trebuchet. The linalg library (lapack made generic). http://www-apr.

lip6.fr/~trebuche/linalg.html.

[24] J. Vignes. Discrete stochastic arithmetic for validating results of numerical soft-
ware. Numerical Algorithms, 37(1):377–390, 2004.

http://dx.doi.org/10.1137/1.9781611971408
http://www-apr.lip6.fr/~trebuche/linalg.html
http://www-apr.lip6.fr/~trebuche/linalg.html

	Motivation
	Numerical Validation
	Rounding Errors
	Numerical Verification in an Industrial Context
	The CADNA Library

	The DgemmCADNA routine
	The Basic Linear Algebra Subprograms
	Direct Implementation of DSA in xGEMM

	Optimisation of DgemmCADNA
	Exploiting Temporal and Spatial Locality
	Iterative Tiled Algorithms
	Recursive Tiled Algorithms
	An Iterative Tiled Algorithm Based on the Hardware
	Using the Block Data Layout

	Reduce the Overhead Due to DSA
	New Implementation of the CESTAC Method
	On the Validity of the New Implementation

	Kernel Optimisation

	Results
	Conclusion

