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Abstract 

We present an efficient information hiding algorithm for 

polygonal models. The decision to referencing neighbors 

for each embeddable vertex is based on a modified breadth 

first search, starting from the initial polygon determining 

by principal component analysis. The surface complexity is 

then estimated by the distance between the embedding 

vertex and the center of its referencing neighbors. Different 

amounts of secret messages are adaptively embedded 

according to the surface properties of each vertex. A 

constant threshold is employed to control the maximum 

embedding capacity for each vertex and decrease the model 

distortion simultaneously. The experimental results show 

the proposed algorithm is efficient and can provide higher 

robustness, higher embedding capacity, and lower model 

distortion than previous work, with acceptable estimation 

accuracy. The proposed technique is feasible in 3D 

adaptive information hiding. 

Keywords: Adaptation, breadth first search, controllable 

distortion, information hiding, polygonal models   

1   Introduction 

3D information hiding algorithms [1, 5, 9] hide the secret 

message in a cover model to produce a stego model which 

is undetectable to all expect the legitimate receiver. 

According to different operation domains for the cover 

models, different embedding manners are used for data 

embedding. Generally, the algorithms in the spatial domain 

[6] are efficient and suitable for the covert communication; 

whereas the algorithms in the transform domains [10] are 

of higher robustness and appropriate for copyright 

protection.  

Adaptive information hiding algorithms [2, 3, 8] embed 

different amounts of secret message into the embedding 

vertex according to its surface complexity. The main reason 

is that a vertex located on a rough surface can generally 

tolerate more positional changes than one on a smooth 

surface. Thus, the majority of the secret message is 

embedded into rougher regions to avoid causing visible 

model distortion on smoother regions. 

However, only two information hiding algorithms 

consider adaptation for the purpose of covert 

communication. Cheng and Wang [3] proposed an adaptive 

algorithm utilizing the correlation between neighboring 

polygons to estimate the amount of message for the 

embedding vertex. The algorithm first employs a 

contagious diffusion scheme to efficiently traverse each 

mesh. Thereafter, an adaptive minimum-distortion 

estimation procedure is employed to embed the secret 

message into extending, sliding, and rotating levels of the 

embedding vertex. However, their proposed algorithm only 

uses two of the other vertices within the same polygon 

containing the embedding vertex. This may lead to 

inaccurate estimation results. To raise the estimation 

accuracy for surface complexity, Tsai [8] introduced a 

vertex decimation process to determine the referencing 

neighbors for each embedding vertex. A quantization index 

modulation concept is then employed to embed different 

amounts of secret message into each embedding vertex 

according its surface complexity. Although the estimation 

accuracy can be significantly raised from 34.11% to 

65.51%, on average, the time complexity for the vertex 

decimation process is higher and the performance of the 

algorithm is seriously affected. 

In this study, a modified breadth first search (BFS) 

scheme is developed to improve the performance of 

determining the referencing neighbors for each embedding 

vertex. The proposed algorithm can efficiently resolve the 

referencing neighbors but slightly decrease the estimation 

accuracy. The proposed algorithm introduces a constant 

threshold CT to control the maximum embedding capacity 

of each vertex and to lower model distortion. Finally, the 

proposed algorithm can be robust against similarity 

transformation and vertex reordering attacks. 

This rest of this study is organized as follows; Section 2 

illustrates the proposed scheme; Section 3 presents a 

discussion of the experimental results; and finally, Section 

4 offers a conclusion of this work. 
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2  The Proposed Algorithm 

This section illustrates the proposed algorithm, including 

the data embedding and data extraction procedure. The 

flowchart of the proposed algorithm is shown in Figure 1. 

 

Figure 1: The flowchart of the proposed algorithm 

2.1   The Data Embedding Procedure 

The data embedding procedure begins by preprocessing 

the topological information of the input model. To 

efficiently derive the referencing neighbors for each 

embedding vertex in the modified BFS process, a vertex 

neighboring table records the indices of the actual 

neighbors based on the polygonal information appearing in 

the model file. Furthermore, the model information, 

including the diagonal length of the bounding volume, the 

number of vertices, and the number of faces, can be also 

derived in this process. 

The breadth first search is a search method that begins 

from the root node of a graph and explores all its 

neighboring nodes. For each neighboring node, the 

algorithm explores unexplored neighboring nodes 

iteratively. The algorithm stops after all nodes have been 

traversed. All neighboring nodes derived by expanding a 

node are added to a queue with a first-in-first-out (FIFO) 

property. However, the breadth first search may not only 

have a unique search result for a graph. The search results 

depend on how the user chooses the neighboring nodes of 

each node. In the proposed technique, the search order is 

based on the sequence appearing in the vertex neighboring 

table for each corresponding vertex. This vertex 

neighboring table is robust against similarity transformation 

and vertex ordering attacks. Thus, the same search order 

can be derived in the data extraction procedure. 

The modified BFS process determines the referencing 

neighbors for complexity estimation and data embedding. 

Each vertex can have three different statuses “NS,” “SS,” 

and “S,” representing the corresponding vertex as being 

unsearched, semi-searched, and searched. Each vertex is 

initialized as “NS.” The initial vertex for performing this 

process is resolved by the first index of the polygon 

intersected by the principal axis and regarded as the root 

node for performing the BFS algorithm. In the first iteration, 

the process enqueues the initial vertex, dequeues it, and 

then enqueues its unsearched neighbors. Note that, the 

order of the enqueued neighbors is not arbitrary, but based 

on the sequence appearing in the vertex neighboring table 

for each corresponding vertex. When the vertex is 

enqueued, its status is modified to “SS,” whereas the status 

is modified to “S” when the corresponding vertex is 

dequeued. In the second iteration, the process dequeues one 

vertex from the queue and euqueues its unsearched 

neighbors. The order of the enqueued neighbors is still 

based on the sequence appearing in the vertex neighboring 

table. This iteration is repeated until the queue is empty. 

The algorithm then proceeds until all vertices are searched. 

In each iteration, the neighbors with the status “NS” or 

“SS” are included in the referencing list for each dequeued 

vertex. 

To be robust against similarity transformation attacks, 

the coordinate transformation process collects the vertex 

whose referencing list is empty. Thereafter, principal 

component analysis [7] is performed again on these vertices 

to produce a coordinate system. All vertices of the 3D 

cover model are then transformed from the Cartesian 

coordinate system to the new one. Because the coordinate 

values of these vertices are never modified, the constructed 

coordinate system can be used for model registration under 

rotation and translation attacks. This process also derives 

the diagonal length DL  of the bounding volume of the 

vertex whose referencing list is empty. This diagonal length 

is the key point making the proposed algorithm robust 

against scaling attacks. 

For each embeddable vertex, the data embedding 

process acquires the referencing neighbors from the 

referencing list. Next, the embedding capacity is 

proportional to the distance d between the embedding 

vertex and the center of its referencing neighbors [8]. The 

quantization index modulation concept is then employed 

for data embedding with the embedding threshold ET. To 

control the maximum embedding capacity for each vertex 

and lower model distortion, a constant threshold EC  is 

introduced in Equation (1). Thus, the maximum distortion 

for each embedding capacity can be reduced from 
12

EC ET  to 2 EC ET


 . Equation (2) shows the derivation 

for the data-embedded distance d'. When the calculated 

embedding capacity EC1 is smaller than EC , secret 

message SM2 with length EC1 is extracted from the stream 

of secret message with binary form and SM10 is the decimal 

value from a binary-to-decimal format transformation of 

SM2. Figure 2 shows a graphical representation of this type 

of data embedding. However, for a calculated embedding 

capacity EC1 larger than EC , the final embedding capacity 

is limited to 2 ECEC   (see Equation (2)). Figure 3 is a 

graphical representation of the data embedding process 

with limited embedding capacity. To lower model 

distortion, we first calculate the proper embedding interval  
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Table 1: The model information, the embedding capacity, and the model distortion for our proposed algorithm 

Model 

Name VN  
FN  

BVDL  NV
DL  NV

N  Capacity BitsPV BitsPEV NHD 

Armadillo 172974 345944 228.80 226.51 440 2784917 16.10 16.14 0.1142% 

Brain 294012 588032 10.03 9.84 572 3494908 11.89 11.91 0.1789% 

Cow 46433 92864 30.49 29.04 49 644982 13.89 13.91 0.1075% 

Golfball 122882 245760 1.73 1.73 1219 1181227 9.61 9.71 0.0543% 

Lucy 262909 525814 1918.29 1913.97 4050 4858167 18.48 18.77 0.1608% 

Maxplanck 49132 98260 697.49 624.28 55 922368 18.77 18.79 0.1490% 

Dragon 437645 871414 26.69 26.62 10422 5321934 12.16 12.46 0.1260% 

Hand 327323 654666 8.41 8.28 1555 3501159 10.70 10.75 0.0789% 

 

m based on the EC  and SM10 is finally embedded into the 

distance between the embedding vertex and the center of its 

referencing neighbors. Obviously, SM10 is a decimal value 

from a binary-to-decimal format transformation of SM2 

with length EC . 
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Figure 2: A graphical representation of the data embedding 

 

Figure 3: A graphical representation of the data embedding 

After the data-embedding process is complete, the 

algorithm transforms all the vertices from the PCA 

coordinate system back to the Cartesian system. This 

produces a stego model that is then delivered to the receiver. 

To ensure robustness against scaling attacks, a secret key is 

then calculated by dividing the embedding threshold ET  

by the diagonal length DL  of the bounding volume of the 

vertices with no referencing neighbors. 

2.2   The Data Extraction Procedure 

During the data extraction procedure, the following 

processes are performed sequentially. First, the 

preprocessing process deals with the topological 

information of the input model. A vertex neighboring table 

is then constructed. As mentioned before, the construction 

of this table is based on the topological property of each 

vertex. However, the topological information is never 

modified in the data embedding procedure. Therefore, this 

table can be correctly reconstructed according to the same 

processes in the data embedding procedure. Second, the 

modified BFS process iteratively determines the 

referencing neighbors for each embedding vertex of the 

stego model. Third, we collect all the vertices whose 

referencing list is an empty set. Thereafter, a principal 

component analysis is performed on the above vertices to 

produce a coordinate system and transform all vertices of 

the stego model from the Cartesian coordinate system to 

the new one. Fourth, the embedding threshold can be also 

derived in this process based on the secret key and the 

diagonal length DL  of the bounding volume of the vertices 

with no referencing neighbors. Finally, the data-embedded 

distance d' can be calculated. The secret message with a 

binary format can be easily derived based on the 

embedding capacity and decimal-to-binary format 

transformation of SM10 derived from Equation (3). 
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3   Experimental Results 

This section presents the experimental results obtained 

from eight 3D common polygonal models: “Armadillo,” 

“Brain,” “Cow,” “Golfball,” “Lucy,” “Maxplanck,” 

“Dragon,” and “Hand.” The proposed algorithm was 

implemented in Microsoft Visual C++ programming 

language on a personal computer with an Intel Core i7 2.67 

GHz processor and 3 GB of memory. Table 1 shows the 

model information, including the number of vertices VN , 

the number of faces FN , and model size (represented by 

the diagonal length BVDL  of the bounding volume) of each 

model. Figure 4 shows the visual effect of each cover 

polygonal model. The embedded secret message is a 0/1 bit 

string randomly generated. The distortion between the 

cover model and the stego model was measured using 

normalized Hausdorff distance (NHD) [4], which is derived 

from dividing the Hausdorff distance by BVDL . The 

number precision of the cover model and the stego model  
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Armadillo Brain Cow Golfball 

    
Lucy Maxplanck Dragon Hand 

Figure 4: The visual effects of the cover models 

 

    
Armadillo Brain Cow Golfball 

    
Lucy Maxplanck Dragon Hand 

Figure 5: The visual effects of the stego model with an embedded secret message 

 

are both precise to six decimal places. The experimental 

results show there is no error in the extracted secret 

message under the similarity transformation and vertex 

reordering attacks.   

This section first presents the experimental results of 

the proposed algorithm, including its embedding capacity 

and the visual distortion of the different input models. 

Second, this section also presents the embedding capacity 

and model distortion of the Armadillo and Lucy models 

under different constant thresholds. Finally, this section 

compares the proposed algorithm with existing adaptive 

information hiding algorithms to demonstrate the feasibility 

of the proposed method. 

Table 1 shows the results of the embedding capacity 

and the model distortion under the given embedding 

threshold 63 10ET   . For the maximum embedding 

capacity, no restriction is performed on the parameter EC .  

The embedding capacity can achieve 9.61 to 18.77 bits per 

vertex and 9.71 to 18.79 bits per effective vertex, which is 

the vertex with the embedded secret message. The 

difference between the value of BitsPV and BitsPEV is 

small because only 0.1 to 2.4 percent of the total number of 

vertices cannot have the secret message embedded. The 

model distortion is acceptable, ranging only from 0.05% to 

0.18% of the value BVDL . Figure 5 shows the shading 

effects with insignificant distortion of the stego models. 

This section presents the embedding capacity and 

model distortion of the Armadillo and Lucy models under 

different constant thresholds (Table 2). Other test models 

have similar results. When the constant threshold is smaller, 

indicating each vertex can only convey a reduced amount 

of secret message, the total embedding capacity is 

apparently lower and the model distortion is less. With an 

increasing constant threshold, both the embedding capacity 

and the model distortion are increased. From Table 2, our 

proposed algorithm is superior to previous algorithms with 

higher embedding capacity and lower model distortion for 
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the Armadillo model and the Lucy model under the threshold value 15 and 17 separately. 

Table 2: The capacity and distortion comparison under different embedding thresholds 

CT 

Model 
5 10 15 17   [8] 

Armadillo 
Capacity 862670 1725331 2581163 2784917 2784917 2220480 

NHD 0.0001% 0.0024% 0.0666% 0.1406% 0.1142% 0.0963% 

Lucy 
Capacity 1294295 2588590 3882815 4395901 4858167 4101995 

NHD 0.0000% 0.0003% 0.0091% 0.0337% 0.1608% 0.0555% 

 
Table 3: A comparison of the adaptive methods of [3], [8], and the current method 

Algorithm [3] [8] Current Method 

Capacity 3.00~6.00 bpv 7.76~18.00 bpv 9.71~18.79 bpv 

Robustness Similarity Transformation Similarity Transformation 
Similarity Transformation 

Vertex Reordering 

Complexity ( )FO N  2( )VO N  ( )EO N  

Referencing 

Ratio 
34.11% 64.51% 49.67% 

 

Finally, this section compares the proposed algorithm 

with existing adaptive information hiding algorithms to 

demonstrate the feasibility of the proposed method. Table 3 

shows that the proposed technique can convey the 

maximum embedding capacity within the current adaptive 

algorithms. The robustness is also superior to other two 

algorithms because of the vertex reordering attack. For the 

complexity comparison, Cheng and Wang's algorithm 

employs a new contagious diffusion technique with the 

time complexity ( )FO N  to generate a traversal path for 

each polygon; whereas our previous work introduces a 

vertex decimation process with the time complexity 
2( )VO N  for determining the referencing neighbors for each 

embedding vertex. The proposed algorithm adopts a 

modified breadth first search scheme that explores all edges 

of the polygonal model to determine the referencing 

neighbors. Thus, the complexity is only ( )EO N , whether 

EN  is the number of edges in the cover model. However, 

the proposed technique lowers the number of the 

referencing neighbors for each embedding vertex at 

approximately half of the actual neighbors. Despite this, the 

referencing ratio is still superior to that of Cheng and 

Wang's algorithm. 

4   Conclusions 

This study proposes an adaptive information hiding 

algorithm for polygonal models. The main point of this 

algorithm is to use a modified BFS method to efficiently 

derive the referencing neighbors for each embeddable 

vertex. Thereafter, the surface complexity of the 

embedding vertex is then estimated by the distance from 

the center of the referencing neighbors. Different amounts 

of secret messages are embedded according to the surface 

properties of each vertex. To decrease the model distortion 

caused by a large embedding capacity, a constant threshold 

is employed to control the maximum embedding capacity 

for each vertex. The proposed algorithm can provide a 

higher embedding capacity, higher robustness, and a lower 

model distortion under acceptable estimation accuracy. 

Most importantly, the performance for determining the 

referencing neighbors of each embeddable vertex can be 

significantly improved. With the help of experimental 

results, this study demonstrates the feasibility of this 

technique for 3D adaptive information hiding. 
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