
International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 135

The Efficient Dual Receiver Cryptosystem and

Its Applications

Ted Diament, Homin K. Lee, Angelos D. Keromytis, and Moti Yung

(Corresponding author: Angelos D. Keromytis)

Department of Computer Science, Columbia University

1214 Amsterdam Avenue, M.C. 0401, New York, NY 10027, USA (Email: angelos@cs.columbia.edu)

(Received Mar. 10, 2010; revised and accepted June 15, 2010)

Abstract

We put forth the notion of efficient dual receiver cryp-
tosystems and implement it based on bilinear pairings
over certain elliptic curve groups. The cryptosystem is
simple and efficient yet powerful, as it helps to solve
two problems of practical importance whose solutions had
proven to be elusive until now: (1) A provably secure
“combined” public-key cryptosystem (with a single secret
key per user) where the key is used for both decryption
and signing and where encryption can be escrowed and
recovered, while the signature capability never leaves its
owner. This is an open problem proposed by the work
of Haber and Pinkas. (2) A puzzle is a method for rate-
limiting remote users by forcing them to solve a compu-
tational task (the puzzle). Puzzles have been based on
cryptographic challenges in the past, but the successful
design of embedding a useful cryptographic task inside a
puzzle, originally posed by Dwork and Naor, has remained
problematic. We model and present “useful security puz-
zles” applicable as an online transaction server (such as a
Web server).

Keywords: Denial of service, pairing-based cryptography,
puzzles, useful secure computation

1 Introduction

We introduce the notion of an efficient dual receiver cryp-
tosystem, which enables a ciphertext to be decrypted by
two independent receivers. To implement a dual receiver
cryptosystem, one may use the methodology suggested
by Naor and Yung [44], by using the first receiver’s key
and the second receiver’s key and encrypting the same
plaintext with both. This, however, makes the ciphertext
(which should also include a proof of consistent encryp-
tion) inefficient. Even in a practice-oriented adaptation
of the dual ciphertext methodology [18], such a multi-
cryptosystem scheme is not an efficient solution.

To achieve a practical system, we build on any bi-
linear map between two groups, and in particular, we
use a pairing defined on certain elliptic curves. Several

papers have used pairings to construct cryptosystems,
and these designs inspired our construction’s components.
The first and most basic design is the three-party one-
round Diffie-Hellman key exchange proposed by Joux [33].
A particularly elegant and surprising cryptosystem is the
identity-based encryption scheme proposed by Boneh and
Franklin [7], in which the public key is a user’s identity
and a key generation authority assigns the user a pri-
vate key. Hierarchical identity-based systems were given
by Gentry and Silverberg [24], and Boneh, Lynn, and
Shacham [8] used pairings to generate short signatures.
Various other constructions have been proposed.

Our basic design is a cryptosystem that transforms the
three-party one-round Diffie-Hellman key exchange pro-
posed by Joux [33] into a dual receiver public key cryp-
tosystem. This is analogous to the construction of the El
Gamal encryption from the Diffie-Hellman key exchange
protocol, and is therefore simple and efficient. We show
that this simple construction is quite powerful by demon-
strating how it solves two open issues in the literature:
how to construct public key cryptosystems that support
encryption and signature generation with a single private
key per user (called “combined cryptosystems”), and how
to construct “useful” computational puzzles secure under
certain assumptions.

We begin with an overview of these two problems be-
fore we explain the details of the dual receiver cryptosys-
tem. We present the dual receiver cryptosystem in Sec-
tion 4. Section 5 discusses a combined public key cryp-
tosystem, and we present our client-generated puzzles in
Section 6. We conclude in Section 7.

2 Combined Cryptosystems

Public key systems support both encryption and signa-
ture generation with a single private key portion per user.
Haber and Pinkas [29] model a public key in a constrained
environment that can afford only a single key per user.
The user is required to both sign and decrypt with this
single secret key. (This design may arise in constrained
environments, or as a flexible design tool in cases where

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 136

a system is specified to support only signatures but with
the outlook that an encryption requirement may be added
later after the design is finished). Various systems, e.g.,
PGP, used combined schemes before, but without any for-
mal proof of security. Coron et al. [13] showed how RSA
with padding, originally designed for secure signatures by
Bellare and Rogaway [10], actually remains secure when
using the same padding in a combined system. Similar
work was done by Komano and Ohta [38].

The use of a single key for both encryption and signa-
ture generation is a problem in certain applications where
the encrypted information must be recoverable by a third
party (e.g., a security officer). This is true for medical
and financial records where privacy and secrecy are be-
coming mandatory (e.g., the Health Insurance Portability
and Accountability Act (HIPAA)), yet the necessity for
emergency access remains. However, no authority, and
in fact no one but the user, should have the capability to
sign the user’s name in order to preserve non-repudiation.
This issue has been discussed in the literature [19], which
recommended that different tasks use separate keys due
to escrow.

Ideally, the same encryption system should be able to
create recoverable ciphertexts for official use and non-
recoverable ciphertexts for private use. Even better would
be a securely combined encryption and signature system
that uses the same private key for both functions, allowing
each installation of the system to adopt a “key recovery
policy” in a flexible way. The problem of having a single
private key per user together with simultaneous escrow
of the decryption capability and non-escrow of the sign-
ing capability has been considered self-contradictory and
perhaps somewhat paradoxical, and was one of the earli-
est criticism raised against combined cryptosystems when
they were first suggested [47].

Our work answers this open problem. We propose a
combined public key system composed of an encryption
scheme secure against chosen-ciphertext attacks in which
the encrypted message is either non-recoverable or recov-
erable by parties that can be chosen differently for each
message, and a signature scheme secure against adaptive
chosen-message attacks (including attacks by the escrow
agent). Both signatures and ciphertexts that use the
same secret key consist of a single cryptosystem. Fur-
thermore, a sender can escrow her message to a party of
the sender’s choosing without this party being involved
in any pre-processing. Voluntary escrow can also be use-
ful for encrypted storage. (Many file and disk encryption
products, e.g., Windows EFS, offer key escrow capability.)
This achieves full flexibility in key management and re-
covery policy (and the recovering party is only involved in
the recovery). Obviously, we do not escrow keys directly
in our design but employ the dual receiver cryptosystem
method.

As noted by Boneh and Franklin, key escrow is inher-
ent in identity-based schemes, since the key generation
authority knows all the users’ private keys. Verheul [53]
had suggested that the user have two keys, one that is es-

crowed to a designated recovery agent who is involved in
key generation and a second one that is not escrowed and
can also be used for signing. However, this scheme does
not achieve our goals of allowing a single key per user or
per server with careful modeling and security proofs. In
fact, we are not aware of any prior work that has solved
the separation of key management of combined cryptosys-
tems.

2.1 Random Oracles

The security model used throughout the paper is that
of the random oracle model, which has been employed in
constructions based on pairings such as those proposed by
Boneh and Franklin [7], and in many efficient construc-
tions for chosen ciphertext secure encryption, e.g., [45]. A
random oracle is a function H : X → Y chosen uniformly
at random from the set of all functions from X to Y, Y
finite. An algorithm can query the random oracle for any
x ∈ X and receive H(x) ∈ Y in response. Random oracles
are an idealized model for cryptographic hash functions,
and thus security proofs in this model only prove security
against attackers that are confined to this model as well.
Nevertheless, in many recent designs that employ hash
functions as a black box, this design approach followed
by a proof in the random oracle model gives a certain
validation to the strength of the system design method-
ology. (Koblitz and Menezes have provided a defense of
the model [36].)

3 Useful Puzzles

Computational puzzles have been proposed as a means to
protect servers from resource-depletion attacks [17, 31,
54], such as TCP SYN floods [51]. The basic idea is
to require every client to perform some computationally
expensive but easily verifiable (by the server) computa-
tion. Attackers issuing large numbers of concurrent re-
quests will need considerable amounts of computational
resources, making such attacks difficult to mount, while
low-rate legitimate clients will not be severely affected.

Puzzle schemes typically use a one-way function
(OWF) to construct a hard computational challenge with
a shortcut: knowledge of an input to the OWF allows
the server to efficiently compute the result, while a client
presented with a result must exhaustively search (brute
force) through the space of potential inputs (applying the
OWF to each) to determine the correct value. Thus, a
server can ask the client a question similar to “which 32-
bit number, when supplied as input to the SHA1 OWF,
results in the value 0xdeadbeef”? The server can pick the
input value at random, and may vary its size to reflect
the computational resources of the clients and attackers.

However, solving a puzzle represents “useless” compu-
tation in the sense that, other than rate-limiting requests,
it serves no other purpose. One can imagine a server that
uses the clients that request some service to solve a use-

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 137

ful problem. Such a “useful puzzle” must have specific
properties:

Computational intensity. The puzzle should be a
moderate but serious computational task, assuring
a certain slow-down of the accessing party (client).

Reliability. It should be computationally efficient for
the challenger (the server) to verify the result of the
puzzle (much easier to check than to compute).

Usefulness. The result of the computation should be
useful to the server.

Non-dependability. If the puzzle is not actually solved
by the client, the server should still be able to solve
it (or give it to another client to solve).

Security. The client must not learn the result of the com-
putation (if it is considered sensitive), any long-term
cryptographic keys, or any other secrets of the server.

The question is, how can a puzzle be useful, reliable
and secure? If it is to be reliable, it means the challenger
has to repeat the work of the accessing party in order to
verify, thus hurting the notion of “usefulness.” If it is to be
useful, the accessing party needs some secret information
that is required to do the useful work, which may result
in giving away the security of the challenger (who needs
to provide trapdoor information or other secrets that are
easier to check). The only computational puzzle to meet
these requirements thus far has been one that creates e-
coins for the MicroMint scheme of Rivest and Shamir [32].
In this paper, we give two partial answers to the question
on the existence of useful puzzles, first posed by Dwork
and Naor [16].

At the heart of the solution is the dual receiver cryp-
tosystem. We exploit a cryptosystem that effectively has
two receivers: the challenger, who needs to have a puz-
zle solved as part of a protocol, and a second receiver
that is someone who has a different (perhaps temporary)
trapdoor that the challenger can provide him with. In
our scheme, the second receiver is another client that is
contacting the same challenger (server) and is requesting
some service in the same protocol. Getting the trapdoor
and doing the useful work is only part of the decryption,
since the accessing party should not learn the plaintext,
and the result should be easily checkable. What we ex-
ploit are padding schemes for chosen-ciphertext secure
schemes that separate the trapdoor action from the part
that involves checking the integrity of computation and
the extraction of plaintexts. The combination of the dual
receiver encryption and the separability of the padding
scheme enables the useful security puzzles under certain
threat models. We show an example whereby the useful
task is part of a cryptosystem operation.

3.1 Related Work on Puzzles

Early work defending against resource depletion attacks
focused around the concept of the “cookie,” an opaque

bit-string that the initiator of a connection request needs
to return verbatim to the server before the request is al-
lowed to proceed. Thus, cookies were used only to es-
tablish the validity of the peer in terms of network ad-
dress reachability; in other words, cookies protect against
attackers spoofing their IP address. Cookie-based solu-
tions [41] were used against TCP connection-depletion
(also known as TCP SYN) attacks [26, 51], and in se-
curity protocols such as Photuris [40], IKE [27], JFK [1],
and others [28, 46]. More generally, The advantages of
being stateless, at least in the beginning of a protocol
run, were recognized in the context of security protocols
by Janson et al. [35] and Aura and Nikander [5].

Computational client puzzles as a means to defend
against denial of service attacks were first introduced by
Juels and Brainard [31]. In that work, client puzzles were
used to counter TCP SYN attacks from attackers that
were willing to expose their IP address, as opposed to at-
tackers with spoofed IP addresses who would require some
form of packet marking to identify [11, 25, 42]. Although
TCP cookies are ineffective in that scenario, client puzzles
can mitigate the effects of such an attack by an adversary
that is CPU-limited. However, in recent years, attack-
ers have demonstrated their ability to effectively utilize
large numbers of subverted hosts in their attacks [30].
Gligor [21] argues that solutions requiring client proofs of
work (e.g., computational client puzzles such as those us-
ing hash functions) are both ineffective and unnecessary
in open networks, such as the Internet, when strong access
guarantees (e.g., maximum waiting time) are desired.

Jakobsson and Juels [32] first proposed the concept of a
useful puzzle, which they call a “bread pudding protocol.”
The particular scheme they use, applied to minting e-
coins for the MicroMint micropayment system [49] does
not appear to be easily generalizable to other types of
useful work.

Client puzzles have also been used in the context of
security protocols [4, 32, 43], most notably for protecting
SSL against computational denial of service attacks [17].
Other uses of client puzzles involve junk email mitiga-
tion [16], fair exchange [9, 20], protection of sensor net-
works against DoS attacks [55], and time-lock puzzles [50].
The latter aims to encrypt a message such that it can-
not be decrypted, even by the sender, until some pre-
determined future time. A summary of other uses of
client puzzles (also known as “hash cash”) is presented
by Back [6]. Abadi et al. [3] introduced the concept of
a memory-bound puzzle, which aims to impose the same
solving delay as traditional client puzzles by increasing
the number of memory accesses a client needs to perform
to solve the challenge.

Wang and Reiter [54] introduce the idea of a puzzle
auction as a way to ease some of the practical deployment
difficulties, e.g., selecting the appropriate hardness for the
puzzles. Their approach lets clients bid for the resources
by adjusting the difficulty of the puzzles they solve. When
the server is attacked, legitimate clients gradually increase
their bids (puzzle difficulty), eventually bringing the cost

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 138

outside the adversary’s capabilities.
Based on our original paper on the dual receiver cryp-

togram [15], Zhang et al. [57] develop a general framework
for constructing useful client puzzles. Their framework is
based on identity-based cryptography and authenticated
encryption techniques that are not based on the random
oracle model. They show how to construct various puzzles
that meet different system requirements. Shi and Yan [52]
show that with the proper choice of parameters, based on
the underlying system architecture, it is possible to create
even faster versions of elliptic curve algorithms purely in
software.

4 The Dual Receiver Cryptosys-

tem

The dual receiver cryptosystem is the key component to
our useful puzzle construction. After reviewing some def-
initions and our complexity assumptions, we present a se-
mantically secure dual receiver scheme. We then present
the chosen-ciphertext secure dual receiver cryptosystem
based on the semantically secure scheme that will be used
to construct our useful puzzle.

4.1 Definitions

The key management of our scheme enables a second re-
ceiver to decrypt the ciphertext. We formally define dual
receiver public key encryption (PKE) schemes below.

Definition 4.1 (Dual Receiver Public Key Encryp-
tion Scheme) A dual receiver public key encryption
scheme consists of four randomized polynomial-time al-
gorithms Enc = (K, E ,D,R) as follows:

• The key generation algorithm K is a randomized al-
gorithm that takes a security parameter k as an in-
put, and produces a pair (e, d) of corresponding pub-
lic encryption and private decryption keys. We write
K(k) = (e, d). (Let K(k) = (f, g) be another key pair
in the following.)

• The encryption algorithm E is a randomized algo-
rithm that takes public encryption keys e and f , and
a message m ∈ M (where M is the message space)
as inputs, and produces a ciphertext c ∈ C (where C
is the ciphertext space). We write Ee,f (m) = c.

• The decryption algorithm D is a deterministic algo-
rithm that takes a private decryption key d, a public
encryption key f , and a ciphertext c ∈ C as inputs,
and produces a message m ∈ M or a special reject

symbol. We write Dd,f (c) = m.

• The recovery algorithm R is a deterministic algo-
rithm that takes a public encryption key e, a private
decryption key g, and a ciphertext c ∈ C as inputs,
and produces a message m ∈ M or a special reject

symbol. We write Re,g(c) = m.

We require that if K(k) outputs (e, d) and (f, g), and
Ee,f (m) outputs c, all with positive probability, then
Dd,f(c) and Re,g(c) both output m for all m ∈ M.

We now formally define the security notions we use.
Informally, if no probabilistic polynomial-time (PPT) at-
tacker can recover the whole plaintext from a given ci-
phertext, then the public key encryption scheme is said
to be one-way.

Definition 4.2 (One-Wayness of a Dual Receiver
PKE Scheme) Given a dual receiver public key encryp-
tion scheme Enc and a sufficiently large security parame-
ter k, generate keys K(k) = (e, d) and K(k) = (f, g). The
success probability of an adversary A, Succ(A), is defined
to be Pr[A(Ee,f (m)) = m] where m is a random message
inM. Enc is (t, ǫ)-OW, if for any such adversary A with
running time bounded by t(k), Succ(A) < ǫ(k).

A plaintext-checking oracle takes as input a plaintext
m and a ciphertext c and outputs whether or not c en-
crypts m. If the adversary above has access to a plaintext-
checking oracle, it is playing out a one-way plaintext-
checking attack, or OW-PCA.

Informally, if no PPT attacker can learn any bit of in-
formation about the plaintext from the ciphertext, except
the length, then a public key encryption scheme is said
to be semantically secure, or equivalently polynomial-time
indistinguishable (notated as IND) [22]. The following def-
inition is the logical extension of semantic security to a
dual receiver public key encryption scheme.

Definition 4.3 (Semantic Security of a Dual Re-
ceiver PKE Scheme) Given a dual receiver public key
encryption scheme Enc and a sufficiently large security
parameter k, generate keys K(k) = (e, d) and K(k) =
(f, g). Given an adversary A consisting of two PPT al-
gorithms A1 and A2, have A1 choose two equal-length
messages (m0, m1) from M. For a random bit b ←
{0, 1}, encrypt the corresponding message Ee,f (mb) = c.
The advantage of adversary A, Adv(A), is defined to be
|Pr[A2(m0, m1, c) = b] − 1/2|. Enc is (t, ǫ)-IND, or se-
mantically secure, if for any such adversary A with run-
ning time bounded by t(k), Adv(A) < ǫ(k).

The adversary considered above is playing out a
chosen-plaintext attack, or CPA, since she is able to en-
crypt any plaintext of her choice. If the adversary has
access to both a decryption oracle, and in our case a re-
covery oracle, then she is playing out a chosen-ciphertext
attack. Naturally, we do not allow the adversary to ask
that m0 and m1 be decrypted. If the adversary’s access
to the oracle is limited in time, the attack is called non-
adaptive [44]. If access is unlimited, the attack is called
adaptive or CCA [48]. Chosen-ciphertext security is the
strongest security notion that one can expect in the stan-
dard model of communication.

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 139

4.2 Complexity Assumptions

Three related complexity assumptions form the basis of
security for cryptography done using discrete logarithms
in a group. The security of our encryption scheme is based
on the difficulty of the Bilinear Diffie-Hellman Problem,
which is an extension of the three problems [14] described
below for a multiplicative group G of prime order q.

Definition 4.4 (Discrete Logarithm (DL) Prob-
lem) Given two group elements g and h, find an integer
n such that h = gn whenever such an integer exists.

Definition 4.5 (Computational Diffie-Hellman
(CDH) Problem) Given three group elements g, ga,
and gb, a, b ∈ Z, find an element h such that h = gab.

Definition 4.6 (Decision Diffie-Hellman (DDH)
Problem) Given four group elements g, ga, gb, gc with
a, b, c ∈ Z, decide whether or not c = ab (modulo the
order of g).

Note that the DDH problem is no harder than the CDH
problem, and that the CDH problem is no harder than the
DL problem.

A CDH parameter generator G is a randomized algo-
rithm that takes a security parameter k, and outputs the
description of a group G. G should run in time polynomial
in k, and the order of G is determined by k. We write
G ← G(1k). If the CDH problem is hard for G, then we
say that G satisfies the CDH assumption. The CDH prob-
lem is considered to be hard if Pr[A(G, g, ga, gb) = gab] is
negligible in k for all PPT algorithms A, where the prob-
ability is taken over G, the random choices of g ∈ G, and
a, b ∈ Z∗

q .
We will make extensive use of a bilinear map between

two abelian groups G1 and G2. Let q1 and q2 be the or-
ders of the groups. The map e : G1 × G1 → G2 is also
referred to as a pairing, and the pairing of two elements
g1, g2 ∈ G1 is denoted e(g1, g2) ∈ G2. Due to the bilinear-
ity condition, for all g1, g2 ∈ G1 and a, b ∈ Z

∗

q1
, the pair

e(ga
1 , gb

2) = e(g1, g2)
ab. We will require that the pairing

be non-degenerate (i.e., e(g, g) 6= 1). Note that the DL
problem should be hard in G2 so that the pairing is not
easily invertible and the DL problem in G1 is not easily
solved [33]. Good candidates for such bilinear maps are
the Weil and the Tate pairings defined over points on an
elliptic curve defined over a finite field. Currently, the best
algorithms for computing the pairing require O(log |G1|)
exponentiations in G1.

The following are natural extensions of the Diffie-
Hellman problems:

Definition 4.7 (Bilinear Diffie-Hellman (BDH)
Problem) Given the elements g, ga, gb, gc ∈ G1 with
a, b, c ∈ Z∗

q1
, find an element h ∈ G2 such that h =

e(g, g)abc.

Definition 4.8 (Decision Bilinear Diffie-Hellman
(DBDH) Problem) Given the elements g, ga, gb, gc ∈

G1 with a, b, c ∈ Z∗

q1
and h ∈ G2, decide whether or not

h = e(g, g)abc. If h = e(g, g)abc, then (g, ga, gb, gc, h) is
called a valid DBDH tuple.

Definition 4.9 (Gap Bilinear Diffie-Hellman
(GBDH) Problem) Solve a given instance,
(g, ga, gb, gc), of the BDH problem with the help of
a DBDH oracle that is able to decide whether or not a
tuple (g, ga′

, gb′ , gc′ , h) is valid.

A BDH parameter generator G is a randomized algo-
rithm that takes a security parameter k, and outputs the
description of two groups G1 and G2, and the description
of a non-degenerate bilinear map. G should run in time
polynomial in k, and the orders of G1 and G2 are deter-
mined by k. We write (G1, G2, e) ← G(1

k). If the BDH
problem is hard for (G1, G2, e), then we say that G satisfies
the BDH assumption. The BDH problem is considered
to be hard if Pr[A(G1, G2, e, g, ga, gb, gc) = e(g, g)abc] is
negligible in k for all PPT algorithms A, where the prob-
ability is taken over G, the random choices of g ∈ G1, and
a, b, c ∈ Z∗

q1
.

Joux [34] gives a detailed analysis of the BDH problem
in his survey of the Weil and Tate pairings as building
blocks for cryptosystems.

4.3 The Semantically Secure Dual Re-

ceiver Scheme

The dual receiver public key encryption scheme, SEnc,
provides semantic security. The message space is M =
{0, 1}

n
. The user may choose any public key gy as the

second receiver, and may even choose herself if she does
not wish a third-party to have access to the message. Note
that the decryption algorithm and the recovery algorithm
are the same operations using different keys.

We require that there be a hash function Hx associated
with each public key gx; it is easy to base such a family on
a given random oracle hash (by first attaching a proper
prefix derived from gx to any string to be hashed).

Key Generation. Groups G1 and G2 are chosen using
a BDH parameter generator G, along with a random
element g ∈ G1, and x ∈ Z

∗

q1
. The public key is

(g, gx) together with a cryptographic hash function
Hx : G2 → {0, 1}

n
. The private key is x.

Encryption. The input is a plaintext m ∈ {0, 1}
n
.

The encryption algorithm chooses a random element
r ∈ Z∗

q1
and computes u1 = gr, u2 = gy, and

u3 = m⊕Hx(e(gx, gy)r), where Hx is the primary
receiver’s hash function and gy is the secondary re-
ceiver’s public key. The ciphertext is (u1, u2, u3).

Decryption. The decryption algorithm for private key
x computes: u3⊕Hx(e(u1, u2)

x) = m. Note that
e(u1, u2)

x = e(gr, gy)x = e(gx, gy)r = e(g, g)rxy.

Recovery. The recovery algorithm for private key y
computes: u3⊕Hx(e(u1, g

x)y) = m. Note that
e(u1, g

x)y = e(gr, gx)y = e(gx, gy)r = e(g, g)rxy.

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 140

Security. SEnc is a semantically secure (IND-CPA) dual
receiver public key encryption scheme if the BDH
problem is assumed to be hard.

Theorem 4.1 Let Hx be a random oracle from G2 to
{0, 1}

n
. Let A be an adversary with running time bounded

by t that has advantage ǫ against SEnc. Suppose A makes
a total of qHx

> 0 queries to Hx. Then there is an algo-
rithm B that solves the BDH problem for G with advantage
at least 2ǫ/qHx

and running time O(t).

Proof. The proof of this theorem closely follows Lemma
4.3 in Boneh and Franklin’s work [7]. Algorithm B is given
the BDH parameters produced by G and an instance of
the BDH problem for these parameters, (g, ga, gb, gc). B
uses the adversary A to find h = e(g, g)abc, the solution
to the BDH problem, as follows. First, B creates a public
key for SEnc by setting gx = ga and gy = gb, and sends
(gx, gy, Hx) to A.

• Hx-queries: Here Hx is a random oracle controlled
by B where B keeps a list of pairs, the Hx-list. When
A issues a query, qi, to Hx, B checks to see if qi is
on the Hx-list. If qi appears in a pair (qi, hi), then
B responds with Hx(qi) = hi. Otherwise, B picks a
random string hi ← {0, 1}n, adds the pair (qi, hi) to
the Hx-list, and responds with Hx(qi) = hi.

• Challenge: The adversary A produces two messages
m0 and m1 on which it wishes to be challenged. B
picks a random string u ∈ {0, 1}

n
, defines the ci-

phertext to be (gc, u), and gives the ciphertext as
the challenge to A. Note that the decryption of the
ciphertext is: u⊕Hx(e(ga, gb)c) = u⊕Hx(h), due to
the way we defined gx and gy.

• Guess: The adversary A outputs its guess γ from
{yes,no}. B responds by outputting a random qi

that appears on the Hx-list as the solution to the
given instance of the BDH problem.

Let Q be the event that A issues a query for h. Then
Pr[Q] in the simulation is the same as Pr[Q] in the real
attack. Before any queries are made Pr[Q] = 0 in both
cases. Let Qi be the event that a query for h was made
in the first i queries. Pr[Qi] = Pr[Qi|Qi−1] Pr[Qi−1] +
Pr[Qi|¬Qi−1] Pr[¬Qi−1], and using induction we only
have to show that Pr[Qi|¬Qi−1] in the simulation is the
same as Pr[Qi|¬Qi−1] in the real attack. Note that the
public key and the challenge are distributed as in the real
attack, and all responses to the Hx-queries are uniform
and independent in {0, 1}

n
. Thus, Pr[Qi|¬Qi−1] is the

same in both the simulation and the real attack, and Pr[Q]
is the same in both the simulation and the real attack.

If A never issues a query for h, then the decryption of
the ciphertext is independent of A’s view. Let the true
answer to the BDH problem be γ. Therefore in the real
attack Pr[γ = γ′|¬Q] = 1/2. Since A has advantage ǫ,

|Pr[γ = γ′]− 1/2| ≥ ǫ.

Pr[γ = γ′] = Pr[γ = γ′|¬Q] Pr[¬Q] + Pr[γ = γ′|Q] Pr[Q]

≤
1

2
Pr[¬Q] + Pr[Q] =

1

2
+

1

2
Pr[Q].

Therefore ǫ ≤ |Pr[γ = γ′]−1/2| ≤ 1/2 Pr[Q], and Pr[Q] ≥
2ǫ. The probability that h appears in some pair on the
Hx-list is at least 2ǫ, and thus B produces the correct
answer with probability at least 2ǫ/qHx

. �

SEnc is also a (OW-PCA) dual receiver public key en-
cryption scheme if the GBDH problem is assumed to be
hard.

Lemma 4.1 Let PCO be a plaintext-checking oracle,
and let Hx be a random oracle from G2 to {0, 1}

n
. Let

A be an adversary with running time bounded by t that
has success probability ǫ against SEnc. Suppose A makes
a total of qHx

> 0 queries to Hx and PCO. Then there is
an algorithm B that solves the GBDH problem for G with
advantage at least (ǫ− 1

2n)/qHx
, and a running time O(t).

Proof. Algorithm B is given the BDH parameters pro-
duced by G and an instance of the GBDH problem for
these parameters, (P, ga, gb, gc). B uses the adversary A
and a DBDH oracle to find g = e(g, g)abc, the solution to
the GBDH problem, as follows. First, B creates a public
key for SEnc by setting gx = ga and gy = gb, and sends
(gx, gy, Hx) to A.

• Hx-queries: Hx-queries are handled as they are in
Theorem 4.1.

• PCO-queries: Here PCO is a plaintext-checking
oracle controlled by B. PCO-queries are equiva-
lent to reverse Hx-queries. When A issues a query,
(mi, ci = (u1i

, u2i
, u3i

)), to PCO, B checks to see
if hi = mi⊕u3i

is on the Hx-list. If hi does not ap-
pear in a pair (qi, hi), then B picks a random element
r ← Zq2

, sets qi = e(g, g)r, and adds the pair (qi, hi)
to the Hx-list. B uses a DBDH oracle to determine
if (gx, u1i

, u2i
, qi) is a valid DBDH tuple. If it is, B

responds yes to A, and otherwise responds no.

• Challenge: B picks a random string u ∈ {0, 1}
n
, de-

fines the ciphertext to be (gc, gy, u), and gives the
ciphertext as the challenge to A. Note that the de-
cryption of the ciphertext is: u⊕Hx(e(ga, gb)c) =
u⊕Hx(g), due to the way we defined gx and gy.

• Guess: The adversary A outputs its guess m ∈
{0, 1}n. B responds by outputting a random qi that
appears on the Hx-list as the solution to the given
instance of the GBDH problem.

Let Q be the event that A issues a query for g in a
Hx-query or a query for Hx(g) (actually a query for some
(m′, (gx, gy, m′⊕Hx(g)))) in a PCO-query. Then Pr[Q] in
the simulation is the same as Pr[Q] in the real attack. Be-
fore any queries are made Pr[Q] = 0 in both cases. Let Qi

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 141

be the event that a query for g or Hx(g) was made in the
first i queries. All the responses by the PCO-queries are
valid and only create entries in the Hx-list that are uni-
form and independent in {0, 1}

n
. Using similar reasoning

to that used in the proof for Theorem 4.1, Pr[Qi|¬Qi−1]
is the same in both the simulation and the real attack,
and thus Pr[Q] is the same in both the simulation and
the real attack.

Let S
def
= Pr[A((gc, gy, u))]. If A never issues a query

for g or Hx(g), then the decryption of the ciphertext is
independent of A’s view. Therefore in the real attack
Pr[S|¬Q] = 1/2n. Since A has success probability ǫ,
Pr[S] ≥ ǫ.

Pr[S] = Pr[S|¬Q] Pr[¬Q] + Pr[S|Q] Pr[Q]

≤
1

2n
Pr[¬Q] + Pr[Q] =

1

2n
+

(

1−
1

2n

)

Pr[Q].

Therefore ǫ ≤ Pr[S] ≤ 1
2n +

(

1− 1
2n

)

Pr[Q], and

Pr[Q] ≥
ǫ− 1

2n

1− 1
2n

≥ ǫ−
1

2n
.

The probability that g or Hx appears in some pair on the
Hx-list is at least ǫ− 1

2n , and thus B produces the correct
answer with probability at least (ǫ− 1

2n)/qHx
. �

4.4 The Chosen-Ciphertext Secure Dual

Receiver Scheme

The encryption scheme CEnc provides chosen-ciphertext
security and allows a specified third party to decrypt the
ciphertext. We use the REACT conversion introduced by
Okamoto and Pointcheval [45] to convert the SEnc scheme
into a chosen-ciphertext secure scheme. (We could use the
GEM conversion [12] instead to obtain a shorter cipher-
text, but at the expense of allowing for the session key
to precomputed.) The message space is M = {0, 1}

n
, b2

is the length of the bit-string representation of a point in
G2, and n′ is a security parameter.

Key Generation. Groups G1 and G2 are chosen using
a BDH parameter generator G, as are a random el-
ement g ∈ G1, and x ∈ Z∗

q1
. The public key is

(g, gx) together with cryptographic hash functions
Hx : G2 → {0, 1}

n
, G : {0, 1}

n
→ {0, 1}

n
, and

F : {0, 1}
4n+b2 → {0, 1}

n′

. The private key is x.

Encryption. The input is a plaintext m ∈ {0, 1}
n
. The

encryption algorithm chooses a random element r ∈
Z∗

q1
, a random element ρ ∈ {0, 1}n, and computes

u1 = gr, u2 = gy, u3 = ρ⊕Hx(e(gx, gy)r), u4 =
m⊕G(ρ), and u5 = F (ρ, m, u3, u4, e(g

x, gy)r). The
ciphertext is (u1, u2, u3, u4, u5).

Decryption. The decryption algorithm computes
u3⊕Hx(e(u1, u2)

x) = ρ and G(ρ)⊕u4 = m given a
ciphertext (u1, u2, u3, u4, u5). Then it checks that
u5 = F (ρ, m, u3, u4, e(u1, u2)

x), and if u5 is correct,

the algorithm outputs m. Otherwise, it outputs
Reject.

Recovery. The recovery algorithm computes
u3⊕Hx(e(u1, g

x)y) = ρ and G(ρ)⊕u4 = m,
given a ciphertext (u1, u2, u3, u4, u5). Then it checks
that u5 = F (ρ, m, u3, u4, e(u1, g

x)y), and if u5 is
correct, the algorithm outputs m. Otherwise, it
outputs Reject.

Security. CEnc is a chosen-ciphertext secure dual re-
ceiver public key encryption scheme if the GBDH
problem is assumed to be hard. Since SEnc is OW-

PCA and one-time pads (the XORs) are semanti-
cally secure, the conversion is chosen-ciphertext se-
cure in the random oracle model. (See Theorem 1 in
Okamoto and Pointcheval [45].)

Non-mandatory Escrow Encryption. Our dual re-
ceiver encryption scheme can easily allow escrow en-
cryption at the sender’s discretion, without any sac-
rifices to security. The sender can choose a specific
escrow public key to be the second key to recover
the information. The sender can also choose her own
public key to be the second key if she does not wish a
third-party to have access to the message. This gives
a very flexible key management component that can
be used in designing secure file and storage systems,
and general recovery and backup policies. The des-
ignation of tasks in the system can be managed via
a key certification process.

5 A Combined Public Key Cryp-

tosystem

In this section we present a signature scheme secure
against adaptive chosen-message attacks, that can be used
in conjunction with the chosen-ciphertext attack secure
dual receiver encryption scheme while using the same pri-
vate key.

5.1 The Public Key Signature Scheme

5.1.1 Definitions

Definition 5.1 (Public Key Signature Scheme) A
public key signature scheme Sig = (K,S,V) consists of
three randomized polynomial-time algorithms as follows:

• The key generation algorithm K is a randomized al-
gorithm that takes a security parameter k as an in-
put, and produces a pair (s, v) of corresponding pri-
vate signature and public verification keys. We write
K(k) = (s, v).

• The signature algorithm S is a randomized algorithm
that takes a private signature key s and a message
m ∈ M as inputs, and produces a signature σ ∈
{0, 1}

∗

. We write Ss(m) = σ.

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 142

• The verification algorithm V is a randomized algo-
rithm that takes a public verification key v and a
message-signature pair (m, σ) as inputs, and pro-
duces as output either accept or reject. We write
Vv(m, σ) = accept.

We require that if K(k) outputs (s, v) and Ss(m) out-
puts σ, both with positive probability, then Vv(m, σ) =
accept, and for any other pair (m, σ′), Vv(m, σ′) = reject.

When considering signature schemes, if no PPT at-
tacker can forge a signature on one message, then the
signature scheme is secure against existential forgery.

Definition 5.2 (Security of a Public Key Signature
Scheme) Given Sig = (K,S,V), a public key signature
scheme, and a sufficiently large security parameter k, gen-
erate keys K(k) = (s, v). Given an adversary A consist-
ing of a PPT algorithm A, A outputs a message/signature
pair, (m, σ). Adv(A) is defined as Pr[Vv(m, σ) = accept].
Sig is (t, ǫ)-secure against existential forgery if for any
such adversary A with running time bounded by t(k),
Adv(A) < ǫ(k).

The above adversary is playing out a key-only attack,
but if the adversary observes valid message/signature
pairs chosen and produced by the signer, then she is play-
ing out a known signature attack. If the adversary is al-
lowed to ask the signer to sign a number of messages of
her choice, then she is playing out a chosen message at-
tack. Naturally, we do not allow the adversary to ask that
the challenge message be signed. If the adversary’s access
to the signer is limited in time, the attack is called non-
adaptive, and if access is unlimited, the attack is called
adaptive or CMA [23].

5.1.2 The Actual Combined Scheme

The signature scheme Sig provides security against exis-
tential forgery under a chosen message attack if the CDH
problem is assumed to be hard in G1. The message space
is M = {0, 1}

n
. This scheme is similar to Boneh, Lynn,

and Shacham’s signature scheme [8].

Key Generation. Groups G1 and G2 are chosen using
a BDH parameter generator G, as are a random el-
ement g ∈ G1, and x ∈ Z∗

q1
. The public verifica-

tion key is (g, gx) together with a cryptographic hash
function I : {0, 1}

n
→ G1. The private signature key

is x.

Signature. The input is a private signature key x ∈ Z∗

q1

and a plaintext m ∈ {0, 1}
n
. The signature algorithm

calculates σ = I(m)x. The signature is σ.

Verification. Given a public key (g, gx), and a message-
signature pair (m, σ), the verification algorithm ver-
ifies that e(g, σ) = e(gx, I(m)).

Security. Sig is secure against existential forgery under
adaptive chosen-message attacks.

Theorem 5.1 Let I be a random oracle from {0, 1}
n

to
G1. Let A be an adversary with running time bounded by
t that has advantage ǫ against Sig. Suppose A makes a
total of qI > 0 queries to I and qS > 0 signature queries.
Then there is an algorithm B that solves the CDH problem
for G1 with advantage at least ǫ/e(qS + 1) (where e is the
base of the natural logarithm) and a running time at most
t + j(qI + 2qS), where j is the time taken to multiply two
points in G1.

Proof. Algorithm B is given the CDH parameters pro-
duced by G and an instance of the CDH problem for
these parameters, (g, ga, gb). B uses the adversary A to
find h = gab, the solution to the CDH problem, as fol-
lows. First, B creates a verification key for Sig by setting
gx = ga+r for a random r ∈ Z, and sends (g, gx, I) to A.

• I-queries: Here I is a random oracle controlled by
B where B keeps a list of tuples, the I-list. When
A issues a query, qi, to I, B checks to see if qi is
on the I-list. If qi appears in a tuple (qi, ii, ri, ci),
then B responds with I(qi) = ii. Otherwise, B picks
a random ri ∈ Z and generates a random coin ci ∈
{0, 1} where Pr[ci = 0] = 1/(qS + 1). If ci = 0, B
sets ii = gb+ri . If ci = 1, B sets ii = gri . B adds
the tuple (qi, ii, ri, ci) to the I-list, and responds with
I(qi) = ii.

• Signature Queries: When A issues a signature query,
qi, B obtains the corresponding tuple by making a I-
query as outlined above. If ci = 0, B reports failure
and terminates. If ci = 1, B sets σi = gari + iri =
gri(a+r). Note that σi is a valid signature for qi under
the public key gx which was set to gar. B gives σi to
A.

• Challenge: The adversary A produces m, σ, a
message-signature pair on which it wishes to be chal-
lenged such that m was never a signature query. If σ
is not a valid signature on m, B reports failure and
terminates. Otherwise, B obtains the correspond-
ing tuple by making a I-query as outlined above. If
ci = 1, then B reports failure and terminates. Oth-
erwise, ci = 0 and ii = gb+ri . Thus, σ = g(a+r)(ri+b).
Then B outputs the required solution to the CDH
problem as gab = σg−rbg−ari + g−rri).

Let Q1 be the event that B does not abort during A’s
signature queries. The probability that B does not abort
during one query is 1− 1/(qS + 1), and since A makes at
most qS signature queries, Pr[Q1] ≥ (1− 1/(qS + 1))qS ≥
1/e.

Let Q2 be the event that A produces a valid message-
signature pair given that the Challenge stage was suc-
cessfully reached. The public key given to A is from the
same distribution as a public key produced by the key
generation algorithm, and the responses to the I-queries
are uniformly and independently distributed in G1. Thus
Pr[Q2] ≥ ǫ.

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 143

Let Q3 be the event that the final I-query made by B
does not fail given that B did not report a failure up to
this point. The probability that c = 0 is 1/(qs + 1) so
Pr[Q3] ≥ 1/(qs + 1).

If Q1, Q2, and Q3 are true then B produces the correct
answer. Thus B solves the CDH problem with probability
at least ǫ/e(qs + 1). B’s running time is the time it takes
for A to run plus the time it takes to respond to (qI + qS)
hash queries and qS signature queries. If a multiplication
in G1 takes time j, then the total running time is at most
t + j(qI + 2qS). �

5.2 The Combined Scheme

Recall that the combined cryptosystem is a public key
cryptosystem supporting both encryption and signature
generation with a single private key per user. We first
present our signature scheme then our combined scheme.

5.2.1 Definitions

Definition 5.3 (Combined Scheme) Given a dual re-
ceiver PKE scheme Enc = (KE , E ,D,R) and a public
key signature scheme Sig = (KS ,S,V), the combined
scheme consists of six randomized polynomial-time algo-
rithms Comb = (K, E ,D,R,S,V) as follows:

• The key generation algorithm K is a randomized al-
gorithm that takes a security parameter k as an input,
and produces two pairs of keys [(e, d), (s, v)], the first
for Enc and the second for Sig.

• Encryption, decryption, and message recovery are
performed with E, D, and R, and signature gener-
ation and verification are performed with S and V,
exactly as in the original schemes.

Note that the only differences between the combined and
the original schemes are in the key generation algorithms.

When combining a dual receiver public key encryption
scheme Enc with a public key signature scheme Sig we
must verify that sharing keys between the two does not
degrade the security of either scheme. Thus, an adversary
for Enc with access to a signature-generation oracle should
not have a greater probability of success in attacking Enc

than it would if it did not have access to the oracle. Sim-
ilarly, an adversary for Sig with access to a decryption
oracle and a recovery oracle should not have a greater
probability of success in attacking Sig than it would if it
did not have access to either oracle. We prove that the
security of a scheme is not degraded in the presence of an
oracle by constructing a simulator that does not have the
private keys of the scheme, yet can answer the adversary’s
queries in a manner that is indistinguishable from that of
an oracle. If a signature-generation oracle, a decryption
oracle, and a recovery oracle can be simulated, then both
Enc and Sig can be used in combination without compro-
mising the security of either. Our analysis of the security
of the combined scheme uses the technique used by Haber

and Pinkas [29] to combine other encryption and signa-
ture schemes.

Definition 5.4 (Security of an Encryption Scheme
in a Combined Scheme) The combined scheme Σ =
(Enc, Sig) does not compromise the security of Enc if for
any PPT adversary A with unlimited access to an oracle
for Ss, there exists an adversary A′ for Enc alone with
success probability at most negligibly worse than the suc-
cess probability of A.

Definition 5.5 (Security of a Signature in a Com-
bined Scheme) The combined scheme Σ = (Enc, Sig)
does not compromise the security of Sig if for any PPT
adversary A with unlimited access to an oracle for Dd,f

and Re,g, there exists an adversary A′ for Sig alone with
success probability at most negligibly worse than the suc-
cess probability of A.

Definition 5.6 (Security of a Combined Scheme)
The combined scheme Σ = (Enc, Sig) is CCA-CMA secure
if no PPT adversary A has a non-negligible advantage
against a challenger A′ in a joint CCA-CMA game. The
adversary is allowed q1 adaptive queries to signature and
decryption oracles, and then picks between a CCA or a
CMA challenge. Once the challenger lays out the chal-
lenge, the adversary is allowed q2 adaptive queries before
producing her guess.

5.2.2 The Actual Signature Scheme

Recall that a combined public key scheme leaves the en-
cryption, decryption, recovery, signature generation, and
verification algorithms unchanged, but needs a new key
generation algorithm.

Key Generation. Groups G1 and G2 are chosen using
a BDH parameter generator G, along with a random
element g ∈ G1, and x ∈ Z∗

q1
. The public key is

(g, gx) together with a cryptographic hash function
Hx : G2 → {0, 1}

n
. The private decryption key is x.

The public verification key is (g, gx) together with a
cryptographic hash function I : {0, 1}n → G1. The
private signature key is x.

Security of CEnc in the Presence of Sig. The
combined scheme does not compromise the security
of CEnc.

Lemma 5.1 Let I be a random oracle from {0, 1}
n

to
G1. Let A be an adversary that has advantage ǫ against
CEnc in a CCA attack with unlimited access to I and a
signature oracle for Sig. Then there is an algorithm B
that has advantage ǫ against CEnc.

Proof. Given an adversary A that attacks CEnc when
used together with Sig, we construct an adversary B at-
tacking CEnc alone.

Algorithm B is given (g, gx, gy), the encryption key for
CEnc, and B sends the seven-tuple (g, gx, gy, Hx, G,F ,I)
to A where I is a random oracle controlled by B.

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 144

• I-queries: Here I is a random oracle controlled by
B where B keeps a list of tuples, the I-list. When
A issues a query, qi, to I, B checks to see if qi is on
the I-list. If qi appears in a tuple (qi, ii, ri), then
B responds with I(qi) = ii. Otherwise, B picks a
random ri ∈ Z∗

q1
and sets ii = gri . B adds the tuple

(qi, ii, ri) to the I-list, and responds with I(qi) = ii.

• Signature Queries: When A issues a signature query,
qi, B obtains the corresponding tuple, (qi, ii, ri), by
making a I-query as outlined above. B sets σi =
(gxri). Note that σi is a valid signature for qi under
the public key gx. B gives σi to A.

A’s view of the signature is identical to that of a real
signature, and thus its probability of success in breaking
the encryption scheme is unchanged. �

Security of Sig in the Presence of CEnc. The
combined scheme does not compromise the security
of Sig.

Lemma 5.2 Let Hx be a random oracle from G2 to
{0, 1}

n
, and let F be a random oracle from {0, 1}

4n+b2

to {0, 1}
n′

. Let A be an adversary that has advantage ǫ
against Sig with unlimited access to Hx, F , and a decryp-
tion oracle for CEnc. Then there is an algorithm B that
has advantage ǫ against Sig.

Proof. Given an adversary A that attacks Sig when
used together with CEnc, we construct an adversary B
attacking Sig alone.

Algorithm B is given the verification key for Sig, (g, gx),
and B sends (g, gx, Hx, G, F) to A where Hx and F are
random oracles controlled by B.

• Hx-queries: Here Hx is a random oracle controlled
by B where B keeps a list of tuples, the Hx-list. When
A issues a query, qi, to Hx, B checks to see if qi is
on the Hx-list. If qi appears in a tuple (qi, hi), then
B responds with Hx(qi) = hi. Otherwise, B picks a
random hi ∈ {0, 1}

n
, adds the tuple (qi, hi) to the

Hx-list, and responds with Hx(qi) = hi.

• F -queries: Here F is a random oracle controlled by
B where B keeps a list of tuples, the F -list. When
A issues a query, qi, to F , B checks to see if qi is
on the F -list (note that qi is a bit-string of length

{0, 1}4n+b2). If qi appears in a tuple (qi, ri), then
B responds with F (qi) = ri. Otherwise, B picks a

random ri ∈ {0, 1}
n′

, adds the tuple (qi, ri) to the
F -list, and responds with F (qi) = ri.

• Decryption Queries: B responds as follows when
A issues the five-tuple decryption query, qi =
(u1, u2, u3, u4, u5). B obtains the corresponding tu-
ple, (qi, u5), from the F -list and sets g to the last b2

bits of qi. If u5 is not in any tuple, then B picks a ran-
dom g ∈ {0, 1}

b2 . B then obtains the corresponding

tuple (g, hi) from the Hx list by making a Hx-query
as outlined above. B sets ρ = u3⊕hi, and outputs
m = u4⊕G(ρ).

A’s view of the decryption is identical to that of a
real decryption (as is its view of the recovery for they
are simulated the same way), and thus its probability of
success in forging a signature is unchanged. �

Security of Σ=(CEnc,Sig). The combined scheme Σ
is CCA-CMA secure, and thus does not compromise
its own security with respect to an adversary that
is trying to compromise either the encryption or the
signature.

Theorem 5.2 Let Hx, F , and I be random oracles, then
Σ is CCA-CMA secure, assuming that the GBDH and the
CDH problems are hard.

Proof. Queries to Hx, F , I, the decryption and signa-
ture oracles are exactly as in Lemmas 5.1 and 5.2. Due to
the chosen-ciphertext security of CEnc, Theorem 5.1, and
Lemmas 5.1 and 5.2, if A has advantage ǫ over Σ, then
there is an algorithm B that can solve either the GBDH
or the CDH problem with non-negligible probability. �

6 Useful Security Puzzles

Our approach for fulfilling the requirements for a use-
ful security puzzle (computational intensity, reliability,
usefulness, non-dependability, and security) is to use our
dual receiver cryptosystem to construct a client-generated
useful puzzle. We first describe the features of a client-
generated useful puzzle, then we show how they ful-
fill the original requirements we laid out in Section 3.
Then we show two implementations (CUP1 and CUP2) of
the client-generated useful puzzle using our dual receiver
scheme. The first is only secure in the secure channel
model. The second is secure without that assumption,
but it requires more work of the server. Finally, we de-
scribe how to use our scheme in an online transaction
server.

6.1 Client-generated Useful Puzzles

We define client-generated useful puzzles so that they will
easily fulfill the requirements we laid out in Section 3.
Recall that the requirements were: computational inten-
sity, reliability, usefulness, non-dependability, and secu-
rity. An important feature of our definition is that a client
does most of the work for generating the puzzle.

Definition 6.1 (Client-generated useful puzzle) A
client-generated useful puzzle consists of six randomized
polynomial-time algorithms CUP = (S,G,R, C,H) as fol-
lows:

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 145

• The set-up algorithm S is a randomized algorithm
that takes a security parameter k as input and pro-
duces a pair (e, d) of corresponding public encryp-
tion and private decryption keys, and a pair (f, g) of
corresponding auxiliary public encryption and private
decryption keys. We write S(k) = {e, d, f, g}.

• The client puzzle-generation algorithm G is a ran-
domized algorithm that takes encryption keys e and
f as input and produces a puzzle in two parts p0 and
p1. We write G(e, f) = {p0, p1}.

• The recovery algorithm R is a deterministic algo-
rithm that takes a public encryption key e, a private
decryption key d, and two puzzle pieces (p0, p1), as in-
puts, and produces the solution m ∈ M to the puzzle
or a special reject symbol. We write Re,d(p0, p1) =
m.

• The client algorithm C is a deterministic algorithm
that takes p1 and outputs a value p2. We write
C(p1) = p2.

• The client checking algorithm H is a deterministic
algorithm that takes p0, p2, and r as inputs, and pro-
duces the solution m ∈ M to the puzzle or a special
reject symbol. We write H(p0, p2, r) = m. H should
require fewer time steps than R.

We now show how the client-generated useful puzzle
satisfies computational intensity, reliability, usefulness,
non-dependability, and security. As long as the client-
generated m is a useful piece of information, the useful-
ness requirement is fulfilled. The client checking algo-
rithm C insures reliability and produces m. The recovery
algorithmR insures non-dependability as m can be recov-
ered without using C. As long as no information about
m, d, and g is leaked, security is maintained. The com-
putational intensity comes from the computational com-
plexity of C, and as long as the complexity of H is less
than the complexity of C, then work is being saved.

After describing our implementations in Sections 6.2
and 6.3, we will prove that security and computational
intensity are maintained. Then in Section 6.4, we will
show an example of when a client-generated m can be
useful.

6.2 An Honest-but-Curious Useful Puz-

zle Implementation

The overall idea is that one client, C0, will encrypt a mes-
sage with the dual receiver encryption scheme using the
server’s public key and an auxiliary public key, and send
the ciphertext to the server. The server will split the ci-
phertext into two parts, p0 and p1. The server will then
send p1 and the auxiliary private key to a different client,
C1, to do a computationally intense partial decryption.
Given this partial decryption and p0, the server will be
able to decrypt the message. Note that the server can do

the full decryption itself as it has the private key corre-
sponding to its public key.

This implementation, which we call CUP1, is insecure
if an adversary can listen in on all the channels. Given
the auxiliary private key, anyone can decode the cipher-
text. If the client C1 is listening in, she can decode the
ciphertext as well. We present CUP1 as a version of a
client-generated useful puzzle that is secure when every-
one is honest-but-curious. It has the advantage that the
server does very little work. Let Enc= (K, E ,D,R) be as
in Section 4.1 in the following description.

Setup. Groups G1 and G2 are chosen using a BDH pa-
rameter generator G, along with a random element
g ∈ G1, and x, y ∈ Z∗

q1
. The server’s public key

is (g, gx) together with a cryptographic hash func-
tion Hx : G2 → {0, 1}

n
. The private key is x. An

auxiliary public key gy is generated as well, with cor-
responding private key y.

Puzzle-Generation. To generate the puzzle, the server
sends the auxiliary public key to a client, C0.
The client uses the encryption algorithm E from
the dual receiver cryptosystem to encrypt a mes-
sage m, and sends the cipher text (u1 =
gc, u2 = ρ⊕Hx(e(gx, gy)c), u3 = m⊕G(ρ), u4 =
F (ρ, m, u1, u2, u3)) to the server. We set p0 = u4

and p1 = (u1, u2, u3).

Recovery. Given the ciphertext (u1, u2, u3, u4), the
server can use the decryption algorithm D and its
private key x to recover the message m.

Client Algorithm. Given gx, Hx, y, and p1, the client
C1 computes p2 = Hx(e(gx, u1)

y)⊕u2 and sends p2

to the server.

Checking. The server computes m = G(p2)⊕u3.
The server accepts C1’s computation if u4 =
F (ρ, m, u1, u2, u3).

We now argue that CUP1 satisfies the useful puzzle
requirements given the caveat that all parties can only
listen in on their own channel.

Computational Intensity. It takes the server one bit-
wise XOR and a check of a simple has function to
recover the message. The client has to do the same in
the client algorithm, but also has to do an expensive
pairing computation and exponentiation.

Reliability. The hash check in the Recovery algorithm
assures the faithful operation by the client.

Non-dependability. If the Checking algorithm fails to
pass verification, the server can do the puzzle itself
from scratch using the Recovery algorithm, or give it
to another client.

Usefulness. The usefulness will be discussed in Sec-
tion 6.4.

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 146

Security. The scheme is a chosen-ciphertext secure pub-
lic key encryption. The client, seeing only part of the
ciphertext that recovers to a random value ρ, has no
idea what the message is (she only sees values that
could have been computed without seeing the mes-
sage).

6.3 A Secure Implementation of the Use-

ful Puzzle

In this implementation, the server outsources the work
of computing the pairing function to a client. The overall
idea is that one client, C0, will encrypt a message with the
dual receiver encryption scheme using the server’s public
key and an auxiliary public key, and send the ciphertext
to the server. The server will split the ciphertext into two
parts, p0 and p1, and send p1 to a different client, C1, to do
the computationally intense pairing computation. Given
the client’s output, p2, and p0, the server will be able to
decrypt the message. Note that the server can do the full
decryption itself as it has the private key corresponding
to its public key.

This implementation, which we call CUP2, has the dis-
advantage that the server has to do an exponentiation.
Let Enc= (K, E ,D,R) be as in Section 4.1 in the follow-
ing description.

Setup. Groups G1 and G2 are chosen using a BDH pa-
rameter generator G, along with a random element
g ∈ G1, and x, y ∈ Z∗

q1
. The value e(g, g) is precom-

puted. The server’s public key is (g, gx) together with
a cryptographic hash function Hx : G2 → {0, 1}

n
.

The private key is x. An auxiliary public key gy is
generated as well, with corresponding private key y.

Puzzle-Generation. To generate the puzzle, the server
sends the auxiliary public key to a client, C0.
The client uses the encryption algorithm E from
the dual receiver cryptosystem to encrypt a mes-
sage m, and sends the cipher text (u1 =
gc, u2 = ρ⊕Hx(e(gx, gy)c), u3 = m⊕G(ρ), u4 =
F (ρ, m, u1, u2, u3)) to the server. We set p0 =
(u2, u3, u4) and p1 = u1.

Recovery. Given the ciphertext (u1, u2, u3, u4), the
server can use the decryption algorithm D and its
private key x to recover the message m.

Client Algorithm. Given p1, the client C1 computes
p2 = e(g, p1) and sends p2 to the server.

Checking. The server computes: (p2 · e(g, g))xy :=
v, and then computes ρ = u2⊕Hx(v) and m =
G(ρ)⊕u3. The server accepts C1’s computation if
u4 = F (ρ, m, u1, u2, u3).

Computational Intensity. It takes the server one ex-
ponentiation and two multiplications to check the
client’s work. This constant number of exponentia-
tions requires much less work on the part of the server
than the pairing computation done by the clients.

Reliability. The hash check in the Recovery algorithm
assures the faithful operation by the client.

Non-dependability. If the Recovery algorithm fails to
pass verification, the server can do the puzzle itself
from scratch, or give it to another client.

Usefulness. The usefulness will be discussed in Sec-
tion 6.4.

Security. The scheme is a chosen-ciphertext secure pub-
lic key encryption. The security of the puzzle is main-
tained as the only public values are the public keys,
uniform random values, and the cipher text of the
chosen-ciphertext secure encryption scheme.

6.4 Employing Useful Security Puzzles in

TLS

We now briefly discuss an application of CUP2, which
trades off security against certain kinds of eavesdropping
adversaries with resistance to computational denial of ser-
vice attacks. Consider a cryptographic protocol such as
TLS, a simplified version of which is shown in Figure 1
(inspired by a similar figure in [39]). In Message 3 of this
protocol, the client encrypts a randomly chosen secret
value, m, with the server’s public key (obtained from the
certificate sent by the server in Message 2). The server
must decrypt this secret value, which both parties use to
derive a session key. In almost all cases, the RSA algo-
rithm is used to encrypt m. Note that the server also
uses its private key to authenticate (via a signature) to
the client.

We envision using useful security puzzles as a substi-
tute for the RSA encryption shown in Figure 2. The
server will have a long-term public/private key pair (e
and d), and will periodically select a new auxiliary key
pair (f and g). A client C0 that contacts the server will
receive both public keys (f and e). The client will then
select a secret m, which will be encrypted along with a
server-provided stateless nonce Ns, using both public keys
creating ciphertext p0, p1, as described in Section 6.3. If
the server is lightly loaded, it may simply decrypt this
value using g and d itself. Otherwise, the server selects
another client, C1, at random and forwards p1 to it. On
a busy server, such as a popular e-commerce web site,
there will be a constant stream of new clients connecting,
to which p1 can be forwarded to. Similarly, the original
client may receive another p′1, produced by another client
connecting to the server.

Client C1 will now use e and f to produce the interme-
diate value p2 and send it back to the server as proof
of work done. The server will verify the solution (as
described in Section 6.3) and the nonce, and will allow
the connection from client C1 to proceed. At the same
time, the server has retrieved the secret value m pro-
duced by client C0 for use in deriving a session key. The
purpose of the nonce is to force colluding clients (e.g.,

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 147

m

Client Server

I want to talk, ciphers I support, Nonce client

server
Certificate , cipher I choose, Nonce

server

data protected with keys derived from K

compute

compute
server

{keyed hash of handshake messages}

choose secret m

K = f(m,Nc,Ns)
{m} ,{keyed hash of handshake messages}

server m
Decrypt {m}

K = f(m,Nc,Ns)

Figure 1: Simplified SSLv3/TLS.

machines controlled by the same attacker) to communi-
cate with each other, mitigating the impact of an influx
of such clients on the throttling properties of our scheme.
If client C0 also provides a correct response to the chal-
lenge p′1 (which may have been generated by client C1 or
some other client contacting the server in the same win-
dow of time as C0), it will be allowed to proceed with
its connection. Neither C0 nor C1 have learned anything
about the secret values they helped decrypt, nor have they
learned anything that would allow them to impersonate
the server to other clients (e.g., the server’s private key).
The server has throttled down the clients by forcing them
to perform some useful computation; under previous such
schemes [31], the client would have to perform the same
work in addition to solving a “useless” puzzle, while the
server itself would have to do more of the protocol’s cryp-
tographic work.

Our two schemes, CUP1 and CUP2, offer different
tradeoffs in terms of security and performance improve-
ment to the server. Although CUP2 is not susceptible to
a passive eavesdropping adversary (compared to CUP1),
this security comes at the price of increased processing
cost. In particular, CUP2 requires exponentiation oper-
ations of the same complexity as the original (standard)
TLS protocol with RSA encryption. Thus, other than
throttling down clients, the CUP2 scheme does not im-
prove the server performance, as CUP1 does. On the other
hand, if a protocol (e.g., a future version of TLS) already

uses pairing-based cryptography, CUP2 can both improve
performance and increase resistance to DoS attacks.

If we use the client-generated useful puzzle CUP1 in
this environment the server’s work would be limited to
hash functions and XOR operations. Unfortunately, a
powerful adversary that is capable of monitoring all the
server’s communication links can obtain enough informa-
tion (specifically, {p0, p1, g} or {p0, p1, p2}) to decrypt the
original message from the client to the server, thus vi-
olating the security of the TLS-like protocol. From a
denial-of-service perspective, such an adversary can po-
tentially perform much more powerful attacks (e.g., shut
down these links); however, this scheme has the potential
to make things worse from a security perspective.

We offer two potential approaches to mitigating the
threat when using CUP1. First, we can treat the first it-
eration of the TLS-like protocol as a pre-authentication
phase, establishing a key which can be used to quickly
validate the client’s traffic to the server’s router using a
scheme such as the one proposed by Yaar, Perrig and
Song [56]; a second authentication phase (without using
puzzles) is subsequently used to secure the end-to-end
path. Second, we can use a distributed set of servers
through which the main server routes (and receives) Mes-
sages 3, 4 and 5 (per Figure 2). These messages are
transmitted under pre-established security associations,
preventing an attacker eavesdropping on the server’s di-
rect links from obtaining enough information. Such an

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 148

p1’ (part of {m2})

d,
g

ServerClient 1 Client 2

I want to talk, ciphers I support, Nonce1 I want to talk, ciphers I support, Nonce2

server server

{keyed hash of handshake messages}{keyed hash of handshake messages}

Certificate , cipher I choose, Nonce3, f, e

d,g
{m1} ,{keyed hash of handshake messages}

{m2} ,{keyed hash of handshake messages}
d,g

d,g d,g

Intermediate result of decrypting m2 Intermediate result of decrypting m1

m1 m2

Certificate , cipher I choose, Nonce4, f, e

K = f(m1, Nonce1, Nonce3) K = f(m2, Nonce2, Nonce4)

p1 (part of {m1})

{m
1}

=

 (
p0

, p
1)

Figure 2: A TLS-like protocol using useful puzzles. For simplicity, only two clients are shown, each partially
decrypting the other’s secret value m on behalf of the server.

attacker would instead need to eavesdrop the links for
all these servers. Recent work has shown that such
overlay-based mechanisms offer reasonable security guar-
antees [37] and performance characteristics [2].

CUP1 has the further problem that the auxiliary pub-
lic key needs to be periodically refreshed to prevent an
attacker from posing as a client and using the auxiliary
private key to decrypt. If the key is refreshed for each
message then the server is doing an exponentiation at
each step which is exactly what we wanted to avoid. The
server can avoid this problem by having several auxiliary
keys prepared and then giving different keys to different
clients. Depending on the amount of traffic the server is
experiencing the keys should be periodically refreshed.

6.5 Protecting Honest Users

A potential problem with the CUP2-TLS scheme is that
an adversarial client could generate a bad ciphertext (puz-
zle), so that an honest client will not be able to verify
itself. Our approach to this problem is to provide the
same puzzle to multiple clients and, conversely, to require
clients to solve several puzzles. Furthermore, the server
injects some puzzles who solutions are already known,
e.g., puzzles that were solved in the past by other clients,
or puzzles that were solved by the server during times of
light load. All puzzles (including those whose solution
is already known) are “anonymized” by the server, such
that colluding clients do not know that they are solving
the same puzzle.

First, we add a new algorithm to CUP2 and change the
client and checking algorithms accordingly:

Privacy-preservation. Given p1, the server generates
r ∈R Z∗

q1
and computes p̃1 = gr · p1.

Client Algorithm. Given p̃1, the client C1 computes
p2 = e(g, p̃1) and sends p2 to the server.

Checking. The server computes e(g, g)−r and then com-
putes: (p2 · e(g, g)−r)xy := v. The server computes
ρ = u2⊕Hx(v) and m = G(ρ)⊕u3. The server ac-
cepts C1’s computation if u4 = F (ρ, m, u1, u2, u3).

Let the modified version of CUP2 be called CPUP (for
Client-generated Privacy-preserving Useful Puzzle). Note
that the privacy-preserving algorithm ensures that the
outsourced computation is independent of the original
puzzle, and the client doing the computation has no idea
which puzzle it is associated with. This allows the server
to send the same puzzle out to multiple clients; colluding
clients will not be able to share their answers.

If the server sends out ζ different puzzles to each client,
let α be the number of puzzles that the server already
knows the answer to, thus leaving ζ − α puzzles that the
server actually needs solved. Again, note that the same
client puzzle will be sent to a number of clients. The
server will dismiss all clients that do not solve the α known
puzzles correctly. The probability that a client that com-
putes β puzzles correctly will have computed the α known
puzzles among them is at most:

(

ζ−α

β−α

)

/
(

ζ

β

)

+ |G2|
−1. For

example, an honest client will compute the puzzles with

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 149

probability 1 (β = ζ). A client trying to guess which are
the α and only computing those will be correct with prob-

ability
(

ζ
α

)−1
with some negligible probability of randomly

guessing the correct answers. Any client computing fewer
than α puzzles will have no better than a |G2|

−1 chance
of guessing the correct values.

After dismissing the “obviously” malicious clients by
checking the known solutions, the server will run the
checking algorithm on the computations of the remaining
clients. If there is any disagreement among the clients’
answers, the server will take the majority’s vote and dis-
miss the minority clients irrespective of whether or not
the checking algorithm accepts the answer. Thus, if there
are even only two honest clients, two malicious clients
will have to give the same answer for all ζ − β puzzles
for the server to be fooled. Since each copy of each puz-
zle is independently generated uniformly at random, the
probability of this happening is at most |G2|

−(ζ−β). If a
majority of the clients give the same answer to a puzzle,
but the client algorithm does not accept the answer, then
the client that generated the puzzle will be dismissed.
Thus, honest clients can only fall victim to malicious ad-
versaries with a very small probability that is adjustable
by the server.

In terms of the server’s computation, adding the
privacy-preservation property adds two more exponentia-
tions. Thus it takes the server three exponentiations and
two multiplications to check the client’s work in CPUP.
This constant number of exponentiations requires much
less work on the part of the server than the pairing com-
putation done by the clients.

7 Conclusions

We introduced the notion of a “dual receiver cryptosys-
tem” which enables a ciphertext to be decrypted by two
independent receivers. We presented a construction and
illustrated its use in two important applications that ad-
dress heretofore open problems in the literature.

The first application, first suggested by Dwork and
Naor, is a client-generated useful puzzle scheme. Here,
a server can effectively delegate the decryption of an
encrypted message to a client in the form of a puzzle.
The puzzle-solving client facilitates the decryption with-
out learning anything about the encrypted message or the
server’s private key. The remaining cryptographic work-
load for the server (including verification that the puzzle
was correctly solved) is reduced to a bitwise XOR and the
computation of a simple hash in our first construction. We
believe that this scheme will have important applications
in preventing denial-of-service attacks, and we explore its
use in a TLS-like protocol. The happy irony is that a
DoS attacker that seeks to shut down a server by induc-
ing it to perform computationally intensive cryptographic
computations, is forced to facilitate the server’s pending
cryptographic tasks on behalf of legitimate clients.

We are still left with the open question of whether or

not one can construct a useful puzzle in a TLS-like proto-
col that: (1) does not require the server to do any expo-
nentiations; and (2) is secure against adversaries that can
monitor all communications between the server and the
clients. Our first protocol fulfills the first requirement,
and our second protocol fulfills the second. Ideally, we
would like the best of both worlds.

The second application, inspired by the work of
Haber and Pinkas, is a “combined cryptosystem” wherein
multiple participants, each maintaining only a single
public/private-key pair, can both encrypt and sign mes-
sages, and can also delegate decryption (escrow) capabili-
ties to a specified user (on a per-message basis, if desired).
The escrow is achieved without compromising the secu-
rity of the signature scheme or the security of any other
message encryption.

References

[1] B. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ioan-
nidis, A. Keromytis, and O. Reingold, “Efficient, dos-
resistant secure key exchange for Internet protocols,”
ACM Computers and Communications Security con-
ference (CCS), pp. 48-58, 2002.

[2] D. G. Andersen, H. Balakrishnan, M. F.
Kaashoek, and R. Morris, “Resilient overlay
networks,”Proceedings of the 18th Symposium on
Operating Systems Principles (SOSP), Oct. 2001.

[3] M. Abadi, M. Burrow, M. Manasse, and T. Wob-
ber, “Moderately hard, memory-bound functions,”
Proceedings of the ISOC Symposium on Network and
Distributed Systems Security (SNDSS), Feb. 2003.

[4] T. Aura, J. Leiwo, and P. Nikander, “Dos-resistant
authentication with client puzzles,” Proceedings Se-
curity Protocols Workshop 2000, LNCS 2133, pp.
170-181, 2000.

[5] T. Aura, and P. Nikander, “Stateless con-nections,”
Proceedings of International Conferenec on Informa-
tion and Communi-cations Security (ICICS), LNCS
1334, pp. 87-97, Springer-Verlag, Nov. 1997.

[6] A. Back, “Hashcash- A denial of service counter-
measure”, (http: //www.cypherspace.org/hashcash/
hashcash.pdf)

[7] D. Boneh, and M. Franklin, “Identity-based encryp-
tion from the Weil pairing,” Joe Kilian, editor, Ad-
vances in Cryptology CRYPTO 2001, LNCS 2139,
pp. 213-229. Springer-Verlag, 2001.

[8] D. Boneh, B. Lynn, and H. Shacham, “Short sig-
natures from the Weil pairing,” Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, LNCS
2248, pp. 514V532. Springer-Verlag, 2001.

[9] D. Boneh, and M. Naor, “Timed commitments (ex-
tended abstract),” Proceedings of CRYPTO, pp.
236V254, Aug. 2000.

[10] M. Bellare, and P. Rogaway, “The exact security of
digital signature - how to sign with RSA and Rabin,”

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 150

Ueli Maurer, editor, Advances in Cryptology -EURO-
CRYPT’ 96, LNCS 1070, pp. 399V416m Springer-
Verlag, 1996.

[11] Y. Chen, S. Das, P. Dhar, A. El Saddik, and A.
Nayak, “Detecting and preventing IP-spoofed dis-
tributed DoS attacks,” International Journal of Net-
work Security (IJNS), vol. 7, no. 1, pp. 69-80, July
2008.

[12] J. S. Coron, H. Handschuh, M. Joye, P. Paillier,
D. Pointcheval, and C. Tymen, “GEM: A generic
chosen-ciphertext secure encryption method,” Bart
Preneel, editor, Topics in Cryptology - CTRSA 2002,
LNCS 2271, Springer-Verlag, pp. 263V276, 2002.

[13] J. S., M. Joye, D. Naccache, and P. Paillier, “Univer-
salpadding schemes for RSA,” Advances in Cryptol-
ogy (CRYPTO’2002), LNCS 2442, pp. 226-241, 2002.

[14] W. E. Difie, and M. E. Hellman, “New directions
in cryptography,” IEEE Transaction on Information
Theory, IT vol. 22, no. 6, pp. 644-654, Nov. 1976.

[15] T. Diament, H. K. Lee, A. D. Keromytis, and M.
Yung, “The dual receiver cryptosystem and its ap-
plications,” Proceedings of the 11th ACM conference
on Computer and Communications Security(CCS),
pp. 330V343, Oct. 2004.

[16] C. Dwork, and M. Naor, “Pricing via processing, or
combating junk mail,” Proceedings of CRYPTO, pp.
139V147, Aug. 1992.

[17] D. Dean, and A. Stubbleeld, “Using client puzzles
to protect TLS,” Proceedings of the 10th USENIX
UNIX Security Symposium, Aug. 2001.

[18] P. Fouque, and D. Pointcheval, “Thrshold cryptosys-
tems secure against chosen-ciphertext attacks,” Ad-
vances in Cryptology - ASIACRYPT 2001, LNCS
2248, pp. 351-368, 2001.

[19] Y. Frankel, and M. Yung, “Escrowencryption sys-
tems visited: Attacks, analysis and designs,” Ad-
vances in Cryptology (CRYPTO’1995), LNCS 963,
pp. 222-235, 1995.

[20] J. A. Garay, and M. Jakobsson, “Timed release of
standard digital signatures,” Proceedings of the 6th
Conference on Financial Cryptography, pp. 168-182,
Feb. 2002.

[21] V. D. Gligor, “Guaranteeing access in spite of dis-
tributed service-flooding attacks,” Proceedings of the
Security Protocols Workshop, Apr. 2003.

[22] S. Goldwasser, and S. Micali, “Probabilistic encryp-
tion,” Journal of Computer and System Sciences,
vol. 28, no. 2, pp. 270-299, Apr. 1984.

[23] S. Goldwasser, S. Micali, and R. Rivest, “A digi-
tal signature scheme secure against adaptive chosen-
message attacks,” SIAM Journal on Computing, vol.
17, no. 2, pp. 281-308, Apr. 1988.

[24] C. Gentry, and A. Silverberg, “Hierarchical ID-
based cryptography,” Advances in Cryptology (ASI-
ACRYPT’2002), LNCS 2501, pp. 548-566, 2002.

[25] C. Gong, and K. Sarac, “Toward a practical packet
marking approach for IP traceback,” International
Journal of Network Security (IJNS), vol. 8, no. 3,
pp. 271-281, May 2009.

[26] L. T. Heberlein, and M. Bishop, “Attack class: Ad-
dress spoofing,” Proceedings of the 19th National In-
formation Systems Security Conference, pp. 371-377,
Oct. 1996.

[27] D. Harkins, and D. Carrel, The Internet Key
Exchange (IKE) Request for Comments (Proposed
Standard) 2409, Internet Engineering Task Force,
Nov. 1998.

[28] S. Hirose, and K. Matsuura, “Enhancing the resis-
tance of a provably secure key agreement protocol to
a denial-of-service attack,” Proceedings of the 2nd In-
ternational Conference on Information and Commu-
nication Security (ICICS), pp. 169-182, Nov. 1999.

[29] S. Haber, and B. Pinkas, “Securely combining public-
key cryptosystems,” Pierangela Samarti, editor, Pro-
ceeding 8th ACM Conference on Computer and Com-
munications Security, ACM Press, pp. 215-224, 2001.

[30] K. Houle, G. Weaver, N. Long, and R. Thomas,
“Trends in denial of service attack technology,”
CERT and CERT Coordination Center, 2001.
(http://www.cert.org/archive/pdf/DoS trends.pdf)

[31] A. Juels, and J. Brainard, “Client puzzles: A crypto-
graphic countermeasure against connection depletion
attacks,” Proceedings of the ISOC Symposium on
Network and Distributed Systems Security (SNDSS),
pp. 151-165, Feb. 1999.

[32] M. Jakobsson, and A. Juels, “Proofs of work and
bread pudding protocols,” Proceedings of the IFIP
TC6 and TC11 Joint Working Conference on Com-
munications and Multi-media Security, Sep. 1999.

[33] A. Joux, and K. Nguyen, “Separating decision
difie-hellman from diffie-hellman in cryptographic
groups,” 2001. (http://eprint.iacr.org)

[34] A. Joux, “A one-round protocol for tripartite Diffie-
Hellman,” Wieb Bosma, editor, Proceeding Algorith-
mic Number Theory, 4th International Symposium
(ANTS-IV), LNCS 1838, pp. 385-394, 2000.

[35] P. Janson, G. Tsudik, and M. Yung, “Scalability
and flexibility in authentication services: The Kryp-
toKnight approach,” Proceedings of IEEE INFO-
COM, pp. 725-736, Apr. 1997.

[36] N. Koblitz, and A. J. Menezes, “Another
Look at ‘Provable Security’, Manuscript, 2004.
(http://eprint.iacr.org)

[37] A. D. Keromytis, V. Misra, and D. Rubenstein,
“SOS: Secure overlay services,” Proceedings of ACM
SIGCOMM, pp. 61-72, Aug. 2002.

[38] Y. Komano, and K. Ohta, “Efficient universal
padding techniques for multiplicative trap-door one-
way functions,” Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, LNCS 2729, pp.
366V38, 2003.

[39] C. Kaufman, R. Perlman, and M. Speciner, Network
Security, 2nd Edition, Prentice Hall, 2002.

[40] P. Karn, and W. Simpson, “Photuris: Session key
management protocol,” Request for Comments (Ex-
perimental) 2522, Internet Engineering Task Force,
Mar. 1999.

International Journal of Network Security, Vol.13, No.3, PP.135-151, Nov. 2011 151

[41] J. Lemmon, “Resisting SYN-flood DoS attacks with
a SYN cache,” Proceedings of the USENIX BSD Con-
ference (BSDCon), Feb. 2001.

[42] M. Lee, Y. He, and Z. Chen, “Towards improving an
algebraic marking scheme for tracing DDoS attacks,”
International Journal of Network Security (IJNS),
vol. 9, no. 3, pp. 204-213, Nov. 2009.

[43] J. Leiwo, P. Nikander, and T. Aura, “Towards net-
work denial of service resistant protocols,” Proceed-
ings of the 15th International Information Security
Conference (IFIP/SEC), Aug. 2000.

[44] M. Naor, and M. Yung, “Public-key cryptosystems
provably secure against chosen ciphertext attacks,”
Proceedings 22nd Annual ACM Symposium on The-
ory of Computing(STOC), LNCS 547, pp. 427-437,
1990.

[45] T. Okamoto, and D. Pointcheval, “REACT: Rapid
enhanced-security asymmetric cryptosystem trans-
form,” Topics in Cryptology (CT-RSA’2002), LNCS
2271, pp. 159-175, 2002.

[46] R. Oppliger,“Protecting key exchange and manage-
ment protocols against resource clogging attacks,”
Proceedings of the IFIP TC6 and TC11 Joint Work-
ing Conference on Communications and Multimedia
Security (CMS), pp. 163-175, Sep. 1999.

[47] B. Pinkas, “Personal communication,”
[48] C. Racko, and D. R. Simon, “Non-interactive zero-

knowledge proof of knowledge and chosen ciphertext
attack,” Advances in Cryptology (CRYPTO’1991),
LNCS 576, pp. 433-444, 1991.

[49] R. Rivest, and A. Shamir, “PayWord and mi-
cromint,” CryptoBytes, vol. 2, no. 1, pp. 7-11, 1996.

[50] R. L. Rivest, A. Shamir, and D. A. Wagner, Time-
lock Puzzles and Timed-release Crypto, Technical Re-
port MIT/LCS/TR-684, MIT, 1996.

[51] C. Schuba and I. Krsul and M. Kuhn and E. Spaf-
ford and A. Sundaram and D. Zamboni, “Analysis
of a denial of service attack on TCP,” Proceedings of
IEEE Security and Privacy Conference, pp. 208-223,
May 1997.

[52] Z. J. Shi and H. Yan, “Software implementations of
elliptic curve cryptography,” International Journal
of Network Security (IJNS), vol. 7, no. 1, pp. 141-
150, July 2008.

[53] E. R. Verheul, “Evidence that XTR is more se-
cure than supersingluar elliptic curve cryptosys-
tems,” Proceedings of Advances in Cryptology (EU-
ROCRYPT’2001), LNCS 2045, pp. 195-210, 2001.

[54] X. Wang and M. K. Reiter, “Defending against
denial-of-service attacks with puzzle auctions (ex-
tended abstract),” Proceedings of the IEEE Sympo-
sium on Security and Privacy, May 2003.

[55] A. D. Wood and J. A. Stankovic, “Denial of service
in sensor networks,” IEEE Computer, vol. 35, no. 10,
pp. 54-62, 2002.

[56] A. Yaar and A. Perrig and D. Song, “Pi: A path
identification mechanism to defend against DDoS at-
tacks,” Proceedings of the IEEE Symposium on Se-
curity and Privacy, May 2003.

[57] R. Zhang and G. Hanaoka and H. Imai, “A generic
construction of useful client puzzles,” Proceedings
of the 4th International Symposium on Informa-
tion, Computer, and Communications Security (ASI-
ACCS), pp. 70-79, 2009.

Ted Diament has worked at Google, Inc. and was a
Ph.D. student at Columbia University during the time
the work described in this paper was conducted.

Homin K. Lee is a postdoctoral student with the
University of Texas at Austin. He received his Ph.D.
in Computer Science from Columbia University in New
York.

Angelos D. Keromytis is an Associate Professor of
Computer Science and the Director of the Network Se-
curity Laboratory at Columbia University in New York.
He received his Ph.D. and M.Sc. from the University
of Pennsylvania, and his B.Sc. from the University of
Crete, in Greece.

Moti Yung works at Google, Inc. and is a visiting re-
search scientist in the Computer Science Department at
Columbia University in New York. Previously, Moti has
also been an industry consultant, the Director of Ad-
vanced Authentication Research at RSA Laboratories, the
Chief Scientist of CertCo and a researcher at IBM’s T.J.
Watson Research Center. He received his Ph.D. in com-
puter science from Columbia University in New York.

