
International Journal of Network Security, Vol.12, No.3, PP.130–136, May 2011 130

Cryptanalysis and Fixed of Short Signature
Scheme without Random Oracle from Bilinear

Parings

Mingwu Zhang1,2,3, Bo Yang1, Yusheng Zhong1, Pengcheng Li1, Tsuyoshi Takagi3

(Corresponding author: Mingwu Zhang)

College of Informatics, South China Agricultural University1

No.383, Wushan Rd., Tianhe District, Guangzhou 510642, China

National Laboratory for Modern Communications, Chengdu 610041, China2

Graduate School of Mathematics, Kyushu University3

744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
(Received Nov. 1, 2009; revised and accepted Apr. 13, 2010)

Abstract

We first analyze the security of a short signature scheme
without random oracles called ZCSM scheme and point
out that it cannot support unforgeable under the chosen
message and public key attacks. We also propose a new
signature scheme without random oracle using bilinear
pairing that is existentially unforgeable under a chosen
message attack. The security of the proposed scheme de-
pends on a complexity assumption called the k+1 square
roots inverse assumption. The proposed scheme has the
same signature length with the previous short signature
scheme where it fixes the ZCSM scheme’s deficiency.
Keywords: Bilinear pairing, signature, standard model,
unforgeability

1 Introduction

Recently, many signature schemes using the bilinear pair-
ings without random oracles have been proposed that are
efficient and at the same provable security in the stan-
dard model [2, 8, 13, 15, 17, 18]. Short digital signa-
tures [3, 4, 12, 16] are always desirable that can deploy
in some situation where people need to enter the signa-
ture manually, such as using a PDA that is not equipped
with a keyboard and RFID that has poor computing capa-
bility. Additionally, short digital signatures are essential
to ensure the authenticity of messages in low-bandwidth
communication channels such as Wireless Sensor Network
(WSN) and Ad hocs that support low bandwith transmis-
sions and dynamic communications [6, 10, 11]. In general,
short digital signatures are used to reduce the communi-
cation complexity of any transmission. Boneh, Lynn and
Shacham [4] used a totally new approach to design short

Table 1: Signature size under the same security level
Schemes BLS DSS RSA

Size 160 bits 320 bits 1024 bits

digital signatures, referred to as the BLS scheme, is based
on the Computational Diffie-Hellman (CDH) assumption
on elliptic curves with low embedding degree. The BLS
scheme is provable security in the random oracles model.
Although the model is efficient and useful, it has received
a lot of criticism that the proofs in the random oracle
model are not proofs at all. In BLS signature scheme,
with a signature length l = 160 bits which is approxi-
mately half the size of DSS signatures and only 16.6%
size of the RSA signature with the same security level, it
provides a security level of approximately O(280) in the
random oracle model. In Table 1, it lists several signa-
tures size comparison with the same security levels such
as BLS, DSS and RSA etc.

Camenisch and Lysyanskaya [5] and Fischlin [7] con-
structed two provably secure signature schemes under the
strong RSA assumption in the standard model, repec-
tively. Boneh and Boyen [1] proposed a short signature
scheme without using random oracles from bilinear groups
which is fully secure with the support of existentially un-
forgeable under a chosen message attack where its security
reduces to q-strong Diffie-Hellman (q-SDH) assumption
that is a stronger assumption compared with the stan-
dard computational Diffie-Hellman (CDH) assumption.
Furthermore, their construction is too inefficient to be
of practical use. In [14], Tan pointed that it cannot resist
on the strong-key substitution attacks in [1]. Li et al. [9]
constructed a short signature in the standard model with
a shorter signature size than previous schemes [1, 3], but
it needs to introduce two Hashing functions to support
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random value to another uniformly field element. In [19],
Zhang et al. proposed a new signature scheme without
random oracle called ZCSM scheme. The security of the
ZCSM scheme depends on a new complexity assumption
called the k + 1 square roots assumption. Moreover, the
k + 1 square roots assumption can be used to construct
shorter signatures under the random oracle model.

In this paper, we analyze the security of the ZCSM
scheme [19] that is an efficient short signature scheme
in the standard model from bilinear pairings. We give
the forgeable attack to provide that the ZCSM scheme
is not secure in unforgeability under the chosen message
and public key attacks. We also propose a new signa-
ture scheme with bilinear pairing that is existentially un-
forgeable under a chosen message attack without random
oracle. The security of the proposed scheme depends
on a new complexity assumption called the k+1 square
roots inverse assumption that derived from SDH assump-
tion [1]. The proposed scheme has the same signature
length with the ZCSM scheme where it improves and fixes
the security requirements.

2 Preliminaries and Mathematics
Backgrounds

2.1 Bilinear Groups and Maps

Definition 1. (Bilinear maps) A map ê : G×G → GT .
GT is called a bilinear pairing if it satisfies the following
properties:

1) G and GT are two multiplicative finite cyclic groups
of order q.

2) g is a generator of G, and ê(g, g) is generator of GT .

3) ê is a bilinear map ê : G×G → GT . In other words,
for all u, v ∈ G and a, b ∈ Zq, it has ê(ua, vb) =
ê(u, v)ab.

The bilinear map ê is commutative such that ê(ua, vb) =
ê(ub, va) = ê(v, u)ab. We say that G is a bilinear group
if the group action in G can be computed efficiently and
there exists both a group GT and an efficiently computable
bilinear map ê : G×G → GT as above.

2.2 Constructing Bilinear Groups of a
Given Order q

Let q > 3 be a given square-free integer that is not divis-
ible by 3. We construct a bilinear group G of order q as
follows:

1) Find the smallest positive integer l ∈ Z such that
p = lq − 1 is prime and p = 2 mod 3 holds.

2) Consider the group of points on the super-singular
elliptic curve y2 = x3 + 1 defined over Fp. Since
p = 2 mod 3, the curve has p + 1 = lq points in

Fp. Moreover, the group of points on the curve has
a subgroup of order q which we denote by G.

3) Let GT be the subgroup of Fp2 of order q. The mod-
ified Weil pairing on the curve gives a bilinear map
ê : G×G→ GT with the required properties.

For a bilinear maps ê : G × G → GT . We assume we
work over a 160-bit elliptic curve group for the discrete-
logarithm based scheme. For example, k = 80, |G| =
|q| = 160.

2.3 The Hard Problem Assumptions and
Security

Definition 2. (k+1 Square Roots Assumption,
k+1-SRP) [19] Given as input an integer k, x ∈ Zq,
g ∈ G and (2k+1)-tuples: {α = gx, h1, · · · , hk ∈
Zq, g

{x+h1}1/2
, · · · , g{x+hk}1/2}, to compute g{x+h}1/2 ∈ G

for some h ∈ {h1, · · · , hk}.
Definition 3. (SDH Assumption) [3] Given as input
a (q+1)-tuple of elements: (g, gx, gx2

, · · · , gxq

) ∈ Gq+1,
to compute a pair (c, g1/(x+c)) ∈ zq ×G for a free chosen
value c ∈ Zq\{−x}.
Definition 4. (k+1 Square Roots Inverse Assump-
tion, k+1-SRIP) For an integer k, and x ∈ Zq, g ∈ G,
given

{g, α = gx, h1, · · · , hk ∈ Zq, g
1

(x+h1)1/2 , · · · , g
1

(x+hk)1/2 },
to compute g

1
(x+h)1/2 for some h ∈ {h1, · · · , hk}.

Let Ω be a k+1-SRIP parameter generator. We say
that an algorithm B has the advantage AdvΩ,B(k) in solv-
ing the k + 1-SRIP problem for Ω in time t(k) if for suf-
ficiently large parameter k. We have

Advk+1−SRIP
Ω,B (k) = Pr[B(g, α = gx, h1, · · · ,

hk ∈ Zq, g
1

(x+h1)1/2 , · · · ,

g
1

(x+hk)1/2 |x ∈R Zq, g ∈ G,

h1, · · · , hk ∈ Zq) = g
1

(x+h)1/2 ,

h ∈ {h1, · · · , hk}] < ε,

where ε is negligible.

Definition 5. Unforgeability. A forger A is said
to (t, qS , ε)-break a signature scheme if A runs in time
at most t, makes at most qS signature queries, and
SignAdv(A) is at least ε. A signature scheme is (t, qS , ε)-
strongly existentially unforgeable under an adaptive cho-
sen message attack if there exists no forger that (t, qS , ε)-
breaks it.

We note that the definition above captures a stronger
version of existential unforgeability than the standard
one, as it requires that the adversary cannot even gen-
erate a new signature on a previously signed message.
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3 Construction of ZCSM Signa-
ture without Random Oracles

The ZCSM scheme [19] is described as follows.

Setup. Picks out a bilinear group and map tuples
(G,GT , ê, g, q) with generator g. It assumes that q ≡
3 mod 4 which statisfies−1 is a non-quadratic residue
modulo q. The message space M = {1, · · · , (q −
1)/2}. For any message m ∈ M, if m is not a
quadratic residue modulo q, then q −m or −m will
be a quadratic residue modulo q. The system param-
eters are (G, GT , ê, q, g).

Key Generation. Randomly picks x, y ∈R Zq, com-
putes u = gx, v = gy. The secret key is (x, y) and
the public key is (u, v).

Sign. Given a message m ∈ M, a user with secret key
(x, y) generates a signature as follows:
First, randomly picks r ∈R Zq;
If m is a quadratic residue modulo q, computes

σ = g(x+my+r)1/2 mod q.

Otherwise, if m is a non-quadratic residue modulo q,
then computes

σ = g(x+(−m)y+r)1/2 mod q.

The signature is (σ, r).

Verify. Given a public parameters (G,GT , q, g), pub-
lic key (u, v), a message m ∈ M, and a signature
(σ, r), anyone can verify the validation of the signa-
ture (σ, r) by the following equation:

ê(σ, σ) = ê(uvmgr, g)

or

ê(σ, σ) = ê(uv−mgr, g).

4 Forgery Attacks

In this section, we describe the two attack models on the
ZCSM scheme to point out that the ZCSM scheme cannot
against unforgeability by signature forgery attack. One is
signature forgeability attack, and the other is strong key
replacement attack.

4.1 Signature Forgery

When obtained a valid signature (σ, r), it easy to forge a
new signature by setting signature (σ′, r′) as

(σ′, r′) = (σ2, 2r).

Anyone can verify the valid of the signature (σ′, r′) for
the forged public key (u′, v′) = (u2, v2) = (g2x, g2y) by
the verify algorithm:

ê(σ′, σ′) = ê(gx+my+r, gx+my+r)
= ê(g2xg2myg2r, g)

= ê(u′v′mgr′ , g).

4.2 Strong Key Replacement Attack

After given a message m’s signature (σ, r) signed by Alice,
attacker A forges a valid public key by

- Randomly picks v′ ∈R G;

- Computes u′ = u(v/v′)m.

It easy sees that (u′, v′) is a valid public key. The signa-
ture (σ, r) can be verified as valid for public key (u′, v′)
as

ê(u′v′mgr, g) = ê(u(v/v′)m · v′mgr, g)
= ê(uvmgr, g)
= ê(σ, σ).

Attacker A can replace Alice’s public key with (u′, v′),
which may be the public key of Bob’s. So, the signature
(σ, r) can be considered for Bob’s signature by strong key
replacement attack.

5 Fixed and Improved Scheme

We now improve and fix a security short signature scheme
in the standard model using the (k+1)-SRIP assumption
that derived from SDH assumption. We also assume that
the message m to be signed are elements in Zq, the domain
can be extended to all {0, 1}∗ by using collision resistant
hash function.

Setup. Let G and GT be two cyclic groups of prime
order q, g be a generator of G and ê be an effi-
ciently computable bilinear map from G × G into
GT . It assumes that q ≡ 3 mod 4 which satisfies
−1 is a non-quadratic residue modulo q. The mes-
sage space M = {1, · · · , (q− 1)/2}. For any message
m ∈ M, if m is not a quadratic residue modulo q,
then q −m or −m will be a quadratic residue mod-
ulo q. Let z = ê(g, g). The system parameters are
(G, GT , g, ê, q, z), together with the message spaceM
and the signature space C.

KeyGen. Randomly selects x, y ∈R Zq, computes u =
gx ∈ G and v = gy ∈ G. The the secret key is (x, y)
and the public key is (u, v).

Sign. Given a message m ∈ M, a user with secret key
(x, y) produces a signature as follows:

- First, randomly picks a r ∈R Zq;
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- If m is a quadratic residue modulo q, compute

σ = g
1√

x+my+r
mod q.

- Otherwise, if m is a non-quadratic residue mod-
ulo q, then compute:

σ = g
1√

x+(−m)y+r
mod q

The signature is (σ, r).

Verify. Upon receipt of public parameters (G, GT , g,
q, z), public key (u, v), a message m ∈ M, and a
signature (σ, r), anyone can verify the validation of
the signature by the following equations:

ê(σ2, ugmvr) = z (1)

or

ê(σ2, ug−mvr) = z. (2)

If either equation Equation (1) or Equation (2) holds,
it outputs valid. Otherwise, it outputs invalid.

It’s obvious that the signature size is the same as the
ZCSM’s, but the computation cost in Verify algorithm is
more efficient for that it needs only one pairing computa-
tion.

A signature pair generated by the signing procedure
verifies as valid under the corresponding public key. In-
deed, it has

ê(σ2, ug±mvr) = ê(g
1

x±my+r , ug±mvr)

= ê(g
1

x±my+r , gxg±mygr)
= ê(g, g)
= z.

6 Security and Performance Anal-
ysis

6.1 Signature Size

Let (G,GT ) be bilinear group where |G| = |GT | = q
for some prime p. A signature (σ, r) which each ele-
ment of signature approximately log2q-bits when embed-
ded degree k = 6 and the modified Weil pairing or Tate
pairing, therefore the total signature length is approxi-
mately 2log2q. If it instantiates the pairing using elliptic
curves, the signature length is approximately the same as
DSA signature with the same security where the proposed
scheme is provable security under the standard model.

We can select the parameter such that the elements
in G are 171-bit strings. A possible choice of these pa-
rameters can be from Boneh et al.’s BLS short signature
scheme. Therefore, at the current security requirement,
we can obtain a signature whose length is approximately

the same as a DSA signature with the same level of se-
curity, but which is provably secure and existentially un-
forgeable under a chosen message attack without the ran-
dom oracle model. It keeps the same signature length
with ZCSM scheme, where it improves security to rein-
forces the forgeability attack under chosen message at-
tacks and chosen public key attacks, and reduce the Verify
algorithm time.

6.2 Computation Cost

The improved signature scheme requires one computation
of square root in Zq and one exponentiation in G for Sign
algorithm. For the verification, it requires only one par-
ing and three exponentiations in G, which has more com-
putational efficient than ZCSM scheme that needs two
pairings computations and two exponentiations in Ver-
ify algorithm for that z can be greatly accelerated with
a moderate amount of reusable pre-computation in our
scheme.

Key generation times are comparable to the BLS
scheme [4]. Signature times are much faster than BLS,
by up to an order of magnitude, because our signing
algorithm only makes one exponentiation to the fixed
base g, and this can be greatly accelerated with a mod-
erate amount of reusable pre-computation. Verification
times are also faster than BLS since verification requires
only one pairing and two multi-exponentiation, instead of
two pairing computations in BLS. Since exponentiation
tends to be faster than pairing, signature verification is
faster than in the BLS system. Compared with the BB04
scheme [1], this is the second short signature scheme with-
out random oracles. In Table 2, it lists the comparison
of the security and performance about related signature
schemes.

6.3 Security

Theorem 1. Suppose the (q, t′, ε′)-(k+1)SRIP assump-
tion holds in (G,GT ), then the signature scheme above is
(t, qs, ε)-secure against strong existential forgery under an
adaptive chosen message attack such that

qs < q, ε ≈ 2ε′.

Proof. Assume a forger F with (t, qs, ε) advantage breaks
the signature scheme. We construct an algorithm A to
solve the SRIP problem by interacting with F .

Before describing the algorithm B, we distinguish be-
tween two types of forgers that A can emulate. Let
(G, GT , q, g, ê, u, v, z) be the public key given to A, where
u = gx and v = gy. Let hi = miy + ri be the k+1-SRIP
input, and let (m∗, r∗, σ∗) be the forgery produced by A.
There are two types of forgers A as:

- Type-I forger: (1) He makes a signature query for the
message m = −x, or (2) He outputs a forgery where
m∗ + yr∗ /∈ {h1, · · · , hqs};
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Table 2: Comparison of security, signature sizes and computing costs
Schemes Security Model Unforgeability Signature Size Sign Cost Verify Cost

Ours Standard Yes |G|+ |Zq| 1Exp+1Sr 1Pr+3Mp
[4] ROM Yes |G| 1Sr 2Pr

[19] Standard No |G|+ |Zq| 1Exp+1Sr 2Pr+2Mp
[1] Standard Yes |G|+ |Zq| 1Exp 1Pr+3Mp

[17] Standard Yes 2|G| 2Exp+1Sr 3Pr+1Mp
Exp: exponentiation in G; Sr: square root in Zq;
Mp: multiple in G; Pr: pairing computation of ê.

- Type-II forger: (1) He never makes a signature query
for the message m = −x, and (2) He outputs a
forgery where m∗+yr∗ = hi for some i ∈ {1, · · · , qs}.

Setup. Algorithm B first selects a list of qs random mes-
sages h1, · · · , hqs

∈ Zq and sets si = g(x+hi)
−1/2 ∈ G,

and sends them to the challenger. The challenger re-
sponds with a valid public key (g, u, v, z) and a list of
qs signatures σ1, · · · , σqs

on these messages. If some
σi = 1 ∈ G, then B just learned the challenger’s
private key, x = −mi, which it can then use to pro-
duce a valid forgery. Otherwise, we know that all mi

are uniform in Zq\{−x} and that e(σ2
i , ugmivri) =

ê(g, g) = z for i = 1, · · · , qs. To proceed, B first sets
α = gx, and then picks a random y ∈ Zq and gives to
A the public key PK1 = (g, u, v, z) = (g, α, gy, z) for
Mode I. Otherwise, he gives the public key PK2 =
(g, u, v, z) = (g, gy, α, z) to A under Mode II. It easy
sees that PK1 and PK2 are valid public keys for
forger F .

Queries. The forger A issues qs signature queries in an
adaptive fashion. In order to respond, B maintains a
query counter ` which is initially set to empty.

• For Mode I, upon receiving a signature query
for m ∈ Zp, the simulator B increments ` by
one, sets r` = (h` − my) ∈ Zq, and gives A
the signature (σ`, r`). We claim that (σ`, r`)
is a valid signature on m under PK1. First,
r` is uniform in Zq\{−(x + my)} for that r` is
uniform in Zq\{−x}.

ê(σ2
` , ugmvr`) = ê(g, g) = z

as required. The reason this works is that B
chooses an r` such that m` + yr` = h`, and we
also set m` = m.

• For Mode II, B sets r` = mh`−y and return tu-
ples (r`, σ` = sm−1/2

` ) if m is a quadratic residue
modulo q (If m is a non-quadratic residue mod-

ulo q, the tuples are (r`, σ` = s
(−m)−1/2

` )). This
is a valid signature on m for PK2 because r` is

uniform in Zq and

ê(σ2
` , ugmvr`) = ê((g(x+hi)

1/2m−1/2
)2, ugmvr`)

= ê(g(x+hi)g1/m, ugmvmhi−y)
= ê(g(x+hi), uvmhi−y)
= z.

A forger may issue a signature query for m ∈ Zq

where m = −x. If this ever happens then B can
obtain the private key for the public key (g, u, v, z)
it was given. This allows B to forge the signature on
any message of its choice without further interaction
with A. It terminates the simulation and wins the
game.

Output. Eventually, suppose A returns a forgery
(m∗, σ∗, r∗), where (σ∗, r∗) is a valid forgery distinct
from any previously given signature on message m∗.

Let m` = m∗ + yr∗. It shows that (m∗, σ∗) is a
valid message/signature pair in the basic signature
scheme. Furthermore, the pair is a valid existential
forgery for a forger that it has m∗ ∈ {m1, · · · ,mqs}.
If u = gm∗

, then B has already recovered the secret
key of its of its challenger, B can forge a signature on
any message of his choice. We assume that A pro-
duced a type-I forgery (m∗, r∗, σ∗). Let h = m∗y+r∗,
the forgery (m∗, r∗, σ∗) solves the qs-SRIP problem.

Otherwise, since v = α = gx, then we know that
there exists a pair vm`gr` = vm∗

gr∗ , B can compute
x = (r` − r∗)/(m∗ −m`) to recover the challenger’s
private key and forge a signature for any chosen mes-
sage.

It is easy to see that, if the forger A outputs a valid
forgery with probability ε in time t, then the reduc-
tion B succeeds in time t′ ≈ t with the same proba-
bility ε.

7 Conclusion

We analyzed the security of a short signature scheme
called ZCSM scheme in the standard model and pointed
out that it cannot resist on the unforgeable attack. Fur-
thermore, we improved and fixed the ZCSM scheme to
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provide existentially unforgeable under a chosen mes-
sage attack without using random oracles. The pro-
posed scheme has the same signature length to the ZCSM
scheme where it is more efficient than previous schemes.
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