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Abstract 

Case-base maintenance is gaining increasing 
recognition in research and the practical ap-
plications of case-based reasoning (CBR). This 
intense interest is highlighted by Smyth and 
Keane's research on case deletion policies. In 
their work, Smyth and Keane advocated a case 
deletion policy, whereby the cases in a case base 
are classified and deleted based on their cover­
age potential and adaptation power. The al­
gorithm was empirically shown to improve the 
competence of a CBR system and outperform 
a number of previous deletion-based strategies. 
In this paper, we present a different case-base 
maintenance policy that is based on case addi­
tion rather than deletion. The advantage of our 
algorithm is that we can place a lower bound 
on the competence of the resulting case base; 
we demonstrate that the coverage of the com­
puted case base cannot be worse than the op­
timal case ba.se in coverage4 by a fixed lower 
bound, and the coverage is often much closer 
to optimum. We also show that the Smyth and 
Keane's deletion based policy cannot guarantee 
any such lower bound. Our result highlights 
the importance of finding the right ca.se-ba.se 
maintenance algorithm in order to guarantee 
the best case-base coverage. We demonstrate 
the effectiveness of our algorithm through an 
experiment in case-based planning. 

1 Introduct ion 
Case-ba.se maintenance refers to the task of adding, 
deleting and updating cases, indexes and other knowl­
edge in a case base in order to guarantee the ongoing 
performance of a CBR system. Case-base maintenance 
is particularly important when a case based reasoning 
system becomes a critical problem solving system for an 
organization. This is because for any such organization, 
the knowledge may change over time and the need for 
different knowledge structures for problem solving may 
vary. The case-base size will increase with time, creating 

significant barrier to reasoning efficiency and the user's 
ability to understand the results. 

In response to these problems, there has been a signif­
icant increase in case-base maintenance research. One 
branch of research has focused on the ongoing main­
tenance of case-base indexes through training and case 
base usage [Cunningham et a/., 1997; Fox and Leake, 
1995; Aha and Breslow, 1997; Zhang and Yang, 1998]. 
Another branch of research have focused on increasing 
the overall competence of the case base through case 
delet ion Smyth and Keane, 1995; Markovicli and Scott, 
1988; Domingos, 1995; Aha ct a/., 1991; Smyth and 
Keane, 1995; Racine and Yang, 1997] in a way simi-
lar to utility-based control-rule deletion policies [Minton, 
1990]. Excellent surveys of this field can be found in 
[Leake and Wilson, 1998] and [Watson, 1997]. 

This recent surge of interest in case-base maintenance 
is highlighted by Smyth and Keane seminal work on 
competence-preserving case-deletion policy [Smyth and 
Keane, 1995]. In this work, the cases in a case base 
are classified into a type hierarchy based on their cover­
age potential and adaptation power. The deletion policy 
then selectively deletes cases from a case base guided 
by the classification of the cases until a l imit on the 
case base size is reached. The algorithm was empiri-
cally shown to preserve the competency of a CBR system 
and to outperform a number of previous deletion based 
strategies. 

In this paper, we present a detailed analysis of Smyth 
and Keane's deletion based policy and show that, this 
policy does not always guarantee the competence pre­
serving property. In particular, we show that using this 
policy can potentially result in a case base with signifi­
cantly decreased performance. In response, we develop 
a different case-base maintenance policy that is based 
on case addition rather than deletion. By this policy, 
cases in an original case base are repeatedly selected and 
added to an empty case base until a certain size l imit is 
reached, producing an updated case base which high cov­
erage guarantee. The addition based policy will allow a 
more global view of the case base as a result of the main­
tenance operations. We show that both the Smyth and 
Keane's deletion-based policies and our addition-based 
policies have the same time complexity. The advantage 
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of the addition-based policy is that we can place a lower 
bound on the competence of the resulting case base while 
the deletion-based policy cannot; we demonstrate that 
the coverage of the computed case base cannot be worse 
than the optimal case base in coverage by a fixed lower 
bound, and often is much closer to the optimal coverage. 

Our result highlights the importance of finding the 
right similarity metrics in order to guarantee the best 
case-base coverage. We contend that it is important to 
tie the definition of similarity-based metrics to adap­
tation costs. Based on this observation, we demon­
strate through case-based planning how to construct 
high-quality similarity metrics that lead to highly com­
petent case bases, and discuss various implications of 
our result in practical implementation of case-base main­
tenance systems. Finally, we confirm our competence-
preserving claims through an experiment in case based 
planning. 

2 Case-Base Maintenance and 
Case-deletion Policies 

2.1 Related Work 
Recently, there has been intense interest in case based 
reasoning research community on the problem of case-
base maintenance. Leake and Wilson gave an in-depth 
summary and analysis of this field (Leake and Wilson, 
1998]. For our purpose, the problem of case-base mainte­
nance is divided into two broad categories: maintaining 
the case base indexes and maintaining the case base con­
tents. In case-base index maintenance, [Cunningham el 
a/., 1997) presents an introspective learning approach to 
learn adjusted case base indexes by monitoring the run­
time processes of a case based reasoner. An extended 
approach is developed in [Zhang and Yang, 1998], where 
a layered architecture is adopted for representing case 
base indexes and a neural network algorithm is adapted 
for maintaining the feature weights. Fox and Leake [Fox 
and Leake, 1995] and Aha and Rreslow [Aha and Bres-
low, 1997] consider case-base index-revision policies that 
improve the performance of a case base in response to 
events such as plan failures. 

Researchers in case-base content maintenance are 
mainly concerned with the issue optimization. Due to 
the large size of some case bases, it is necessary to delete 
cases as time goes by, and when retrieval become increas­
ingly expensive [Smyth and Keane, 1995]. This issue is 
called the swamping problem. The main strategy is that 
of deciding which cases to delete based on an adapta­
tion structure. These strategies include one for random 
deletion as advocated by [Markovich and Scott, 1988], 
and more sophisticated deletion based on the frequency 
with which each case is retrieved and deleted if they 
are not frequently accessed [Minton, 1990]. The prob­
lem with both of these approaches is that "important" 
cases can be deleted by mistake. Various approaches 
have been designed to address this problem. Dornin-
gos [Domingos, 1995] and Aha, Kibler and Albert [Aha 
et a/., 1991] consider instance-based learning approaches 

for generalizing to reduce the size of a case base with­
out decreasing its problem-solving power. Smyth and 
Keane [Smyth and Keane, 1995] consider a competence-
preserving approach to case deletion. Watson [Watson, 
1997] presents methodologies for a human designer of a 
case base to consider for case-base maintenance. Racine 
and Yang [Racine and Yang, 1996] consider the problem 
of removing redundancy and inconsistency from a large 
semi-structured case base in order to improve the case 
base performance. 

2.2 Coverage and Neighborhood Functions 
We define a case as a problem-solution pair. That is, 
each element C of a case base is a pair C = (X, .s), where 

is a corresponding solution to a problem descrip­
tion x. For each problem x1 in a case base X1, x1 can 
represent the case i. 

Hence we also call x1 a case. Let ) be the set of 
cases x2 whose solution is close to ). More 
formally, 

where L is a constant limit on the cost of adapting a so­
lution. Essentially, N defines a coverage of x\. We call 
N(x\) the coverage or neighborhood of x\. Later in the 
paper (Section 6), we define a distance metric d(x1<x2)) 
for case based planning using the number of adaptation 
steps to apply to the solution of x1 in order to solve x2. 
For now, we assume that the neighborhood function is 
given as done by Smyth and Keane [Smyth and Keane, 
1995], and consider how to use this information to com­
pute a near-optimal case base A'i from a given case base 
A'. 

Based on the above notion, the coverage of a case is 
determined by a similarity metric and adaptation costs. 
We can consider the coverage of a case as the neighbor­
hood of the case within certain adaptation limits. Hence, 
we consider the notion of a problem neighborhood and 
coverage interchangeable. Similarity metrics are used to 
measure the similarities between cases. They are usu­
ally numerical, but a good similarity metric is not easy 
to find in many application domains. We therefore in­
troduce the notion of a neighborhood which is a more 
intuitive notion. 

2.3 Analyzing Case Deletion Policy 
When the size of a case base gets large, there1 is a need 
to select a subset of the cases to keep. To address this 
problem, Smyth and Keane [Smyth and Keane, 1995] 
suggest a case deletion based approach. The premise of 
this approach is that each case in the case base should be 
classified according to its competence. These classifica­
tions are made according to two key concepts: coverage 
and reachability. Coverage refers to the set of problems 
that each case can solve. Reachability is the set of cases 
that can be used to provide solutions for a problem. 

Cases that represent unique ways to answer a specific 
query are pivotal cases. Auxiliary cases are those which 
are completely subsumed by other cases in the base. In 
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Figure 1: Case Base Structure Graph 

between these two extremes are the spanning cases which 
link together areas covered by other cases, and support 
cases which exist in groups to support an idea. The dele­
tion algorithm deletes cases in the order of their classi­
fications : auxiliary, support, spanning and then pivotal 
cases [Smyth and Keane, 1995], 

Similarly, the definitions for spanning and support 
cases also rely on the concepts of coverage and reach­
ability. In their evaluation of their algorithm, which 
consisted of 50 cases, Smyth and Keane restrict the size 
of the case base and the size of the problem space and 
manually identify the category in which each case falls. 

The deletion based policy is motivated by the need to 
delete cases in order to maintain the competency of a 
case base at a reasonable size. However, no mention is 
made about why auxiliary cases should be deleted first, 
and how the quality of the resulting case base is ensured 
after the update is done. Pivotal cases may be "impor­
tant" or they may simply contain anomalies that distin­
guish them from the rest of the case base. But deleting 
the rest of the case base first only offers an intuitive solu­
tion to the case-base maintenance problem; there was no 
guarantee on the level of true competence preservation. 

Smyth and Keane's terminologies can be illustrated 
graphically as in Figure 1. In this figure, an arrow 
from a node x to a node y means that the case y is 
in the neighborhood of the case x. Therefore, in Fig­
ure 1, , 
N(b) = {6} and N(c) = {c}. According to Smyth and 
Keane's classification scheme, x is pivotal, y is spanning 
and a, 6, c are auxiliary. 

From these definitions, it is easy to see that piv­
otal problems are the most unique, spanning prob­
lems are less unique, but auxiliary problems are not 
unique. Smyth and Keane's footprint deletion (FD) and 
footprint-utility deletion (FUD) policy delete auxiliary 
problems first, then support problems, then spanning 
problems, finally pivotal problems. This approach is bet­
ter than a random deletion policy for preserving compe­
tence. The competence of a case base built by Smyth 
and Keane's footprint deletion (FD) or footprint-utility 

deletion (FUD) policy is not guaranteed to be preserved. 

Theorem 1 FD and FUD can lose almost all the com­
petence in the worst case. 

Proof: 
To prove this theorem, we only need to give an exam­

ple. Suppose that in some domain, we have the graph 
structure as shown in Figure 1. 

In this figure, each node stands for a problem (or case). 
We see that the problem x is pivotal, y is spanning and 
a.,6,c are auxiliary. Suppose that we want to build a 
case base with only one element; that is, we restrict our 
case base to be of size one. By the footprint deletion or 
footprint-utility deletion policies, cases a,b,c should be 
deleted first, followed by y. As a result, only problem x 
is left in the case base. The coverage is of the origi­
nal competence. If we increase the number of auxiliary 
cases (such as a, b, c in the figure) to k, then the cover­
age is of the original competence. The percentage 
approaches to zero as Therefore, the quality 
of the case base is arbitrarily bad. This completes the 
proof. D 

3 Case-addition Based Policy 
Suppose that the neighborhoods of all cases in a case 
base are obtained. We say a case is good if its neigh­
borhood is large. To select good cases, the distribution 
of the cases or the frequency of cases occurring should 
also be considered. For instance, in an example travel 
domain (Section 6.2), suppose that more people prefer a 
travel plan between City 1 and City 4, then we should 
put this plan in a case base in order to minimize the cost 
of searching for such plans. Taking this into account, we 
define case coverage as follows: 

Given a domain, we have a case space A" and a solu­
tion space Y. Let x X be a case. Denote N(x) the 
neighborhood of x and , N(Xi) 
contains cases which are close to some other cases in X1. 
Suppose that P is a a frequency function of the cases (be­
tween 0 and 100%); equivalently there is a distribution 
of cases. Then the case base coverage of X1 is defined as 

Since X1 is a subset of A', the case coverage is a real 
number between 0 and 1. If the function P does not 
exist, we assume that P = 1 - the constant function. 

The benefit of a case x with respect to a set W 
of cases is defined as Bft(x) = P(y), 
where , The benefit of a case set 
{x1, x2, ••• ,Xk} is defined as P(y)-

Suppose we want to build the case base X\ with at 
most k cases based on a set Z of cases. We formulate 
this optimization problem as follows 

(*) Choose cases from case set Z to 
maximize the benefit of 
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This optimization problem is NP-compete. One can 
easily prove this by a reduction from Set-Covering 
[Garey and Johnson, 1979]. Thus, we look for heuristics 
to find approximate solutions. Consider the following 
case-addition algorithm based on selecting cases from Z 
and adding them to the new case base: 

Case-Addi t ion A lgo r i t hm : 

1. Determine the neighborhood N(x) for every case 

2. Set . 
3. Select a case from Z — X\ with the maximal benefit 

with respect to N{X\) and add it to X\. 
4. Repeat step 3 until N(Z) - N(Xi) is empty or X1 

has k elements. 

Remark. Here we consider the case coverage as the 
benefit. In fact, the benefit can be defined on other 
notions as long as it captures the concept of usefulness. 

The Case-addition Algorithm is a greedy algorithm. 
Therefore it may not give the best choice of X1 with 
respect to the case coverage. However, we can prove 
that its case coverage is at least 63% of the optimal case 
base, for any fixed case-base size k. 
Theorem 2 The case addition algorithm produces a 
case base X1 such that the coverage of X1 is no less 
than 63% of the coverage of an optimal case base. 

The proof for this theorem is derived from that of a 
greedy algorithm for set covering. Due to space lim­
itations, we only provide an intuitive sketch for the 
proof here. Suppose that then 
X\ = {x1 , X2, ■ ■ •, Xk) has k elements and labeled by the 
order of selection. Let a; be the benefit of 
Suppose that {y1, y2, ....., yk} is an optimal choice for X1. 
Let bi, , be the benefit of yi; under the index 
order. Note that . We can then relate 
ai with bj and derive the following inequality: the ration 
of the coverage of and the optimal case 
base coverage for k cases is 

Our result is motivated by a similar result in [Hari-
narayan et a/., 1996] for constructing a data cube used in 
building a data warehouse. The main difference is that 
in CBR case adaptation is our main concern whereas in 
data warehousing the utility of a data view is of great 
importance. 

Analyses of both Smyth and Keane's case-deletion al­
gorithm and our case-addition algorithms reveal that 
they require the same time complexity . This 
is because both algorithms are dominated by computing 
the coverage of cases, hence their costs should be about 
the same. When n is large, computing the competence 

Figure 2: Graph of Coverage 

categories and the coverage of cases becomes expensive. 
However, the key point is it is only computed once as a 
start-up cost. We have developed a practical incremen­
tal case-addition algorithm which will will present in an 
extension of the paper. 

4 Relating Case Base Size with 
Coverage 

We have so far assumed that the case base size k is given. 
Having a different k will result in a case base with a dif­
ferent coverage value. How should a case base maintainer 
choose an appropriate size for a case base? 

In this section we will estimate how a case base size de­
termines its coverage. In our notation, we would like to 
estimate the ratio between . Suppose 
that x1, x2, •.... xn are cases selected by case-addition al­
gorithm with the benefits of a, a2, • • •, an. Then 

and Hence, the ratio is between 
However, this estimation is rather rough. 

Our theorem below points out the precise relationship 
between case-base sizes and case-base coverage: 

Theorem 3 Let M be the size of the original case base 
before applying the case-addition algorithm for mainte­
nance. Let k be the size of the case base after main­
tenance. Suppose that all cases have equal probability 
of appearance; that is, the frequency of all cases are 
the same. Suppose also that when constructing the re­
sult case base the benefits of new cases decrease linearly. 
Then we have 

where R = k/M. 

Again due to space limitations we omit the proof. In­
stead, we plot the coverage curve as shown in Figure 2. 
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Size of CASE Base 

Figure 3: State Graph of a Travel Domain Figure 4: Coverage Graph of a Travel Domain 

From the graph, we see that over 15% of cases can at-
tain about 50% coverage while 50% of cases can attain 
about 85% coverage. In general, things are better. We 
have used the linear approximation to draw the coverage 
graph. In general, the difference (ak + 1 — ak) decreases 
quickly as k increases. Hence, we can have a better 
model via replacing , 
where h is an integer > 1. The resulting graph of cov­
erage is similar, but the desired coverage can be reached 
much sooner. 

5 Experiments with the Case-Addition 
Algorithms 

To fully validate our case-addition algorithm, we need 
to perform empirical tests in various domains. In the 
remaining of this paper, we present one such experiment 
in a travel planning domain. In this domain, a problem 
x can be considered a pair of states: x = (.si,.sy), where 
st is an initial state and sg a goal state. A case is a 
pair (x,p), where x is a problem definition and p a plan. 
We consider a plan as a sequence of actions taking one 
from the initial state to the goal state. There are many 
ways to define planning algorithms for finding a plan 
[Kambhampati et al, 1995; Yang, 1997]; here we focus 
on how to reuse the previous plans. 

In planning various similarity metrics have been pro-
posed for determining the distances between two plans 
Hammond, 1990; Hanks and Weld, 1995]. For ex­

ample, the foot-printed similarity metric [Veloso, 1992; 
1994] compares relevant features of a case with features 
of a new problem where a relevant feature is considered 
relevant to a goal and a solution if the feature contributes 
to achieving the goal in the solution. rao:cbp97 presents 
a mechanism for adding plans to a plan library in or­
der to l imit the size of the case base. The adaptation -
guided metric [Kinley ct al, 1995] exploits the adapta­
tion knowledge of a case base. 

In our example travel domain, as shown in Figure 3, 
there is a map in which an agent will travel between two 
cities. The agent would like to remember a few useful 
paths so that a case base can be constructed. In order 

to do this, it is assumed that a neighborhood function is 
defined based on adaptation as follows: Let a case x be a 
problem together with a solution soln, where 
and soln - . Here s\ = -s, and 
Sk = s g . Then the neighborhood N(x) of problem x 
is defined as the neighborhood of the solution. More 
precisely, 

( i ) 

where the neighborhood of a state N(SJ) is defined as 
the set of states (that is, cities) that are one step from 
Sj. We call this neighborhood function the "state-based" 
similarity measurement for planning. 

In our experiment, an input problem is defined as any 
pair of cities, and the solution, which is a case, is a path 
going from an init ial city to a destination city. 

The state can be moved horizontally or along the main 
diagonal lines. The number of states = 100. The prob­
lem space has 100" = 10000 problems. Randomly se­
lect 80 problems from the problem space and solve these 
problems from scratch by a forward chaining and breath-
first planner. By computing the neighbors of these prob­
lems, we see that the union of all these neighbors covers 
3138 problems. Applying the case-addition algorithm, 
we get the result which is shown in Figure 4. 

6 Conclusions and Discussion 
We conclude that it is important: to tie similarity met­
rics with adaptation costs. Based on this concept, we 
have given an approximation algorithm for building a 
case base with near-optimal property. We attribute this 
property to the fact, that we use a case-addition rather 
than a case-deletion policy as done by Smyth and Keane. 
In the future, we will study how to maintain a case base 
in order to increase the quality of cases in addition to 
increasing the case bsae coverage. 
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