
On the Relationship between Probabilistic Logic and CMS 
P . H A N S E N 

GERAD and Dept. Methodes Quantitatives de Gestion 
Ecole des Hautes Etudes Commercials 

pierreh @crt.umontreal.ca 

Abstract 
We discuss the relationship between probabilis­
tic logic and CMS. Given a set of logical sen­
tences and their probabilities of being true, the 
outcome of a probabilistic logic system con­
sists of lower and upper bounds on the prob­
ability of an additional sentence to be true. 
These bounds are computed using a linear pro­
gramming formulation. In -CMS systems, the 
outcome is defined by the probabilities of the 
support and the plausibility (with the assump­
tions being independent) after a first phase 
which consists of computing the prime impli-
cants depending only on the variables of the 
assumptions. We propose to reformulate a 
CMS system without independence conditions 
on the assumptions, using the linear program­
ming framework of probabilistic logic, and show 
how to exploit its particular structure to solve 
it efficiently. When an independence condition 
is imposed on the assumptions the two systems 
give different results. Comparisons are made on 
small problems using the assumption-based ev­
idential language program (ABEL) of [Anrig et 
a/., 1998] and the PSAT program of [Jaumard 
et a/., 1991]. 

1 Introduction 
Many different models have been proposed for reasoning 
under uncertainty in expert systems. Among those based 
on the use of logic and probability theory which require a 
moderate amount of input data, two important families 
are the probabilistic Clause Maintenance Systems (TT-
CMS) [Reiter and de Kleer, 1987; deKleer and Williams, 
1987], and the probabilistic logic models (Nilsson, 1986; 
Jaumard et ol., 1991; Hansen et a/., 1995]. While these 
families have been developed separately, they have much 
in common, with however the difference that models of 
the former family usually suppose independence of their 
assumptions, while those of the latter do not. In this 

paper, we explore -CMS systems, with and without in­
dependence of the assumptions, from the probabilistic 
logic viewpoint. The main results are the following: (i) 
when relaxing the independence condition, two formula­
tions can be proposed for -CMS systems; (ii) the sec­
ond formulation suggests an algorithm which exploits the 
particular structure of -CMS and is, on large instances, 
7000 times faster than the column generation algorithm 
for probabilistic logic of (Jaumard et a/., 1991] applied 
to the first formulation; (iii) with the independence con­
dition, probability intervals of an additional proposition 
obtained by CMS may overlap with those of the corre­
sponding probabilistic logic model, which suggests that 

CMS systems do not exploit the available information 
to its fullest degree. 

The paper is organized as follows: probabilistic logic 
models and CMS systems are briefly reviewed in the 
next two sections. The two probabilistic logic models for 

CMS systems are presented in Section 4. Algorithms 
are discussed in Section 5 and computational results in 
Section 6. Brief conclusions are drawn in the last section. 

2 Probabilistic Logic 
Nilsson [Nilsson, 1986] has presented a semantical gen­
eralization of propositional logic in which the truth val­
ues of sentences are probability values (probabilistic logic, 
also called probabilistic satisfiability or PSAT for short). 

Let X denote a set of propositional 
variables and S a set of propositional 
sentences over X defined with the usual operators (dis­
junction), (conjunction), and -. (negation). A literal 

is a propositional variable or its negation 
Propositional sentences are assumed to be 

written using a DNF (Disjunctive Normal Form) expres­
sion in this paragraph. 

Let be a valuation for 5, where 
is equal to 1 if has value true, and to 0 otherwise, 
is a possible world if there exists a truth assignment over 
X which leads to w over S and it is an impossible world 
otherwise. Observe that two different truth assignments 
on X may lead to the same possible world. Let W denote 
the set of possible worlds and set to | W\ (note that 
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denotes the probability of sentence 
The probability distribution p is consistent if it satis* 

fies the set of logical sentences together with their prob­
abilities, i.e., if for each sentence the sum of 's over 
all truth assignment that satisfy 
equals 

For a given set S of sentences, let be an 
matrix such that is equal to 1 if is true for , 
and equal to 0 otherwise. This leads to the following 
linear programming formulation of the PSAT problem 
(in decision form): 

( i ) 

where 1 is a unit row vector. The problem PSAT thus 
reduces to determining whether there exists or not a vec­
tor p satisfying (1). Observe that (PSAT) is completely 
determined by the pair 

Let us assume that the PSAT problem defined by (1) 
is consistent. Let Sm+1 denote an additional logical sen­
tence, with an unknown probability The opti­
mization form of PSAT (also known as probabilistic en-
tailmenty see [Nilsson, 1986]), is to determine the range 

2.1 Numer i ca l so lu t ion o f P S A T 
The linear program which expresses the PSAT problem 
in its decision or optimization form has an exponential 
number of variables in the size of the input; for this 
reason, in the sequel we will speak of Generalized Linear 
Programming (GLP for short) formulation. So writing 
explicitly PSAT already requires exponential time. This 
led Nilsson [Nilsson, 1986] to suggest looking for heuristic 
solution methods only. 

Such a view is overly pessimistic since, although writ­
ing large PSAT problems explicitly is impossible, they 
can be solved quite efficiently by keeping them implicit. 
This can be done using the so-called column generation 
technique [Lasdon, 1970]. It extends the revised simplex 
method, in which only a small number of columns are 
kept explicitly. This technique makes use of a master 
problem which implies an objective and constraints re­
lated to the probabilities of the possible worlds, and a 
subproblem which determines the entering column for 

the master problem. This last subproblem depends on 
the structure of the original problem and has quite often 
a combinatorial nature. For more details see [Jaumard 
et al.y 1991]. 

3 CMS and CMS models 
The Assumption-based Truth Maintenance Systems (or 
ATMS for short) [de Kleer, 1986] and later the CMS 
(Clause Maintenance Systems) [Reiter and de Kleer, 
1987] can be viewed as symbolic algebra systems for 
producing a set of statements (Boolean expressions) in 
which one can believe. A brief description of the CMS 
is given below; details can be found in [Reiter and de 
Kleer, 1987]. 

Given a set of propositional variables X, a CMS con­
sists of a set of assumptions sup­
posed to be such that A X and a set of proposi­
tional sentences H (also called justifi­
cations, see [de Kleer, 1986J) such that the are clauses. 
Propositional sentences are assumed to be written using 
a CNF (Conjunctive Normal Form) expression in this 
paragraph. Therefore, a clause is a finite disjunction of 
literals with no literal repeated, also represented as a set 
of literals. 

support for with respect to H iff no proper subset of 
is a support for with respect to H. The CMS 

is a database management system which, given a set H 
of propositional sentences computes a minimal support 
clause, for a clause summarizes a list of 
sets of nonredundant assumptions (in terms of a Boolean 
formula), each of which is sufficient to support a proof of 

The for a clause is related with a prime impli-
cant for H. This relationship is given as follows [Reiter 
and de Kleer, 1987]: is a minimal support clause 
for with respect to H iff there is a prime implicant 
for H such that and Conversely, 
if is a prime implicant for H such that then 
is a minimal support clause for with respect to H. 

3.1 C M S A lgo r i t hms 
The prime implicants can be used to implement CMSs 
[Reiter and de Kleer, 1987]. The prime implicants of 
a set of clauses can be computed by repeatedly resolv­
ing pairs of clauses, adding the resulting resolvents to 
the set and removing subsumed clauses. This method 
is known to be a brute-force approach and performs far 
more resolution steps than necessary. The running time 
of this algorithm depends on the number and expense 
of the subsumption checks required. De Kleer [de Kleer, 
1992] describes an improved algorithm for generating the 
prime implicants of a set of clauses. 

3.2 A d d i n g Numer i ca l Uncer ta in t ies 
From a logical viewpoint, the that the ATMS/CMS 
attaches to a clause yield only three possible truth val­
ues for believed, disbelieved, and unknown. This 
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three-value logic cannot rate the degree of imcertainty 
associated with unknown clauses, and thus may lead to 
a stalemate whenever a decision is to be made whose 
outcome depends critically on the truth of these proposi­
tions. For this and others reasons, several attempts have 
been made to augment ATMS/CMS with a numerical 
measure of uncertainty. Several authors use probability 
theory to deal with uncertainty associated with assump­
tions for ATMS (De Kleer and Williams [de Kleer and 
Williams, 1987] and Liu et al. [Liu a/., 1993]) or CMS 
(Kohlas et al. [Kohlas and Haenni, 1996]). In all ex­
tensions the probabilities assigned to assumptions must 
be independent (see [Hansen et al., 1999] for details) in 
order to calculate the degree of belief. 

The quantitative judgment of belief can be measured 
by the degree of support and plausibility. The degree 
of support of h (dsp for short) is the probability of ar­
guments in favor of it. Similarly, the degree of 
plausibility (dpl for short) of is 1 minus the probabil­
ity of arguments against it. 

As next shown, CMS without independence condi­
tion can be reformulated using the linear programming 
expression of the PSAT problem. 

4 Using PSAT Linear Programming 
expression to reformulate a CMS 
model 

Consider the PSAT problem defined as follows: 
S = A H where and 

where is a probability 
m-vector associated with the set A of assumptions and 1 
is a unit r-vector (all the probabilities are equal to 1 for 
the set H of clauses). Note that with 

The clause h with unknown probability is associated 
with . Denote by Y the set of literals of 
clause 

First Formulation (F1) 
The CMS problem can be expressed using the GLP 
formulation of the PSAT problem; 
Master problem: 

min/max (2) 
subject to: 

(3) 
(4) 
(5) 
(6) 

Subproblem: 

min/max (7) 

where and are the dual variables associated 
with the constraints (3)-(5), respectively. 

This reformulation results in a PSAT problem with a 
subproblem corresponding to an unconstrained nonlin­
ear program in 0-1 variables. 

Note that the set of prepositional sentences of if has 
a specific structure, in that its probabilities are all equal 
to 1, i.e, these propositiona! sentences are always true. 
Exploring this structure leads to a second formulation. 

Second Formulation (Fa) 
There is a natural partitioning of the constraints of the 
GLP defined by formulation F1 Observe that satisfying 
the constraint (5) is equivalent to satisfying the equation: 

i.e., to solving a satisfiability problem (SAT). 
Hence, constraints (5) can be transferred to the sub-

problem, which then leads to consider in the master 
problem only the solutions of (5) which satisfy (3), (4), 
(6) and minimize or maximize (2). 

We thus obtain the following GLP reformulation. 
Master problem: 

Subproblem: 

min/max 
subject to: 

(12) 

The subproblem is now a linear program in the 2n 0-1 
variables (as the are either variables 
with linear constraints. 

Each column of (10) corresponds to a possible world 
or equivalently a subset of assumptions with 

true/false values, which may imply imply 
or neither. In the first two cases there is one correspond­
ing column in (8)-(l l), and in the latter two. When 
minimizing columns which have 1 
will have probability 0 if there are twin columns with 

will correspond to the sum of 
probabilities of those clauses which imply i.e., 
to the degree of support of When maximizing 

columns which have 0 will have prob­
abilities 0 if there are twin columns with = 1. 
So will correspond to 1 minus the sum of proba­
bilities of those clauses which imply i.e., to the 
degree of plausibility of 

5 Solution Method 
The method is an iterative one (in fact, the revised sim­
plex algorithm [Chvatal, 1983]) where at each iteration, 
we determine the column with the minimum (maximum) 
reduced cost by solving (7) in the case of ie, 
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where the u0 and ui are the current dual variables asso­
ciated with the tautology So and with the propositional 
sentences respectively. By associating 
the logical values true with 1 and false with 0 in each 
logical proposition, one can rewrite (13) as: 

This optimization problem can be reformulated using 
arithmetic expressions of the propositional variables of 
X. This can easily be done with the convention 1 = true 
and 0 = false and the relations 

where the left-
hand side variables are logical ones, and the right-hand 
side variables are integer ones. The choice of the enter­
ing column is thus reduced to a problem of minimizing 
(maximizing) an unconstrained nonlinear function in 0-1 
variables (PNL-0/1). In formulation F2 the subproblem 
is a constrained linear program in 0-1 variables (CPL-
0/1). 

5.1 Basic A l g o r i t h m 
We assume that the optimization problem is a minimiza­
tion one. Algorithm 1 provides a description of the col­
umn generation method for Formulation F\ or F2. 

Phase-1 is not detailed as it proceeds in a similar way 
than Phase-2, i.e., through STEP 3 to STEP 7. 

5.2 S o l u t i o n o f t h e Subp rob lems 
Again assume that the optimization problem is a mini­
mization one. At each iteration a column with a negative 
reduced cost must be found by a heuristic or an exact al­
gorithm. Exact solution of the subproblem is not neces­
sary at each iteration to guarantee convergence. As long 
as a negative reduced cost is found by the heuristic an 
iteration of the revised simplex algorithm may be done. 
If a feasible solution is obtained in that way, the decision 
version of the satisfiability problem is solved, but finding 
none when choosing the entering column in a heuristic 
way cannot guarantee that none exists. So, when no 
more negative reduced cost is obtained by the heuristic 
it is necessary to turn to an exact algorithm to prove 
that there is no feasible solution for the decision version 
of PSAT, nor feasible solution giving a better bound 
than the incumbent one for the optimization version. 
We use a Steepest Ascent Mildest Descent (SAMD) or 
Tabu Search (TS) heuristic ((Hansen and Jaumard, 1990; 
Glover and Laguna, 1997]) for PNL-0/1, and a variant 
of Tabu Search for CPL-0/1 with constraints to find an 
approximately optimal solution. We also use a method 
based on linearization for PNL-0/1, and branch-and-
bound for CPL-0/1, to find an exact optimal solution. 

A lgo r i t hm 1 Column Generation Method 
STEP 1. Using phase-l of the simplex algorithm 

(see, e.g. [Chvatal, 1983] for details), build 
an initial matrix associated with a fea­
sible solution. 

STEP 2. If there is no such matrix Bo then the prob­
lem is inconsistent: Stop. 

STEP 3. Solve the master problem to compute the 
dual variables (phase-2 of the simplex al­
gorithm). 

STEP 4. Solve the subproblem to compute a col­
umn with negative reduced cost ct using a 
heuristic; 

STEP 5. If then add the corresponding col­
umn to the master problem, reoptimize it, 
and go to STEP 3. 

STEP 6. Solve the subproblem to compute the col­
umn with the most negative reduced cost 
using an exact algorithm. 

STEP 7. If then add the corresponding col­
umn to the master problem, reoptimize it, 
and go to STEP 3. 

STEP 8. Stop: the optimal solution has been 
reached. 

P N L - 0 / 1 w i thout constraints 
The Tabu Search (TS) heuristic proceeds to a local op­
timum by moving at each iteration from one feasible so­
lution to another in its neighborhood (here the vectors 
at Hamming distance 1 from the current one). We then 
pick the solution in the neighborhood that produces the 
best improvement in the objective function. If there is 
no improving solution (a local optimum was reached as­
suming we use aspiration, see page 50 in [Glover and 
Laguna, 1997]) then we choose that one which degrades 
the objective function least. In order to avoid return­
ing to the local optimum just visited, or cycling, the re­
verse move is forbidden for a given number of iterations 
(SizeMaxTabu). 

The steps of TS are presented in Algorithm 2. The pa­
rameters denote the remaining number of iterations 
during which a local change in direction is forbidden. 
When a change in an ascent direction is done is set 
at the value tabu. That value is chosen by random selec­
tion among integers in the range (1, SizeMaxTabu]. The 
stopping condition may be, e.g., maximum computing 
time allowed, maximum number of iterations, or maxi­
mum number of iterations between two improvements. 

The linearization method works by replacing in a stan­
dard way each product of variables by a new 0-1 variable 
and adding constraints to ensure that the values agree 
in 0-1 variables. 

The size of the resulting linear 0-1 variables increases 
rapidly with and the number of nonzero dual vari­
ables 
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CPL-0 /1 w i t h constraints 
Heuristic solution of CPL-0/1 is again done by a SAMD 
or TS algorithm. The idea behind this algorithm is to 
allow infeasibility. However it must be limited, therefore 
for each sequence of iterations a move is allowed only if 
the resulting number of unsatisfied clauses (or violated 
constraints) is smaller than a given threshold UnsatMax. 
After a number of iterations we verify if the current so­
lution is feasible. In the affirmative we reduce the value 
of UnsatMax by and another sequence of iterations is 
performed. In the negative the value of UnsatMax is in­
creased by a, we apply a transformation to get a feasible 
solution and another sequence of iterations is performed. 
The overall algorithm has a maximum number of REP 
iterations. Steps of the TS-Constrained heuristic are pre­
sented on Algorithm 3. 

The constrained linear 0-1 program (12) has the form 
of a combiped set covering and set partitioning problem. 
Exact solution is based on the algorithm of [Fisher and 
Kedia, 1990]. The main feature of this algorithm is the 
use of dual variables in the linear programming relax­
ation to provide lower bounds for a branch-and-bound 
algorithm. 

6 Computat ional Experiments 
The algorithms for CMS/PSAT described in the pre­
vious sections have been coded in C and tested on a 
Ultra-2 SUN SPARC computer. The resulting program 
uses the CPLEX 6.0 package for linear programming. 
The problems for CMS/PSAT were randomly gener­
ated in the following way: (i) the numbers of assump­
tions, of justifications, which here are clauses, of 
variables (assumptions and propositional symbols) are 
parameters; (ii) the clauses contain at most 4 literals. 
There is an uniform distribution of clauses with 1, 2, 3 
and 4 literals as well as of uncomplemented and comple­
mented variables. Probabilities (A) corresponding to 
feasible problems were obtained by generating randomly 

max(210;2n) Boolean vectors constructing the corre­
sponding possible worlds, associating with them positive 
numbers summing up to 1 (i.e., probabilities for these 
worlds to occur), and then summing for each clause the 
probabilities of the worlds in which it is true. 

Results of the comparison between the two 
CMS/PSAT models are given in Table 1 and 2, which 
detail problem sizes, total cpu time, number of columns 
generated, cpu time for the tabu search and the exact 
algorithms for the subproblems. Each line corresponds 
to averages over five problems. Note than the number of 
propositions in the first formulation is equal to the 
number of assumptions (propositions in the master prob­
lem) plus the number of justifications (considered only 
in the subprobiems) in the second formulation. Clearly 
the second formulation is by far superior to the first one: 
computation times for the larger instances are 7000 times 
smaller. 

If an independence condition is imposed on the as­
sumptions, only much smaller instances of CMS are 
solvable in reasonable time. If columns corresponding 
to feasible worlds are considered explicitly, each has a 
positive probability and their number increases exponen­
tially. This contrast with the linear programming model 
of PSAT, where the number of columns with positive 
probability in a basic, and hence in an optimal, solution 
is at most equal to the number of lines. Using Boolean 
simplifications we may reduce somewhat the computa­
tional burden but it often remains too high to solve large 
instances. 

Intervals for CMS/PSAT and 
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STEP 2. Transform x into the solution xi modified 

where changes are forbidden. Choose a 
stopping condition. 

STEP 4. If the stopping condition is met then 
STOP. 
Otherwise, update T and return to STEP 2. 

80 



Table 1: Formulation-1 

Table 2: Formulation-2 

[dap, dpi) for -CMS with independence condition 
(obtained with the ABEL program [Anrig et al, 1998]) 
are given in Table 3. It appears that in some cases the 
intervals of CMS with the independence conditions 
overlap in part with those of CMS/PSAT instead of 
being included in them, as one would have expected. 
This indicates -CMS does not exploit the available 
information to its fullest degree. Reasons why this is so 
will be explored in future work. 

Table 3: Comparison of bounds 

7 Conclusions 
-CMS systems can be expressed in two ways as a PSAT 

problem, when the independence condition on the as­
sumptions is removed. Then the lower and upper bounds 
on the probability of the additional propositional sen­
tence coincide with its support and plausibility. The 
second formulation, which keeps the justifications im­
plicit (or transfer them to the subproblem when using 
column generation as solution method), is much more 
efficient than the first, direct one. If the independence 
condition is kept in -CMS, solution becomes more cum­
bersome and probability intervals for the objective func­
tion clause provided by both methods may overlap. 

Acknowledgments 
Research of the authors was supported by DREV-
Valcartier contract. Work of the first and second au­
thors was supported by FCAR grants 92-EQ-1048 and 
95-ER-1048. Work of the first has also been sup­
ported by NSERC grant to HEC and NSERC grant 

GP0105574. Work of the second author was also sup­
ported by NSERC grants GP0036426 and EQP0157431. 
Work of the third author has also been supported by 
CNPq (Conselho Nacional de Desevolvimento Cientifico 
e TecnoWgico), Brazil, grant 200722/95-6. 

References 
[Anrig et al, 1998] Bernhard Anrig, Roman Bissig, Itolf 

Haenni, Jurg Kohlas, and Nobert Lehmann. Prob­
abilistic Argumentation Systems: Introduction to 
Assumption-Based Modeling using ABEL. Techni­
cal report, Institute of Informatics, University of Fri-
bourg, September 1998. 

[Chvdtal, 1983] Vasek Chvatal. Linear Programming. 
Freeman, New York, NY, 1983. 

[de Kleer and Williams, 1987] Johan de Kleer and Brian 
C. Williams. Diagnosing Multiple Faults. Artificial 
Intelligence, 32(1):97-130,1987. 

[de Kleer, 1986] Johan de Kleer. An Assumption-based 
TMS. Artificial Intelligence, 28:127-162, 1986. 

[de Kleer, 1992] Johan de Kleer. An Improved Incre­
mental Algorithm for Generating Prime Implicates. 
In Proc. of the 10th Nat. Conf. on Artificial Intelli­
gence, pages 780-785, San Jose, California, July 1992. 
AAAI. 

[Fisher and Kedia, 1990] Marchall L. Fisher and 
Pradeep Kedia. Optimal Solution of Set Cover­
ing/Partitioning Problems Using Dual Heuristics. 
Management Science, 36(6):674-688, June 1990. 

[Glover and Laguna, 1997] Fred Glover and Manuel La-
guna. Tabu Search. Kluwer, 1997. 

[Hansen and Jaumard, 1990] Pierre Hansen and 
Brigitte Jaumard. Algorithms for the Maximum 
Satisfiability Problem. Computing, 44:279-303,1990. 

[Hansen et al., 1995] Pierre Hansen, Brigitte Jaumard, 
and Marcus V. Poggi de Aragao. Boole's Conditions 

HANSEN, JAUMARD, AND PARREIRA 61 



[Hansen et al., 19991 Pierre Hansen, Brigitte Jaumard, 
Anderson D. Parreira, and Marcus V. Poggi 
de Aragao. Difficulties of Conditioning and Con­
ditional Independence in Probabilistic Satisfiabil­
ity. Technical Report G-99-16, Cahiers du GERAD, 
February 1999. 

[Jaumard et al, 1991] Brigitte Jaumard, Pierre Hansen, 
and Marcus V. Poggi de Aragao. Column Generation 
Methods for Probabilistic Logic. ORSA Journal on 
Computing, 3:135-148,1991. 

[Kohlas and Haenni, 1996] Jurg Kohlas and Rolf 
Haenni. Assumption-based Reasoning and Proba­
bilistic Argumentation Systems. In J. Kohlas and S. 
Moral, editors, Defeasible Reasoning and Uncertainty 
Management Systems: Algorithms. Oxford University 
Press, 1996. 

[Lasdon, 1970] Leon S. Lasdon. Optimization Theory for 
Large Systems, MacMillan, New York, 1970. 

[Liu et ai, 1993] Weiru Liu, Alan Bundy, and Dave 
Robertson. On the Relations between Incidence Cal­
culus and ATMS. In Symbolic and Quantitative Ap­
proaches to Reasoning and Uncertainty (Granada, 
1993), pages 249-256, Springer-Verlag, Berlin, 1993. 

[Nilsson, 1986] Nils J. Nilsson. Probabilistic Logic. Ar­
tificial Intelligence, 28:71-87, 1986. 

[Reiter and de Kleer, 1987] Raymond Reiter and Jo-
han de Kleer. Foundations of Assumption-Based 
Truth Maintenance Systems: Preliminary Report. In 
Proc. of the 6th Nat. Conf. on Artificial Intelligence, 
volume 1, pages 183-188, Seatle, Washington, July 
1987. 

62 AUTOMATED REASONING 

of Possible Experience and Reasoning Under Uncer­
tainty. Discrete Applied Mathematics, 60:181-193, 
1995. 


