
On the Relationship between Probabilistic Logic and CMS
P . H A N S E N

GERAD and Dept. Methodes Quantitatives de Gestion
Ecole des Hautes Etudes Commercials

pierreh @crt.umontreal.ca

Abstract
We discuss the relationship between probabilis­
tic logic and CMS. Given a set of logical sen­
tences and their probabilities of being true, the
outcome of a probabilistic logic system con­
sists of lower and upper bounds on the prob­
ability of an additional sentence to be true.
These bounds are computed using a linear pro­
gramming formulation. In -CMS systems, the
outcome is defined by the probabilities of the
support and the plausibility (with the assump­
tions being independent) after a first phase
which consists of computing the prime impli-
cants depending only on the variables of the
assumptions. We propose to reformulate a
CMS system without independence conditions
on the assumptions, using the linear program­
ming framework of probabilistic logic, and show
how to exploit its particular structure to solve
it efficiently. When an independence condition
is imposed on the assumptions the two systems
give different results. Comparisons are made on
small problems using the assumption-based ev­
idential language program (ABEL) of [Anrig et
a/., 1998] and the PSAT program of [Jaumard
et a/., 1991].

1 Introduction
Many different models have been proposed for reasoning
under uncertainty in expert systems. Among those based
on the use of logic and probability theory which require a
moderate amount of input data, two important families
are the probabilistic Clause Maintenance Systems (TT-
CMS) [Reiter and de Kleer, 1987; deKleer and Williams,
1987], and the probabilistic logic models (Nilsson, 1986;
Jaumard et ol., 1991; Hansen et a/., 1995]. While these
families have been developed separately, they have much
in common, with however the difference that models of
the former family usually suppose independence of their
assumptions, while those of the latter do not. In this

paper, we explore -CMS systems, with and without in­
dependence of the assumptions, from the probabilistic
logic viewpoint. The main results are the following: (i)
when relaxing the independence condition, two formula­
tions can be proposed for -CMS systems; (ii) the sec­
ond formulation suggests an algorithm which exploits the
particular structure of -CMS and is, on large instances,
7000 times faster than the column generation algorithm
for probabilistic logic of (Jaumard et a/., 1991] applied
to the first formulation; (iii) with the independence con­
dition, probability intervals of an additional proposition
obtained by CMS may overlap with those of the corre­
sponding probabilistic logic model, which suggests that

CMS systems do not exploit the available information
to its fullest degree.

The paper is organized as follows: probabilistic logic
models and CMS systems are briefly reviewed in the
next two sections. The two probabilistic logic models for

CMS systems are presented in Section 4. Algorithms
are discussed in Section 5 and computational results in
Section 6. Brief conclusions are drawn in the last section.

2 Probabilistic Logic
Nilsson [Nilsson, 1986] has presented a semantical gen­
eralization of propositional logic in which the truth val­
ues of sentences are probability values (probabilistic logic,
also called probabilistic satisfiability or PSAT for short).

Let X denote a set of propositional
variables and S a set of propositional
sentences over X defined with the usual operators (dis­
junction), (conjunction), and -. (negation). A literal

is a propositional variable or its negation
Propositional sentences are assumed to be

written using a DNF (Disjunctive Normal Form) expres­
sion in this paragraph.

Let be a valuation for 5, where
is equal to 1 if has value true, and to 0 otherwise,
is a possible world if there exists a truth assignment over
X which leads to w over S and it is an impossible world
otherwise. Observe that two different truth assignments
on X may lead to the same possible world. Let W denote
the set of possible worlds and set to | W\ (note that

AUTOMATED REASONING

B. JAUMARD
GERAD and Dept. Math, and hid. Eng.

Ecole Polytechnique de Montreal
brigittOcrt.umontreal.ca

A. D. PARHEIRA
Dept. Math, and Ind. Eng.

Ecole Polytechnique de Montreal
anderson@crt.umontreal.ca

mailto:anderson@crt.umontreal.ca

denotes the probability of sentence
The probability distribution p is consistent if it satis*

fies the set of logical sentences together with their prob­
abilities, i.e., if for each sentence the sum of 's over
all truth assignment that satisfy
equals

For a given set S of sentences, let be an
matrix such that is equal to 1 if is true for ,
and equal to 0 otherwise. This leads to the following
linear programming formulation of the PSAT problem
(in decision form):

(i)

where 1 is a unit row vector. The problem PSAT thus
reduces to determining whether there exists or not a vec­
tor p satisfying (1). Observe that (PSAT) is completely
determined by the pair

Let us assume that the PSAT problem defined by (1)
is consistent. Let Sm+1 denote an additional logical sen­
tence, with an unknown probability The opti­
mization form of PSAT (also known as probabilistic en-
tailmenty see [Nilsson, 1986]), is to determine the range

2.1 Numer i ca l so lu t ion o f P S A T
The linear program which expresses the PSAT problem
in its decision or optimization form has an exponential
number of variables in the size of the input; for this
reason, in the sequel we will speak of Generalized Linear
Programming (GLP for short) formulation. So writing
explicitly PSAT already requires exponential time. This
led Nilsson [Nilsson, 1986] to suggest looking for heuristic
solution methods only.

Such a view is overly pessimistic since, although writ­
ing large PSAT problems explicitly is impossible, they
can be solved quite efficiently by keeping them implicit.
This can be done using the so-called column generation
technique [Lasdon, 1970]. It extends the revised simplex
method, in which only a small number of columns are
kept explicitly. This technique makes use of a master
problem which implies an objective and constraints re­
lated to the probabilities of the possible worlds, and a
subproblem which determines the entering column for

the master problem. This last subproblem depends on
the structure of the original problem and has quite often
a combinatorial nature. For more details see [Jaumard
et al.y 1991].

3 CMS and CMS models
The Assumption-based Truth Maintenance Systems (or
ATMS for short) [de Kleer, 1986] and later the CMS
(Clause Maintenance Systems) [Reiter and de Kleer,
1987] can be viewed as symbolic algebra systems for
producing a set of statements (Boolean expressions) in
which one can believe. A brief description of the CMS
is given below; details can be found in [Reiter and de
Kleer, 1987].

Given a set of propositional variables X, a CMS con­
sists of a set of assumptions sup­
posed to be such that A X and a set of proposi­
tional sentences H (also called justifi­
cations, see [de Kleer, 1986J) such that the are clauses.
Propositional sentences are assumed to be written using
a CNF (Conjunctive Normal Form) expression in this
paragraph. Therefore, a clause is a finite disjunction of
literals with no literal repeated, also represented as a set
of literals.

support for with respect to H iff no proper subset of
is a support for with respect to H. The CMS

is a database management system which, given a set H
of propositional sentences computes a minimal support
clause, for a clause summarizes a list of
sets of nonredundant assumptions (in terms of a Boolean
formula), each of which is sufficient to support a proof of

The for a clause is related with a prime impli-
cant for H. This relationship is given as follows [Reiter
and de Kleer, 1987]: is a minimal support clause
for with respect to H iff there is a prime implicant
for H such that and Conversely,
if is a prime implicant for H such that then
is a minimal support clause for with respect to H.

3.1 C M S A lgo r i t hms
The prime implicants can be used to implement CMSs
[Reiter and de Kleer, 1987]. The prime implicants of
a set of clauses can be computed by repeatedly resolv­
ing pairs of clauses, adding the resulting resolvents to
the set and removing subsumed clauses. This method
is known to be a brute-force approach and performs far
more resolution steps than necessary. The running time
of this algorithm depends on the number and expense
of the subsumption checks required. De Kleer [de Kleer,
1992] describes an improved algorithm for generating the
prime implicants of a set of clauses.

3.2 A d d i n g Numer i ca l Uncer ta in t ies
From a logical viewpoint, the that the ATMS/CMS
attaches to a clause yield only three possible truth val­
ues for believed, disbelieved, and unknown. This

HANSEN. JAUMARD, AND PARREIRA 57

three-value logic cannot rate the degree of imcertainty
associated with unknown clauses, and thus may lead to
a stalemate whenever a decision is to be made whose
outcome depends critically on the truth of these proposi­
tions. For this and others reasons, several attempts have
been made to augment ATMS/CMS with a numerical
measure of uncertainty. Several authors use probability
theory to deal with uncertainty associated with assump­
tions for ATMS (De Kleer and Williams [de Kleer and
Williams, 1987] and Liu et al. [Liu a/., 1993]) or CMS
(Kohlas et al. [Kohlas and Haenni, 1996]). In all ex­
tensions the probabilities assigned to assumptions must
be independent (see [Hansen et al., 1999] for details) in
order to calculate the degree of belief.

The quantitative judgment of belief can be measured
by the degree of support and plausibility. The degree
of support of h (dsp for short) is the probability of ar­
guments in favor of it. Similarly, the degree of
plausibility (dpl for short) of is 1 minus the probabil­
ity of arguments against it.

As next shown, CMS without independence condi­
tion can be reformulated using the linear programming
expression of the PSAT problem.

4 Using PSAT Linear Programming
expression to reformulate a CMS
model

Consider the PSAT problem defined as follows:
S = A H where and

where is a probability
m-vector associated with the set A of assumptions and 1
is a unit r-vector (all the probabilities are equal to 1 for
the set H of clauses). Note that with

The clause h with unknown probability is associated
with . Denote by Y the set of literals of
clause

First Formulation (F1)
The CMS problem can be expressed using the GLP
formulation of the PSAT problem;
Master problem:

min/max (2)
subject to:

(3)
(4)
(5)
(6)

Subproblem:

min/max (7)

where and are the dual variables associated
with the constraints (3)-(5), respectively.

This reformulation results in a PSAT problem with a
subproblem corresponding to an unconstrained nonlin­
ear program in 0-1 variables.

Note that the set of prepositional sentences of if has
a specific structure, in that its probabilities are all equal
to 1, i.e, these propositiona! sentences are always true.
Exploring this structure leads to a second formulation.

Second Formulation (Fa)
There is a natural partitioning of the constraints of the
GLP defined by formulation F1 Observe that satisfying
the constraint (5) is equivalent to satisfying the equation:

i.e., to solving a satisfiability problem (SAT).
Hence, constraints (5) can be transferred to the sub-

problem, which then leads to consider in the master
problem only the solutions of (5) which satisfy (3), (4),
(6) and minimize or maximize (2).

We thus obtain the following GLP reformulation.
Master problem:

Subproblem:

min/max
subject to:

(12)

The subproblem is now a linear program in the 2n 0-1
variables (as the are either variables
with linear constraints.

Each column of (10) corresponds to a possible world
or equivalently a subset of assumptions with

true/false values, which may imply imply
or neither. In the first two cases there is one correspond­
ing column in (8)-(l l), and in the latter two. When
minimizing columns which have 1
will have probability 0 if there are twin columns with

will correspond to the sum of
probabilities of those clauses which imply i.e.,
to the degree of support of When maximizing

columns which have 0 will have prob­
abilities 0 if there are twin columns with = 1.
So will correspond to 1 minus the sum of proba­
bilities of those clauses which imply i.e., to the
degree of plausibility of

5 Solution Method
The method is an iterative one (in fact, the revised sim­
plex algorithm [Chvatal, 1983]) where at each iteration,
we determine the column with the minimum (maximum)
reduced cost by solving (7) in the case of ie,

AUTOMATED REASONING

(8)

(9)
(10)
(11)

where the u0 and ui are the current dual variables asso­
ciated with the tautology So and with the propositional
sentences respectively. By associating
the logical values true with 1 and false with 0 in each
logical proposition, one can rewrite (13) as:

This optimization problem can be reformulated using
arithmetic expressions of the propositional variables of
X. This can easily be done with the convention 1 = true
and 0 = false and the relations

where the left-
hand side variables are logical ones, and the right-hand
side variables are integer ones. The choice of the enter­
ing column is thus reduced to a problem of minimizing
(maximizing) an unconstrained nonlinear function in 0-1
variables (PNL-0/1). In formulation F2 the subproblem
is a constrained linear program in 0-1 variables (CPL-
0/1).

5.1 Basic A l g o r i t h m
We assume that the optimization problem is a minimiza­
tion one. Algorithm 1 provides a description of the col­
umn generation method for Formulation F\ or F2.

Phase-1 is not detailed as it proceeds in a similar way
than Phase-2, i.e., through STEP 3 to STEP 7.

5.2 S o l u t i o n o f t h e Subp rob lems
Again assume that the optimization problem is a mini­
mization one. At each iteration a column with a negative
reduced cost must be found by a heuristic or an exact al­
gorithm. Exact solution of the subproblem is not neces­
sary at each iteration to guarantee convergence. As long
as a negative reduced cost is found by the heuristic an
iteration of the revised simplex algorithm may be done.
If a feasible solution is obtained in that way, the decision
version of the satisfiability problem is solved, but finding
none when choosing the entering column in a heuristic
way cannot guarantee that none exists. So, when no
more negative reduced cost is obtained by the heuristic
it is necessary to turn to an exact algorithm to prove
that there is no feasible solution for the decision version
of PSAT, nor feasible solution giving a better bound
than the incumbent one for the optimization version.
We use a Steepest Ascent Mildest Descent (SAMD) or
Tabu Search (TS) heuristic ((Hansen and Jaumard, 1990;
Glover and Laguna, 1997]) for PNL-0/1, and a variant
of Tabu Search for CPL-0/1 with constraints to find an
approximately optimal solution. We also use a method
based on linearization for PNL-0/1, and branch-and-
bound for CPL-0/1, to find an exact optimal solution.

A lgo r i t hm 1 Column Generation Method
STEP 1. Using phase-l of the simplex algorithm

(see, e.g. [Chvatal, 1983] for details), build
an initial matrix associated with a fea­
sible solution.

STEP 2. If there is no such matrix Bo then the prob­
lem is inconsistent: Stop.

STEP 3. Solve the master problem to compute the
dual variables (phase-2 of the simplex al­
gorithm).

STEP 4. Solve the subproblem to compute a col­
umn with negative reduced cost ct using a
heuristic;

STEP 5. If then add the corresponding col­
umn to the master problem, reoptimize it,
and go to STEP 3.

STEP 6. Solve the subproblem to compute the col­
umn with the most negative reduced cost
using an exact algorithm.

STEP 7. If then add the corresponding col­
umn to the master problem, reoptimize it,
and go to STEP 3.

STEP 8. Stop: the optimal solution has been
reached.

P N L - 0 / 1 w i thout constraints
The Tabu Search (TS) heuristic proceeds to a local op­
timum by moving at each iteration from one feasible so­
lution to another in its neighborhood (here the vectors
at Hamming distance 1 from the current one). We then
pick the solution in the neighborhood that produces the
best improvement in the objective function. If there is
no improving solution (a local optimum was reached as­
suming we use aspiration, see page 50 in [Glover and
Laguna, 1997]) then we choose that one which degrades
the objective function least. In order to avoid return­
ing to the local optimum just visited, or cycling, the re­
verse move is forbidden for a given number of iterations
(SizeMaxTabu).

The steps of TS are presented in Algorithm 2. The pa­
rameters denote the remaining number of iterations
during which a local change in direction is forbidden.
When a change in an ascent direction is done is set
at the value tabu. That value is chosen by random selec­
tion among integers in the range (1, SizeMaxTabu]. The
stopping condition may be, e.g., maximum computing
time allowed, maximum number of iterations, or maxi­
mum number of iterations between two improvements.

The linearization method works by replacing in a stan­
dard way each product of variables by a new 0-1 variable
and adding constraints to ensure that the values agree
in 0-1 variables.

The size of the resulting linear 0-1 variables increases
rapidly with and the number of nonzero dual vari­
ables

HANSEN, JAUMARD, AND PARREIRA 59

(13)

CPL-0 /1 w i t h constraints
Heuristic solution of CPL-0/1 is again done by a SAMD
or TS algorithm. The idea behind this algorithm is to
allow infeasibility. However it must be limited, therefore
for each sequence of iterations a move is allowed only if
the resulting number of unsatisfied clauses (or violated
constraints) is smaller than a given threshold UnsatMax.
After a number of iterations we verify if the current so­
lution is feasible. In the affirmative we reduce the value
of UnsatMax by and another sequence of iterations is
performed. In the negative the value of UnsatMax is in­
creased by a, we apply a transformation to get a feasible
solution and another sequence of iterations is performed.
The overall algorithm has a maximum number of REP
iterations. Steps of the TS-Constrained heuristic are pre­
sented on Algorithm 3.

The constrained linear 0-1 program (12) has the form
of a combiped set covering and set partitioning problem.
Exact solution is based on the algorithm of [Fisher and
Kedia, 1990]. The main feature of this algorithm is the
use of dual variables in the linear programming relax­
ation to provide lower bounds for a branch-and-bound
algorithm.

6 Computat ional Experiments
The algorithms for CMS/PSAT described in the pre­
vious sections have been coded in C and tested on a
Ultra-2 SUN SPARC computer. The resulting program
uses the CPLEX 6.0 package for linear programming.
The problems for CMS/PSAT were randomly gener­
ated in the following way: (i) the numbers of assump­
tions, of justifications, which here are clauses, of
variables (assumptions and propositional symbols) are
parameters; (ii) the clauses contain at most 4 literals.
There is an uniform distribution of clauses with 1, 2, 3
and 4 literals as well as of uncomplemented and comple­
mented variables. Probabilities (A) corresponding to
feasible problems were obtained by generating randomly

max(210;2n) Boolean vectors constructing the corre­
sponding possible worlds, associating with them positive
numbers summing up to 1 (i.e., probabilities for these
worlds to occur), and then summing for each clause the
probabilities of the worlds in which it is true.

Results of the comparison between the two
CMS/PSAT models are given in Table 1 and 2, which
detail problem sizes, total cpu time, number of columns
generated, cpu time for the tabu search and the exact
algorithms for the subproblems. Each line corresponds
to averages over five problems. Note than the number of
propositions in the first formulation is equal to the
number of assumptions (propositions in the master prob­
lem) plus the number of justifications (considered only
in the subprobiems) in the second formulation. Clearly
the second formulation is by far superior to the first one:
computation times for the larger instances are 7000 times
smaller.

If an independence condition is imposed on the as­
sumptions, only much smaller instances of CMS are
solvable in reasonable time. If columns corresponding
to feasible worlds are considered explicitly, each has a
positive probability and their number increases exponen­
tially. This contrast with the linear programming model
of PSAT, where the number of columns with positive
probability in a basic, and hence in an optimal, solution
is at most equal to the number of lines. Using Boolean
simplifications we may reduce somewhat the computa­
tional burden but it often remains too high to solve large
instances.

Intervals for CMS/PSAT and

AUTOMATED REASONING

STEP 2. Transform x into the solution xi modified

where changes are forbidden. Choose a
stopping condition.

STEP 4. If the stopping condition is met then
STOP.
Otherwise, update T and return to STEP 2.

80

Table 1: Formulation-1

Table 2: Formulation-2

[dap, dpi) for -CMS with independence condition
(obtained with the ABEL program [Anrig et al, 1998])
are given in Table 3. It appears that in some cases the
intervals of CMS with the independence conditions
overlap in part with those of CMS/PSAT instead of
being included in them, as one would have expected.
This indicates -CMS does not exploit the available
information to its fullest degree. Reasons why this is so
will be explored in future work.

Table 3: Comparison of bounds

7 Conclusions
-CMS systems can be expressed in two ways as a PSAT

problem, when the independence condition on the as­
sumptions is removed. Then the lower and upper bounds
on the probability of the additional propositional sen­
tence coincide with its support and plausibility. The
second formulation, which keeps the justifications im­
plicit (or transfer them to the subproblem when using
column generation as solution method), is much more
efficient than the first, direct one. If the independence
condition is kept in -CMS, solution becomes more cum­
bersome and probability intervals for the objective func­
tion clause provided by both methods may overlap.

Acknowledgments
Research of the authors was supported by DREV-
Valcartier contract. Work of the first and second au­
thors was supported by FCAR grants 92-EQ-1048 and
95-ER-1048. Work of the first has also been sup­
ported by NSERC grant to HEC and NSERC grant

GP0105574. Work of the second author was also sup­
ported by NSERC grants GP0036426 and EQP0157431.
Work of the third author has also been supported by
CNPq (Conselho Nacional de Desevolvimento Cientifico
e TecnoWgico), Brazil, grant 200722/95-6.

References
[Anrig et al, 1998] Bernhard Anrig, Roman Bissig, Itolf

Haenni, Jurg Kohlas, and Nobert Lehmann. Prob­
abilistic Argumentation Systems: Introduction to
Assumption-Based Modeling using ABEL. Techni­
cal report, Institute of Informatics, University of Fri-
bourg, September 1998.

[Chvdtal, 1983] Vasek Chvatal. Linear Programming.
Freeman, New York, NY, 1983.

[de Kleer and Williams, 1987] Johan de Kleer and Brian
C. Williams. Diagnosing Multiple Faults. Artificial
Intelligence, 32(1):97-130,1987.

[de Kleer, 1986] Johan de Kleer. An Assumption-based
TMS. Artificial Intelligence, 28:127-162, 1986.

[de Kleer, 1992] Johan de Kleer. An Improved Incre­
mental Algorithm for Generating Prime Implicates.
In Proc. of the 10th Nat. Conf. on Artificial Intelli­
gence, pages 780-785, San Jose, California, July 1992.
AAAI.

[Fisher and Kedia, 1990] Marchall L. Fisher and
Pradeep Kedia. Optimal Solution of Set Cover­
ing/Partitioning Problems Using Dual Heuristics.
Management Science, 36(6):674-688, June 1990.

[Glover and Laguna, 1997] Fred Glover and Manuel La-
guna. Tabu Search. Kluwer, 1997.

[Hansen and Jaumard, 1990] Pierre Hansen and
Brigitte Jaumard. Algorithms for the Maximum
Satisfiability Problem. Computing, 44:279-303,1990.

[Hansen et al., 1995] Pierre Hansen, Brigitte Jaumard,
and Marcus V. Poggi de Aragao. Boole's Conditions

HANSEN, JAUMARD, AND PARREIRA 61

[Hansen et al., 19991 Pierre Hansen, Brigitte Jaumard,
Anderson D. Parreira, and Marcus V. Poggi
de Aragao. Difficulties of Conditioning and Con­
ditional Independence in Probabilistic Satisfiabil­
ity. Technical Report G-99-16, Cahiers du GERAD,
February 1999.

[Jaumard et al, 1991] Brigitte Jaumard, Pierre Hansen,
and Marcus V. Poggi de Aragao. Column Generation
Methods for Probabilistic Logic. ORSA Journal on
Computing, 3:135-148,1991.

[Kohlas and Haenni, 1996] Jurg Kohlas and Rolf
Haenni. Assumption-based Reasoning and Proba­
bilistic Argumentation Systems. In J. Kohlas and S.
Moral, editors, Defeasible Reasoning and Uncertainty
Management Systems: Algorithms. Oxford University
Press, 1996.

[Lasdon, 1970] Leon S. Lasdon. Optimization Theory for
Large Systems, MacMillan, New York, 1970.

[Liu et ai, 1993] Weiru Liu, Alan Bundy, and Dave
Robertson. On the Relations between Incidence Cal­
culus and ATMS. In Symbolic and Quantitative Ap­
proaches to Reasoning and Uncertainty (Granada,
1993), pages 249-256, Springer-Verlag, Berlin, 1993.

[Nilsson, 1986] Nils J. Nilsson. Probabilistic Logic. Ar­
tificial Intelligence, 28:71-87, 1986.

[Reiter and de Kleer, 1987] Raymond Reiter and Jo-
han de Kleer. Foundations of Assumption-Based
Truth Maintenance Systems: Preliminary Report. In
Proc. of the 6th Nat. Conf. on Artificial Intelligence,
volume 1, pages 183-188, Seatle, Washington, July
1987.

62 AUTOMATED REASONING

of Possible Experience and Reasoning Under Uncer­
tainty. Discrete Applied Mathematics, 60:181-193,
1995.

