An effective learning method for max-min neural networks

Loo-Nin Teow
Institute of Systems Science
National University of Singapore
Heng Mui Keng Terrace
Kent Ridge, Singapore 119597
email:loonin@iss.nus.sg

Abstract

Max and min operations have interesting prop-
erties that facilitate the exchange of informa-
tion between the symbolic and real-valued do-
mains. As such, neural networks that employ
max-min activation functions have been a sub-
ject of interest in recent years. Since max-min
functions are not strictly differentiate, we pro-
pose a mathematically sound learning method
based on using Fourier convergence analysis
of side-derivatives to derive a gradient descent
technique for max-min error functions. This
method is applied to a "typical" fuzzy-neural
network model employing max-rnin activation
functions. We show how this network can be
trained to perform function approximation; its
performance was found to be better than that
of a conventional feedforward neural network.

1 Introduction

Max and min operators are widely used in systems which
performs fuzzy logic, multi-valued logic or other forms
of uncertainty reasoning. Besides generalizing the bi-
nary OR and AND operators to the real-valued domain,
max and min operators also have attractive properties
such as commutativity, monotonicity and associativity.
In addition, the max and min operators are the only real-
valued logical operators that are continuous and idem-
potent [Klir and Folger, 1988]. From a theoretical point
of view, they form a bridge between the symbolic and
real-valued domains. Hence, they facilitate the encoding
and extraction of symbolic knowledge in hybrid systems
which combine logic and neural networks.

However, the problem with neural networks which em-
ploy max and min operators has always been with learn-
ing using gradient descent techniques such as backprop-
agation [Rumelhart et al., 198G]. This is because gradi-
ent descent requires the activation functions to be fully
differentiable. Activation functions with max or min op-
erations, unfortunately, do not satisfy this requirement.

1134 NEURAL NETWORKS

Kia-Fock Loe
Department of Information Systems
and Computer Science
National University of Singapore
Kent Ridge, Singapore 119260
email: loekf@iscs.nus.sg

One of the goals of this paper is to analyze the calcu-
lus of max-min functions, especially with regard to the
side-differentiability of such functions. In particular, we
show how Fourier convergence analysis can be used to
obtain the pseudo-derivatives. This in turn leads to a
gradient descent technique for neural networks that em-
ploy max-min activation functions. Such an approach is
obviously mathematically sound compared with ad hoc
methods found in the literature.

2 The Calculus of Max-Min Functions

In this paper, a function f(z)} is said to be side-
differentiable if at any point ¢ = g, the following limits
exist:

iz=a) [f(a+A:r)—f{a)}
dart - Ar—ltt Azx

Of(x=a) _ lim f{a-l-Az)-f(a)}
dx- T ar—o- Ar

If, however, (i) fails to exist due to discontinuity, we
can still define 4 weaker type of side-differentiability. A
function f{(zx) is said to be guasi-differentiuble if at any
point & = «a, the following limits exist:

df(zx =at) = bm [f(a-i- Az)— fle+ 0)]
Jut Ar—u+ Az

dflz=u") . fla+ Az) — fla—0)
dz= - all-r»nn— Arx }

where

fa+0)= lim[f(z)] and fa-0)= lim [{(a)

liar
r=+n
Side-differentiability implies quasi-differentiability,
but not conversely. Higher-order derivatives may also
exist. Interested readers can learn more about side-
differentiability and quasi-differentiability in reference
[Fulks, 1981]. In this paper, we shall only be concerned
with functions which are side-differentiable in the first
order and quasi-differentiable in the second order.

Let max?(fi(z)) and minl*{f;(z)) be defined over the
real number domain. Although both maxP(f:(z)) and
min} (fi(z})} may not be differentiable at some points,
they can nonetheless be gide-differentiable at all pointy,
a8 shown by the following theorems, given here without
proof.

Theorem 1 Given G(z) = maxP(fi(z)), such that
Jx(z) is continuous and side-differentichble Yk = 1.. .7,
then G(z) is clso continuous, and the following »side
derivatives exist:

8G(z) _ 8fulx)
Bzt "52"38:’:)(dr+)
8G(z) _ dfiz)
oz~ ;E‘E‘a}(dr—)
where ©(z) = {i€ {1...n} | fi(z) = G(z}}
a

Theorem 2 Given (G(zr) = minl{fi(z)), such thot
fielz) ts continuous und side-differentiable Yk = 1., .1,
then (G(x) is also continuous, and the following side
derivatives ezist:

oG(z) . (0f(z)
ozt ".-Qﬂ;(or+)

9G(z) _ Bfi(z)
Oz~ _iénﬂa(f)(oz~)

where O(z) ={i € {1...n}| fi(z) = Gl=)}
0

let f'(a) = & i—= where f(z) is a side-differentiable
function. f'(e) may fail to exist if f(z) is not fully
differentiable at z = &. However, the side-limits of
F'la) are equivalent to the side derivatives of f(a), ad

they exist since f(z) is side-differentinble. Hence, if

FE‘F (Q!-a%f—"l) and z,-;L.. (Q%Ef—"l) exist, they arc neces-
sarily quasi derivatives of f'(a). If these quasi derivatives
exist for all x, then f(z} is said to be guasi-differentialile
in the second order.

Given a function G{x) which is side-differentiable ev-
erywhere, i.e. % and %Lf-l exist for all x; we would
. L dG(z) ac
like to define a pseudo-derivative T2 in terms of T:i{ll

and aﬁ;f , a8 well as determine the conditions under
which this is possible. To do this, consider the following

theorem:

Theorem 3 Let o function F(z) be defined oner an in-
terval Ib < £ < ub (and extended by periodicity), udiere
{b and ub are the lower and upper bounds of the pericd
respectively. If F(x) is aide-differentioble in the firat or-
der and quasi-differentiable in the second order, then at

any point Ib < o < ub, the Fourier series generated by

22 converges to the value
1 (0F(z = a) + OF(z =a)
2 dzt bz~

a

Hence, if we use a Fourier series to approximate the
derivative of F'(z), then using the above theorem, we can
assign the pseudo-derivative of F(z) at each point as the
value of convergence at that point, i.e.

dFfz=a) 1 (BF(x = a) . OF(z = a))

drt T 2 fz+ Hz~

However, note that this theorem does not apply at the
end-points I& and ub. 1t is also applicable only for pe-
riodic functions. To overcome these restrictions, we use
the following theorem:

Theorem 4 Let F(z) and G(z) be functions that
are side-differentiuble in the first order end quasi-
differentiable in the second order. Suppose F(z} and
G(x) coincide over the interval b < = < ub, such that
Yz € [th,ub],

Fiz) = G(z)
OF(x) _ 0G(x)
drt ~ Bzt
aF(z) _ 0G(z)
dz— ~ Dz

Suppose further that F(x) is periodic over the interval
W <z < ul, where I < b and u¥’ > ub. Then,
Y € (b ub],

dG(z) _ 1 (8G(z) A 8G(z)
drt _“5(52+ | 9z) 1

O

If the conditions given tn Theorem 4 are satisfied, then
we can obtain the pseudo-derivative of G(z) as given in
Equation J. This formula is consistent with the fact that
when G(z) is fully differentiable at z = a (i.e. ﬂ%’:ﬂ'l
exists), then AG(z=a) = = bGizza) - 8(}: Z8) in which

dG{ } al(r=n) o7 B
as AT=a; | X= 11
Case =7 - ar

21 Other gradient descent techniques

In the fuzzy-neural research literature [Buckley and
Hayashi, 1994; Gupta and Rao, 1994; Ishibuchi et a/,,
1993; Keller et a/., 1992; Mitra and Pal, 1994; Pedrycz,
1993; Simpson, 1992; Simpson, 1993], many ad hoc gradi-
ent descent techniques for max-min functions have been
proposed. Some suggested using simple intuition-based
heuristics. Yet others side-stepped the differentiability

TEOW & LOE 1135

problem by replacing a max-min function with a differ-
entiable one, for example by replacing the max and min
operators with sum and product operators respectively.

A more interesting approach would be to use a pa-
rameterized function which limits to the max or min
operator. One such function is the softmax operation
commonly used in winner-take-all neural architectures.
The softmax operation is defined as follows:

softmax] (fi(z)) = Zwi - filz)

exply - fi(z)]
Ej expl[y - f;{z)]

v is the acaling parameter. When ¢ = 0, the re-
sult is just the mean of all the constituent functions.
When ¢ —» oo, softmnax approaches the maximum of
its constituent functions, while its derivative approaches
the mean of the derivatives of its constituent func-
tions. Based on this, we can have the following psende-
derivative for the max operation:

where w; =

dmax?(fi(z)) _ _ 1 >3 dfi(z)
dz N({B(z)) dz

i€8(z)

where ©(z) = {i €{1...n} |f.-(z) = m?l.x(f,-(.-:)}

and N(S) denotes the number of elements in set S.
There is, however, a problem with differentiating
nested max-min functions using this formulation. For
example, given
F(z) = max|A(z), max[B(z), C(z}]]
G(z) = max{max(A(z), B(z)}, C(z)]
where A, B and C are fully differentiable functions
defined over the real number domain. Obviously, Vz,
F{z) = G(z). However, when A(xp) = B(zg) = C{ze),
using the softmax-derived pseudo-derivative wounld result
in

Filzo) = A4ad 4 Bpal 4 Sl
G'(x) = A’(:n] + B'&:o) + C'gxo}

which is clearly a contradiction since F'(xg) # G’ (o)
when A'(zg), B'(z0) and C'(zp) are not equal to one
another. Thiz shows that in the limiting case, the differ-
entiation of softmax functions is not associative.

In fact, this inconsistency arises whenever pseudo-
derivatives of max and min operations are used directly
when "differentiating" a nested max-rnin function.

The method proposed in this paper, on the other hand,
does not have this problem. In our method, each of the
side-derivatives of the entire function must be evaluated
before they are combined. Hence, we apply Theorem 1
and Theorem 4 to give

1136 NEURAL NETWORKS

222 [F(2e)) = g [6(z0)]

= L(max[A'(zo), B'(za), €' (z0))
+ min[A'(zq), B'(z0}, C’ (z0)])

3 A Fuzzy-Neural Network Model

The synthesis of fuzzy logic and neural networks has
been a popular theme in research in the past decade
[Buckley and Hayashi, 1994; Gupta and Rao, 1994;
Ishibuchi et al., 1993; Keller et a/., 1992; Mitra and
Pal, 1994; Pedrycz, 1993; Simpson, 1992; Simpson, 1993].
This is not surprising considering that neural networks
and fuzzy logic complement each other. Neural networks
are well known for their learning capabilities, which al-
low them to model accurately almost any input-output
relationship. Fuzzy logic, on the other hand, facilitates
the encoding of experts' knowledge in linguistic terms
and inferencing from such knowledge using mathemat-
ical techniques. Fuzzy-neural networks, by combining
these two technologies, can, among other things, allow
the fine-tuning of of experts' knowledge as well as a more
natural interpretation of the knowledge learnt.

Max and min are the standard logical operations used
in fuzzy set theory [Klir and Folger, 1988]. In addi-
tion, they have many attractive properties as described
in the introduction of this paper. Hence, we employ max-
min activation functions in a "typical" fuzzy-neural net-
work architecture commonly found in the fuzzy-neural
research literature. Since max-min functions are non-
differentiable, we show how such a network can be
trained with gradient descent based on using Fourier con-
vergence analysis.

3.1 Description of the model

The fuzzy-neural network model we use has five layers:
one input, one output and three hidden (Figure 1). Each
unit in the input layer corresponds to an input variable,
and is connected to several antecedent fuzzy set units
in the first hidden layer. The units in the antecedent
layer can be divided into sub-groups, each correspond-
ing to a fuzzy variable. From every sub-group, only one
fuzzy set unit may be connected to a rule unit in the
second hidden layer, depending on the fuzzy rule asso-
ciated with that rule unit. The rules comprises of all
possible combinations of antecedent fuzzy sets; hence, if
there are 3 input variables with each having 2 fuzzy sets,
then there will be a total of 2x2x2=8 rules. Each rule
unit is connected to the consequent fuzzy set units in
the third hidden layer. Like the units in the first hidden
layer, consequent fuzzy set units are also grouped in a
similar fashion. Each sub-group has connections to the
output unit corresponding to its fuzzy output variable.

Figure 1: An example of a fuzzy-neural network.

The input units pass the input values to the various
antecedent fuzzy set units. The activation value of cach
antecedent fuzzy set unit is simply the membership de-
gree of the input value in the corresponding fuzzy set. If
we define each fuzzy mombership function as a Gaussian
function with center g and radius o, then we Liave:

1 X~ JHmn} 2
= —_ | ———— 2
At exp(3 (e @)

Each rule unit computes the fuzzy conjunction of its
corresponding antecedents by taking the minimum of
their fuzzy membership degrees:

Ry = min

{mn]ET{l-](A(m")) (3)

where T(k) is the set of indices to antecedents in a rule.

Each consequent fuzzy sct unit computes the weighted
fuzzy disjunction of the rule activitions as follows:

Clij) = max(Wejpe - Ri) (4)

where W), I8 a weight value specifying the degree to
which a rule contributes to a comseguent. It is con-
strained to the range [0.0,1.0] as required by fuzzy set
theory.

Finally, each output unit performis defuzzification as
follows:

Y, = 2 4(Cui Viy) (5)
pIRLAT)
where V;;) s the output valne associated with a single-
element consequent fuzzy set.

3.2 Training by Gradient Descent
Given an input-target pattern, the error E is defined as

E=3 (Ti- %) ©)

where ¥; is the i*h output value, and T; is the corre-
sponding target value.

The consequent values V', the weights W, and the
input fuzzy membership functions (parameterized by p
and o) can all be modified using gradient descent. Each
parameter ¢ (which can be either Vy,, Wi, figary or
g(x)) may be changed by the following increment:

Ao = —ag- 22 4 8- A7 ™
dip
where 7 is the training iteration; ay is the learning rate;
By is the momentum term; and A% = 0.

Since the equation containing V (Equation 5) does not
contain any max or min operations and is fully differen-
tiable, ATV, can be derived using normal differentin-
tion:

(H_': C()
= AT -) (8)
dVp, ! ! Ej C(m’)

For the rest of the parameters W, u and o, we need
to apply Theorem 4. In the case of W, the derivation is
as follows:

Ird N = i i o1 + HE
w3 2\ oW W=
Pqir irelr Lrqlr
_ HC!F’I !}C‘“I
B g‘.l"ll' (ﬁwlml" + nw{;ﬁ"

Vog — ¥,
where £, =—(T,-Y,)- -L-E—)
e (? P} (zn C(P"}

All weight changes are adjusted such that each weight
is elipped to the range [0.0,1.0], for reasons explained in
the earlier subsection.

Applying Theorein 1 to Equation 4, we have

aC(m)
_—— # [A 9
el SR
ICpy) -
——dim = min {6, R 10
W0 kew(N}(ok) (10}
where
Y(pg) = {k | Wipge - B = Cipg } (11}
and it N
if r =
bre = { 0 otherwise (12)
For j:, we have
dE Cy | OCu;
L= £y (_u + 0 (13)
iy Z.: ; [e Oty
TEOW & LOE 1137

Applying Theorem 1 to Equation 4,

9Ct;) BRy
— = max | Wy - {14}
Buly resin " B0,
"@ = min (W(ij)k : 8_13;5_) (15)
a,um} kEW(ij) 3;1(“)
Applying Theorem 2 to Equation 3,
A
6?_* = min (a_'['.‘l) (16)
6;1(“] {mn) €T (k)Nd{k) Jiat)
aA
BIE* = max (—-——(m"}) (17}
By (mRIET(NG(M) Bicany
where T is a8 defined in Equation 3 and
®(k) = {{(mn)} | A(mn) = Re} (18)

Obviously, if (mn) # (sf), then f"%‘-—""“l)l = 0. Using

notrmal differentiation on Equation 2, we get

BAwy _ A - X, ~Het (19)
Oisar) Ttot)

Likewise for o.

3.3 Experiments and Resultis

The fuzzy-neural network is trained and tested on the
task of function approximation. Specifically, the func-
tion to be approximated is a highly non-linear 3-input
sinc function:

sin{z) . sin(y} N sin(z)

" (20)

T = sine(z,p,2) =
Description of Experiments
Input values for both training and testing data are sam-
pled uniformly from the ranges [-10,10] x [-10,10] x |-
10,10] for input variables z, y and z respectively. Their
target values are computed using Equation 20 and theu
scaled to the range [0.05,0.95]. The training and testing
data sets each contains 100 input-target patterns,

The fuzzy-neural network in this experiment has 3 in-
put units, each of which has 5 fuzzy sets, making a total
of 15 antecedent fuzzy set units. There are altogether
S5x5x5=125 rules to cover all the antecedent combina-
tions. There is one output unit with 5 consequent fuzzy
scts. The total number of modifiable network param.
eters, which includes the input fuzzy membership fune-
tions, the rule-to-consequent weights and the consequent
values, is 660. The fuzzy membership functions for each
input variable is initialized to {3} = {-10,-5,0, 5,10}
and {¢} = {1,1,1,1,1}. The consequent values are ini-
tialized to {(V} = {0.1,0.3,0.5,0.7,0.9}. The rule-to-
consequent weights are initialized with random values

1138 NEURAL NETWORKS

M-S-E-tmin

0.10 x 10~*
3.52 x 10~7

Network model

[Fuzzy-neural
Sigmoidal

MSEE“ size

1.22 % 10-7 | 660
323 % 107 | 661

Table 1: Comparison between the fuzzy-neural
network and the sigmoidal neural network in
terms of the Mean Squared Error (M.S.E.), av-
eraged over 10 trials, on both the training data
and the testing data after being trained. The
size of each network, in terms of the number of
modifiable parameters, is also given.

from a uniform distribution over the range [0.45,0.55].
During learning, each & value is constrained to lie below
1.0, because it was found that when the Gaussian radius
of a fuzzy set is too wide, it practically becomes useless.

For comparison, we also train a conventional feedfor-
ward sigmoidal neural network using standard backprop-
agation. The network has 3 inputs units and 1 output
unit. In order that we may make a fairer comparison, the
number of hidden units was chosen such that the num-
ber of modifiable network parameters, which includes
the biases and connection weights, is as close to that of
the fuzzy-neural network as possible. As such, there are
132 hidden units, making a total of G61 modifiable net-
work parameters. All weights and biases are initialized
with random values from a uniform distribution over the
range [-0.01,0.01].

In a training session, presentation of an input-target
pattern constitutes an iteration, while presentation of
the entire training set constitutes an epoch. Weights
update is performed via pattern mode, i.e. after the
presentation of each pattern, the weights are changed ac-
cording the equations given in the previous sub-section.

All learning rates and momentum terms for both the
fuzzy-neural network and the sigmoidal network are 0.3
and 0.1 respectively. Both networks are trained for 200
epochs over 10 trials.

Finally, in each trial, each trained network is tested
for generalization on the testing data.

Results and Discussion

We evaluate each network's performance using the Mean
Squared Error (M.S.E.), i.e. the total squared error over
all the patterns in a data set divided by the number of
patterns.

Figure 2 show the M.S.E. curves on the training data
for the fuzzy-neural network and the sigmoidal neural
network, averaged over 10 trials, with 200 epochs in each
trial. The fuzzy-neural network is able to reach a much
lower mean squared error in a shorter time than the sig-
moidal neural network.

%

o

T rr rt rr1rr11r1 1 17TrnFT1T T rFT T

I R WO T N NN N NN N N A N Y N UUNE OV NN S T '

-

:
g
:
E
:

Figure 2: Mean Squared Error (M.S.E.) curves
on the training data for the fuzzy-neural net-
work and the sigmoidal neural network, aver-
aged over 10 trials, with 200 epochs in each
trial.

Table 3.3 gives the comparison between the fuzzy-
neural network and the sigmoidal neural network in
terms of the Mean Squared Error (M.S.E.), averaged
over 10 trials, on both the training data and the test-
ing data after being trained. As expected, the fuzzy-
neural network has a much lower mean squared error
on the training data than the sigmoidal neural network.
Its generalization power, as seen by the performances on
the testing data, is also better than that of the sigmoidal
neural network.

Both Figure 2 and Table 3.3 demonstrate how the
fuzzy-neural network can effectively model a highly non-
linear function as compared to a sigmoidal neural net-
work with nearly the same number of network parame-
ters. The authors did not make an exhaustive search of
all possible network architectures and learning param-
eters in either model, so this comparison cannot be a
universal one.

4 Conclusions

A learning method that utilizes gradient descent based
on using Fourier convergence analysis for max-min func-
tions was presented. It has been applied to effectively
train a feedforward fuzzy-neural network model. This
model employs max and min as its logical operations
and Gaussian functions as its input fuzzy sets. We have
shown how the network can be trained to approximate

a highly non-linear function. It learns and generalizes
better than a conventional feedforward neural network.

In conclusion, we have shown that our proposed gra-
dient descent technique does allow max-min neural net-
works to learn effectively. Our approach should be
extensible to other neural networks that have non-
differentiable activations functions. This remains a topic
of further research.

References

[Buckley and Hayashi, 1994] Buckley J.J. and Hayashi
Y. (1994). "Fuzzy neural networks: A survey".
Fuzzy Sets and Systems 66, pp.1-13.

[Fulks, 1981] Fulks W. (1981). Advanced Calculus - An
Introduction to Analysis, Third Edition, Wiley
Trans-Edition.

[Gupta and Rao, 1994] Gupta M.M. and Rao D.H.
(1994). "On the principles of fuzzy neural net-
works". Fuzzy Sets and Systems 61, pp.1-18.

[Ishibuchi et al, 1993] Ishibuchi H., Fujioka R., and
Tanaka H. (1993). "Neural Networks That Learn
from Fuzzy If-Then Rules". IEEE Transactions on
Fuzzy Systems, Vol.1, No.2, pp.85-97.

[Keller et ai, 1992] Keller J.M., Yager R.R., and Tahani
H. (1992). "Neural network implementation of fuzzy
logic". Fuzzy Sets and Systems 45, pp.1-12.

[Klir and Folger, 1988] Klir G.J. and Folger T.A.
(1988). Fuzzy Sets, Uncertainty, and Information,
Prentice-Hall International Editions.

[Mitra and Pal, 1994] Mitra S. and Pal S.K. (1994).
"Logical Operation Based Fuzzy MLP for Classi-
fication and Rule Generation". Neural Networks,
Vol.7, No.2, pp.353-373.

[Pedrycz, 1993] Pedrycz W. (1993). "Fuzzy neural net-
works and neurocomputations”. Fuzzy Sets and Sys-
tems 56, pp. 1-28.

[Rumelhart et ai, 1986] Rumelhart D.E., Hinton G.E.,
and Williams R.J. (1986). "Learning internal rep-
resentations by error propagation". Parallel Dis-
tributed Processing: Explorations in the Microstruc-
ture of Cognition. Volume I: Foundations, editors
Rumelhart D.E., McClelland J.L., et al., Chap.8,
pp.318-362. MIT Press, Cambridge.

[Simpson, 1992] Simpson P.K. (1992) "Fuzzy Min_Max
Neural Networks - Part 1: Classifications". |[EEE

Transactions on Neural Networks, Vol.3, No.5,
pp.776-786.

[Simpson, 1993] Simpson P.K. (1993) "Fuzzy Min_Max
Neural Networks - Part 2: Clustering". IEEE
Transactions on Neural Networks, Vol.1, No.l,
pp.32-45.

TEOW & LOE 1139

