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Abs t rac t 
An overview is given, w i t h new results, of math ­
ematical models and algor i thms for probabi l is­
t ic logic, probabi l ist ic entai lment and various 
extensions. Ana ly t i ca l and numerical solutions 
are considered, the former leading to auto­
mated generation of theorems in the theory of 
probabi l i t ies. Ways to restore consistency and 
relat ionship w i t h Bayesian networks are also 
studied. 

1 I n t r o d u c t i o n 
Numerous models and algor i thms have been proposed 
for reasoning under uncertainty in knowledge-based sys­
tems. Among these, models based on logic and the the­
ory of probabi l i t ies are, after a period of relat ive dis­
favor, a t t rac t ing much at tent ion again. These models 
differ according to the independence assumptions made 
about the events or logical sentences under consideration 
and the amount of in format ion requested f rom the ex­
pert or decision maker. At one extreme of the spectrum, 
well i l lustrated by the probabilistic logic and probabilistic 
entailment models of [Nilsson, 1986], no independance 
assumptions are made and only the available in forma­
t ion is used. Moreover, th is in format ion may be vague, 
i.e., expressed by probabi l i ty intervals instead of precise 
values. In probabi l ist ic logic, the probabi l i t ies of being 
true of m logical sentences are given. It is asked whether 
these probabi l i t ies are consistent or not . In probabil is­
t ic entai lment an addi t ional logical sentence is consid­
ered and it is asked to f ind best possible lower and up­
per bounds on its probabi l i ty of being true. In bo th 
cases the jo in t probabi l i ty d is t r ibut ion on the set of pos­
sible outcomes is only par t ia l l y specified. At the other 
extreme of the spectrum, the Bayesian network mod­
els (e.g., [Pearl, 1988], [Lauri tzen et ai, 1988]) usually 
make strong independence assumptions and request suf­
f ic ient in format ion for the j o i n t probabi l i ty d is t r ibu t ion 
to be entirely specified. When those requirements are 
satisfied the probabi l i ty of any event may be computed, 
often in moderate t ime. Moreover, evidence can be ef­
f ic ient ly propagated through the network. A t tempts to 
combine both methodologies have been made by [Van 
der Gaag, 1990] [Van der Gaag, 1991] and by [Andersen 
et ai, 1994]. 

The purpose of this paper is to present an overview, 
w i t h new results, of mathemat ica l models and algor i thms 
for probabil ist ic logic, probabi l ist ic entai lment and their 
extensions. Mot i va t ion stems f rom the facts tha t bo th 
problems have a long history and are the object of re­
search dispersed among several l i teratures. Th is explains 
recent overly pessimistic statements as to the possibil­
i ty of solving large instances. After s tat ing the prob­
lems mathemat ical ly , analyt ical solut ion is studied. I t 
is shown that one can use Fourier e l iminat ion or enu­
merat ion of vertices and extreme rays of polytopes. The 
lat ter approach leads to automated generation of theo­
rems in the theory of probabi l i t ies. Numerical solut ion of 
large instances is then discussed. The column generation 
approach of linear programming, combined w i th special­
ized nonlinear 0-1 programming techniques to solve aux­
i l iary subproblems (computat ion of the most negative 
or posit ive reduced costs) leads to algor i thms efficient 
in practice. Extensions are then examined, i.e., use of 
probabi l i ty intervals, condi t ional probabi l i t ies, Linear re­
lations between probabi l i t ies and qual i tat ive probabi l i ­
ties. Moreover, we show that (i) restorat ion of consis­
tency through min ima l changes in the probabi l i ty inter­
vals can be handled by the same type of models and 
(11) e l iminat ion of inconsistency through min ima l dele­
t ion of logical sentences can be solved by combining col­
umn generation w i t h branch-and-bound. The Bayesian 
logic model proposed by [Andersen et a/., 1994] is f inal ly 
investigated: we show that whi le this model is one of 
nonlinear nonconvex programming, many cases to which 
it applies can in fact be expressed as linear programs. 
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subject to constraints ( l ) - ( 3 ) . Note that [Nilsson, 1986] 
briefly discusses how to use standard techniques to re­
duce problems of f irst-order probabil ist ic logic to the 
proposit ional case. Instead of the names probabil ist ic 
logic and probabil ist ic entai lment, [Georgakopoulos et 
a/., 1988] propose to use the name probabil ist ic satisfia­
bi l i ty, in decision and opt imizat ion versions respectively. 
Indeed, [Nilsson, 1986] proposes useful models but not a 
logici i.e., a system of axioms and a study of inference 
rules, for reasoning about logic and probabil i t ies. Such 
a logic extending the results of [Nilsson, 1986] has been 
explored by [Fagin et a/., 1990]. There are many other 
proposals in tha t area. Moreover, the name probabil ist ic 
satisf iabi l i ty stresses the relationship of problem ( l ) - ( 3 ) 
w i th the classical sat isf iabi l i ty ( S A T ) problem of propo-
sit ional logic (which corresponds to the case where is 
equal to 1) . From now on, we use the name probabil ist ic 
satisf iabil i ty (PSAT). 

The ( P S A T ) problem has a long history. The earliest 
occurrence of both versions appears to be in the classi­
cal work of [Boole, 1854] on The Laws of Thought. They 
are called conditions of possible experience and general 
problem in the theory of probabihttes respectively. Both 
problems also appear in the subjective approach to prob­
abi l i ty theory of [de F ine t t i , 1974], De Finet t i 's funda­
mental theorem tn the theory of probability ([de F inet t i , 
1974], p. 112) is indeed very close to Boole's general 
problem. The work of [Boole, 1854] on probabi l i ty at­
tracted l i t t le a t tent ion unt i l i t was revived in a seminal 
paper of [Hai lper in , 1965] and discussed and extended in 
a subsequent book of the same author on Boole a Logic 
and Probability [Hai lper in, 1986]. Several independent 
rediscoveries of (PSAT) have been made ( including that 
of [Nilsson, 1986]). 

3 Analyt ical Solution of PSAT 
In his book of 1854 and in several contemporary and 
subsequent papers, [Boole, 1854] proposes procedures to 
solve ( P S A T ) approximately or exactly. The most effi­
cient one works as follows: (i) express each sentence as a 

sum of products, each product involv ing al l logical var i ­
ables in direct or complemented f o rm ; (it) associate un­
known probabi l i t ies to each of these products and iden­
t i fy the result ing sums to the given probabi l i t ies; ( i i i ) 
eliminate in the equations so obtained and in the non-
negat iv i ty constraints on the probabil i t ies the variables 
corresponding to the probabil i t ies of the products. 

More than a century later, [Hai lper in, 1965] 
[Hai lper in, 1986] discusses Boole's methods and shows 
that the above mentioned one is equivalent to Fourier 
e l iminat ion. Moreover, [Hai lper in, 1965] expresses 
( P S A T ) as the linear program ( l ) - ( 3 ) or ( l ) - ( 4 ) and shows 
that an analyt ical expression for the bounds on the prob-
abi l i ty 7rm+i can be obtained by vertex enumerat ion of 
polytopes. To this effect, consider the dual Dmm (Anax) 
of(l)-(4): 
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Whi le results such as the above are easily obtained by 
direct reasoning, au tomat ion becomes useful when more 
sentences are considered as the numbers of condit ions 
and of terms in the bounds increase rapidly. 

4 Numer i ca l So lu t ion of P S A T 
( P S A T ) is NP-hard, as it is in NP and contains the NP-
hard problem ( S A T ) as a par t icu lar case ([Georgakopou-
los et ai, 1988]). Moreover, the problems ( l ) - ( 3 ) and 
( l ) - ( 4 ) have a number of columns exponential in the size 
of the inpu t when, as is usually the case, the size (or 
to ta l number of variable occurrences) of the sentences 
S i is bounded by a constant. (Note that this restr ict ion 
on size is na tu ra l , as otherwise reading the input would 
require t ime exponent ial in the number of variables). So 
w r i t i ng ( l ) - ( 3 ) or ( l ) - ( 4 ) expl ic i t ly already requires ex­
ponent ia l t ime. Th i s has led [Van der Gaag, 1990] [Van 
der Gaag, 1991] to surmise that solut ion of ( P S A T ) re-
quires exponential t ime in general and not only in worst 
case. ( In fact, many polynomial cases have been ident i ­
fied, see [Georgakopoulos et ai, 1988], [Kavvadias et ai, 
1990], [Jaumard et ai, 1991]). [Nilsson, 1986] [Nilsson, 
1993] stresses less formal ly, but as strongly, the di f f i ­
cul ty of solving instances of ( P S A T ) w i t h many variables 
and suggests Looking for heuristics. [Frisch et at., 1994] 
propose under the name of anytime deduction a heuris­
t ic approach to ( P S A T ) based on sequential appl icat ion 
of rules g iv ing smaller and smaller intervals. Th is has 
the advantage of al lowing reasoning to be followed step 
by step but may not yield best possible bounds. How­
ever, the powerful column generation technique of l i n ­
ear p rogramming (see, e.g. , [Chvata l , 1983], chapter 18) 
can be brought to bear. Th is was proposed by [Zemel , 
1982] for an appl icat ion of ( P S A T ) to rel iabi l i ty, then for 
the general case by [Georgakopoulos et ai, 1988], whose 
work is extended in [Jaumard et a/., 1991], and ([Hooker 
, 1988], see also [Andersen et ai, 1994]). When solv­
ing a linear program by column generation a compact 
tableau is kept; at each i terat ion the entering column 
is found by solving a combinator ia l subproblem and the 
tableau is updated fol lowing the rules of the revised s im­
plex method. F ind ing the column w i t h m i n i m u m (max­
imum) reduced cost at a current i terat ion is equivalent 
to min imiza t ion (max imizat ion) o f 

(12) 

where the u i are the dual variables associated w i t h con­
straints (1) and (2). Associat ing the values true w i t h 1 
and false w i th 0, (12) may be rewr i t ten 

(13) 

which is a nonlinear expression in the variables X j w i t h 
the operators V, A and -. These operators may be e l imi ­
nated 
where x and y are logical variables. M in im iza t ion (max­
imizat ion) of the result ing nonlinear funct ion in 0-1 
variables can be done approximately by variable-depth 
search ([Kavvadias et ai, 1990]) or tabu search ( [ j a u ­
mard et ai, 1991]) and exactly by an algebraic method 
( [Jaumard et ai, 1991], [Crama et ai, 1990]) or by l i n ­
earization ([Hooker , 1988], [Andersen et ai, 1994]). As 
an exact solut ion is only required when no more column 
w i t h a reduced cost of adequate sign can be found heuris-
t ical ly, variable-depth and tabu search are useful even if 
one wants proved best possible bounds. Heuristics w i l l 
be used as long as possible and followed by a usually 
more t ime-consuming exact method. The column gener­
at ion technique has led to solve large instances of ( P S A T ) , 
w i t h up to 140 variables and 300 sentences ( [Jaumard et 
ai, 1991]) in reasonable comput ing t ime . The number 
of columns generated is a very smal l p ropor t ion of the 
overal l number in the instance (e.g., about 2100 columns 
for problems w i t h 70 variables, and hence 2 7 0 columns, 
and 200 sentences). 

5 Extensions of P S A T 
In addi t ion to uncertainty, expressed by probabi l i t ies, 
expert knowledge often suffers f rom vagueness. Indeed 
g iv ing a single value for the t r u t h probab i l i t y of a sen­
tence is qui te arb i t rary in many si tuat ions. Vagueness 
may be expressed in ( P S A T ) by using probabi l i ty inter­
vals for the t r u t h of sentences S, instead of single 
values. Then the expert is not forced to provide more in ­
format ion than he has. General iz ing ( P S A T ) in this way 
was already proposed by [Hai lper in, 1965]. Constraints 
(2) are replaced by 

(14) 

The co lumn generation technique for ( P S A T ) described 
above extends readily to th is case, columns correspond­
ing to slack or surplus variables being treated separately. 
The increase in comput ing t ime when replacing single 
probabi l i ty values by intervals is moderate ( [Jaumard et 
ai, 1991]). 

Exper t knowledge may also be precise in some situa­
t ions only, which is expressed by using condi t ional prob­
abil i t ies i. Such condi t ional probabi l ­
ities can be integrated in to ( P S A T ) in several ways. As 

prob , one can use [Jaumard et ai, 

1991] the two constraints: 

where w i t h is t rue and 0 
otherwise, ) w i t h is t rue for Xk 

and 0 otherwise. A more compact expression, obtained 
by e l iminat ion of is: 

(15) 
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and the problem becomes a hyperbolic (or fract ional) 
programming one. [Hai lper in, 1986] observes that this 
problem can be reduced to a linear program wi th one 
more variable using a standard technique of [Charnes et 
a/., 1962]: one minimizes Aap adding to the constraints 
ABp = 1 and mu l t i p l y ing r ight-hand sides by a scaling 
factor t; once the solut ion is found, the probabil i t ies p, 
are div ided by t. A l ternate ly [Jaumard et ai, 199l] one 
can apply the lemma of [Dinkelbach, 1967] for fract ional 
programming and solve ( l ) - ( 3 ) , (16) by a sequence of 
linear programs. Again column generation techniques 
apply and comput ing t ime is not much larger than for 
standard (PSAT) problems of the same size [Jaumard et 
a/., 1991]. Intervals for condit ional probabi l i ty values 
can be handled as for usual probabil i t ies. 

[Fagin et a/., 1990] develop a logic for reasoning about 
probabil i t ies which extends the results of [Nilsson, 1986]. 
In part icular they consider l inear expressions in the prob­
abilities Wj. If some of these are unknown, such expres­
sions can be handled w i th in the column generation ap­
proach, again by keeping separate expl ic i t columns. 

A step further is made by [Colet t i , 1994] who consid­
ers qual i ta t ive probabi l i t ies or condit ional probabil i t ies: 
their values are unknown but a par t ia l order on them 
is assumed to be given. The result ing generalization of 
( P S A T ) remains linear for probabi l i t ies but is a nonl in­
ear nonconvex problem for condi t ional probabi l i t ies and 
thus hard to solve. [Colet t i , 1994] presents condit ions of 
consistency for such problems. 

If a system of sentences is not consistent, which easily 
happens after addi t ion of rules by different experts, one 
may seek to restore consistency w i t h min ima l changes. 
A first cr i ter ion is to min imize the sum of increases of 
the probabi l i ty intervals, possibly weighted to express 
the degree of confidence of the expert in his evaluations. 
This leads to the fol lowing linear program [ jaumard et 
a/., 1991]: 

subject to : 

where in the decrease in the lower bound (increase 
in the upper bound) on the probabi l i ty of and 
are at tenuat ion factors for these changes. 

Another cr i ter ion is to min imize the number of sen­
tences to remove in order to restore consistency. The 
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The probabi l i ty of any sentence S i may be computed 
in a simi lar way. For other types of operations answer-
able by Bayesian networks and in part icular for propa­
gat ion of evidence, see, e.g., [Pearl, 1988], [Andersen et 
ai, 1994]. 

The Bayesian Logic proposed by [Andersen et al, 
1994] consists in using the ( P S A T ) model to interpret 
probabi l i ty statements associated w i t h Bayesian net­
works and then to s tudy various generalizations. To this 
effect condi t ional independence statements are encoded 
as addi t ional nonlinear constraints. These constraints 
have the general f o rm 

(17) 

where A, B and C are sets of proposit ional variables, 
w i t h \A\ = a, \B\ = 6, \C\ — c and Ao, Bo and Co are sets 
of fixed atomic proposit ions. [Andersen et ai, 1994] show 
tha t there are (2 a —1)2b(2C —1) nonredundant constraints 
among those described by (17). From the def ini t ion of 
condi t ional probabi l i ty , (17) is equal to 

[Andersen et ai, 1994] propose to solve the extended 
( P S A T ) model w i th constraints (17) by generalized Ben­
ders decomposit ion. Fol lowing that approach the prob-
lem is spl i t in to a nonlinear master problem in the n 
variables and a linear subproblem in the p variables, of 
the ( P S A T ) type. The subproblem is used to generate 
f rom its dua l , linear constraints in the n variables, called 
Benders cuts, as long as it is infeasible. These cuts are 
added to the master problem. The procedure stops af­
ter a finite number of steps when the master problem 
is infeasible or the subproblem is feasible. The master 
problem has the fo rm of a signomial geometric program 
for which specialized algor i thms exist. Such problems 
belong to global opt imizat ion and only instances w i t h 
few variables can be solved in reasonable t ime. Th is ap-
parent ly l imi ts the scope of Bayesian logic, even if the 
number of π variables is much smaller than the num­
ber of p variables. Fortunately, there are many cases in 
which one need only add linear constraints to ( P S A T ) to 
express the independence assumptions of Bayesian net­
works and generalizations of them. 

T h e o r e m 4 Computing the probability of a sentence S, 
in a Bayesian network can be expressed as a (PSAT) prob­
lem with conditional probabilities. 

Proof. Condi t ional probabi l i t ies for nodes given the 
t r u t h value of their immediate predecessors can be ex­
pressed by (15) and marginal probabi l i t ies by (2). For 
independence condit ions, let Bj denote the set of atomic 
proposit ions associated w i t h immediate predecessors of 
VJ and Aj a similar set for non immediate predecessors 
of vj. Then the condit ion 

1866 REASONING UNDER UNCERTAINTY 



The op t ima l value is 0.26863. 
Clearly the number of sets of non-immediate prede­

cessors of a node may be exponential . However, not 
all corresponding constraints need be wr i t ten . [Lau-
ritzen et a/., 1988] explain how to represent indepen­
dence relations by an undirected graph G' in which all 
pairs of immediate predecessors are jo ined and edges are 
added un t i l the graph is t r iangulated. Then the jo in t 
probabi l i ty d is t r ibu t ion can be expressed as a product 
of marginal probabi l i ty d ist r ibut ions on the maximal 
cliques of G ' , adequately scaled. [Van der Gaag, 1990] 
[Van der Gaag, 199l] proposes to use this property in a 
decomposition method for ( P S A T ) , discussed in a com­
panion paper ( [Douanya et al, 1995]). It is shown there 
that the usual ( P S A T ) model gives the same bounds as 
the decomposition-based version. Consequently ( P S A T ) 
takes impl ic i t l y in to account in the computat ion of the 
bounds the condi t ional independence constraints (18) in ­
volving variables which do not al l belong to the same 
maximal clique. 

E x a m p l e (continued). A graph G' associated w i th 
the example after deletion of v5 and v6 is composed 
of triangles on v1,v2,V3 and on V2,v3,V4. This shows 
that when comput ing bounds on prob (x2Ix1 x3 one 
neeed not take expl ic i t ly into account the constraints 
prob , i.e., the four last 
ones listed above. 

[Andersen c/ a/., 1994] also explore cases where the 
number of independence constraints is l imi ted. The main 
interest of Bayesian logic is not , however, to propose an 
alternate method for the computat ion made in Bayesian 
networks, but to consider more general assumptions. 
E x a m p l e (continued). Assume as done by [Andersen et 
a/., 1994] that the atomic propositions x5 and x6 are not 
independent. Then, 0.25 < p r o b ( x ) < 0 4 0 . Replacing 
the line g iv ing the marginal probabi l i ty of a:4 by 

min imiz ing and max imiz ing yields bounds of 0.21786 and 
0.28358. Note that when using Benders decomposition 
the computat ion of the lower bound required 57 itera­
tions, i.e., solut ion of 57 ( P S A T ) and 57 signomial geo­
metric p rogramming problems. 

As discussed in [Andersen et a/., 1994], many other ex­
tensions of Bayesian networks can be considered w i th in 
the ( P S A T ) f ramework: one can replace single proba­
bi l i ty values by intervals, add constraints of different 
types than the condi t ional impl icat ions, allow for net­
works w i th cycles, etc. Not al l extensions w i l l remain 
linear. For instance, i f in the example, the marginal 
probabil i t ies for x5 and X6 are replaced by intervals and 
the independence assumption is kept a quadratic con­
straint 

arises. The resul t ing quadrat ic programs can be solved 
in many ways using global opt imizat ion techniques. 
Finding which are most efficient is an open problem. 

To conclude, ( P S A T ) appears to be a flexible and com-
putat ionnal ly t ractable model for reasoning under un­
certainty. It has already been extended in many ways, 

while remaining linear. Further explorat ion of the prob­
lems which may be so expressed and of solut ion methods 
for the nonlinear case are at t ract ive topics for fu ture re-
search. 
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