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Abstract

Choosing appropriate models is crucial in an-
alyzing complex physical phenomena, espe-
cially when supercomputing resources and com-
plex partial differential equations are involved.
This paper presents an approach to formulat-
ing mathematical models guided by the struc-
ture of a domain theory and the gross behavior
of a physical problem. The approach is mo-
tivated by the observation that many physical
domains, though complex and computationally
expensive to analyze, have strong domain the-
ories based on a few fundamental conservation
laws and well-defined physical processes. Fur-
thermore, modeling decisions have to be guided
by the behavior specific to a physical problem
that the system is trying to model. By ex-
ploiting a domain theory and using problem
specific behavior, the approach offers an uni-
form and efficient way of formulating models
of various complexity, ranging from algebraic,
ordinary to partial differential equations. The
approach has been implemented in a computer
program, MSG, and tested in the heat transfer
domain.

1 Introduction

Modeling is an important first step in scientific compu-
tation and engineering analysis. To understand a phys-
ical phenomenon requires a representation of the phe-
nomenon in the form of a mathematical model, carry-
ing out simulations of the model, and interpreting the
data from the simulations. The form of the model
has a dramatic impact on the cost and the accuracy
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in understanding the phenomenon. The impact is even
more significant in analyzing complex physical phenom-
ena that require high performance and supercomputing
resources. A few crucial approximations can transform
complex partial differential equations to ordinary differ-
ential equations or algebraic equations, with the differ-
ences in resource requirements between supercomputers
and workstations.

This paper describes an approach to formulating mod-
els. The models include not only algebraic and ordinary
differential equations for modeling lumped phenomena,
but also partial differential equations for modeling dis-
tributed phenomena, i.e. values of physical phenomena
vary with time and spatial dimensions. This approach is
based on two principles:

+ the use of the structure of a domain theory

- to focus the approximations on choosing the
types and the number of basic physical pro-
cesses, and

— to sequence the modeling process around the
structure of the conservation laws.

+ the use of the gross behavior of a physical phe-
nomenon, obtained through simple approximate
models, to guide its modeling decisions.

The approach is targeted to domains where strong
domain theories exist and simple approximate models
for estimating gross behavior are available. It is mo-
tivated by the observation that many physical domains
have strong and well-defined domain theories from which
models are derived. These domain theories are based on
several fundamental conservation laws and well-defined
physical processes that are governed by domain-specific
laws. Examples of these domains are heat transfer, fluid
mechanics and structural analysis where the laws of con-
servation of mass, of energy, and of momentum are the
fundamental laws and the domain-specific laws relate the
basic processes of mass, energy and momentum to the
properties of materials in their respective domains. By
organizing the modeling process around the structure of
a domain theory, we can provide an uniform approach
to formulating models of various complexity.

The approach is also motivated by the need ofincorpo-
rating problem specific behavior of physical phenomena
into modeling decisions. A model reflects the behavior



of a physical problem at hand and the decisions behind
the models have to be made within the context of the
behavior. But how do we obtain the problem specific
behavior to guide the modeling decisions? Simple and
approximate models exist in a domain that can be used
to obtain the gross behavior of a problem. These models
only give the estimates of the gross behavior of a prob-
lem, e.g., the maximum temperature drop instead of the
temperature distribution in a solid. However, these mod-
els are simple to compute, and the gross behavior is often
adequate for making the modeling decisions. Using the
gross behavior of a problem, obtained from these ap-
proximate models, allows a system to quickly focus on a
likely candidate model for the problem at hand.

The approach has been implemented in a computer
program, MSG (Model Selection and Generation), which
formulates mathematical models in the heat transfer do-
main. The models in this domain involve algebraic, or-
dinary and partial differential equations, for modeling
lumped and distributed heat transfer phenomena.

The paper is structured as follows. Section 2 intro-
duces the domain theory of heat transfer and its im-
plications for organizing the modeling process. Section
3 presents the gross behavior of heat transfer and the
methods for obtaining them. Section 4 describes the
program MSG implementing this approach and an ex-
ample problem. Section 5 describes several features of
this approach. Section 6 compares this approach with
related work, followed by the summary in Section 7.

2 Modeling Process Structured by
Domain Theory

Many complex physical domains have well-developed do-
main theories that are based on several fundamental con-
servation laws and a set of physical processes defined by
domain specific laws. The basic physical processes are
the underlying concepts and entities. They are related
to other physical properties in the domain through the
domain specific laws. The conservation laws govern the
interactions of these basic processes, and dictate how
these processes are composed into a model. Heat trans-
fer is one of these domains. In the domain of heat trans-
fer, the fundamental law is the conservation of energy
and the three basic processes are conduction, convection
and radiation heat transfer, defined by the Fourier's law
of conduction, the Newton's law of convection and the
Stefan-Boltzmann law of radiation. When a temperature
gradient is imposed on an object from its environment,
instances of the basic heat transfer processes occur and
their interaction is governed by the law of conservation
of energy. This law says that the net change of energy
stored within any bounded region of space, i.e., a con-
trol region1, is equal to the net heat flow into the region
plus any internal heat generation within the region. All
mathematical models, regardless of their complexity, are
based on this conservation law.

One way to view this conservation law is in the form

" Also called a control volume

of
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D=k
where Q,s represent in§tnces of basic heat transfer pro-
cesses acting on surfaces of the region or internal heat
generation processes within the region, and E represents
internal energy change or energy storage within that re-
gion. Regardless of the complexity of heat transfer mod-
els and the various forms in which the models appear,
all of them can be traced to this form.

This general and yet simple form has two implications
for the modeling process. The first implication is for the
approximation decisions. Since a model is a representa-
tion of this conservation law and the physical processes
instantiated for a region in space, the choice of these
processes will affect the final form of the model. Var-
ious types and number of processes can be chosen. A
model representing a few physical processes is less com-
plex. Similarly, a model representing lumped processes,
i.e. processes which are assumed constant with respect
to time and space, is less complex than a model repre-
senting differential processes, i.e. processes varying with
respect to time and space. In other words, the complex-
ity ofa model depends on the choices of processes, and all
the approximations in this domain are focused on choos-
ing the types and the number of processes. A corollary
to the focus of choosing physical processes is that the
modeling process is compositional at the level of physi-
cal processes. The conservation law provides a template
to put an arbitrary number of processes together once
they are chosen. Processes are put in the right or left
hand sides of the equation depending on their types.

The form of a model depends on the choices of physical
processes. However, these processes depend on the type
of a control region where the conservation law is instan-
tiated and the type of query that a model is supposed
to answer. This dependency constrains how modeling
choices should be made. In other words, the model-
ing decisions and approximations are not totally inde-
pendent of one another. Some of the decisions are con-
strained by earlier decisions. This dependency suggests
a way to organize the modeling process in the following
sequence.

1. First, decide on the control regions of an object.

2. For each control region, identify the potential ac-
tive heat transfer and energy storage processes, and
make approximations on them.

3. Finally, turn the processes into symbols in equa-
tions, simplify the equations, and provide relevant
initial and boundary equations to make the models
well-formed.

3 Modeling Decisions Guided by Gross
Behavior

The domain theory provides a set of modeling decisions,
and a way of organizing those decisions. How are these
modeling decisions made? In particular, how can a sys-
tem choose the control regions and the physical processes
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such that the final model is a candidate representing a
physical problem with certain accuracy?

To choose a candidate model, the system must be
guided by the behavior specific to the problem that the
system is trying to model. For example, if the tempera-
ture distribution of a problem is relatively constant in the
x dimension, the system will choose heat transfer pro-
cesses lumped in the x dimension, resulting in a model
with the temperature function independent of x. The
question is: how does a system know the temperature is
constant in x? To know the behavior requires a model,
but a model is what the system is looking for in the first
place. The situation becomes a vicious circle, where in-
telligent modeling requires knowing a lot about a phys-
ical problem at hand. To know the problem requires
a model, which in turn begs the question of where the
model comes from.

One way to avoid this vicious circle is to use simple
models to estimate the behavior of a problem. These
models are simple to compute. They are domain spe-
cific. They are mostly expressed in terms of ratios and
dimensionless numbers. They are approximate in the
sense that they only predict gross behavior of a prob-
lem. However, the gross behavior is often adequate for
guiding modeling decisions. These simple and approxi-
mate models exist in the heat transfer domain and allow
this approach to incorporate problem-specific behavior
into its modeling decision. For example, a control re-
gion can be lumped in the x dimension in an object
if the temperature distribution is constant in that di-
mension. Instead of finding the temperature distribution
T(x), the approach estimates the maximum temperature
drop axT in the object in the x dimension. ,xT is the
gross behavior of T(x) because it only predicts the max-
imum drop. It does not give the temperature value at
every point in x, as T(x) does. Ifthat maximum temper-
ature drop is smaller than a threshold, then the approach
infers that the temperature function is constant in the x
dimension?.

Instead of using a complex model to estimate T(x),
the approach can use some simple models to estimate
axT. For example, sxT in a single-component solid
can be estimated from the Biot number [incropera and
DeWitt, 1990], hL/k, where hkL are respectively the
convection coefficient, the conductivity and the thickness
of an object in x. This ratio is simple to calculate and
the values of h, L, k can be obtained from the input de-
scription of a problem. The rule for choosing a lumped
control region in the x direction for a single component
object then becomes:

If the biot number hlL/k is less than the thresh-
old of 0.1, choose a lumped control region in x.

For a multi-components object, the maximum temper-
ature drop in each component can be estimated by its
thermal resistance over the total thermal resistance of
the object, and the control region for each component
can be chosen using similar rules. Other simple mod-
els for estimating the relative magnitude of heat transfer

2subject to some assumptions about the temperature
profile.
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processes and the rules for choosing them are obtained
from domain experts, and the textbooks [incropera and
DeWitt, 1990; Jaluria and Torrance, 1986].

Besides using simple and approximate models to esti-
mate the gross behavior of a problem, the approach also
relies on a set of thresholds to determine the conditions
under which approximations can be made, e.g. the value
ofthe Biot number less than 0.1. These thresholds are es-
tablished based on the empirical and experimental stud-
ies of previous heat transfer problems. These thresholds
are calibrated against accuracy requirements, and they
establish the conditions for making approximations such
that the output result of the model would meet certain
accuracy. For example, the Heisler charts [Heisler, 1947]
present the relations between temperature distributions
and the Biot number for various regular shape objects.
From these charts, the maximum error for assuming uni-
form temperature distributions when the Biot number is
less than 0.1 is less than 5%. Other studies have also
been done to calibrate other thresholds for choosing var-
ious types and number of heat transfer processes [Ling,
1994].

4 MSG: the Program

This section presents MSG, the computer system that
has been implemented based on this approach for mod-
eling heat transfer. MSG is focused on choosing mathe-
matical models for typical heat transfer engineering anal-
ysis where accurate results with a typical error of less
than 10% would be expected. The mathematical models
are for modeling lumped and distributed heat transfer
behavior in regular shape objects of single and multiple
components.

The input to MSG is

*+ A description of an object in terms of its geome-
try, components, connections, material properties,
initial and boundary conditions.

* A query that a model is required to answer, and its
spatial and temporal attributes, e.g., T(x,{) would
ask the temperature varied in the x spatial dimen-
sion and time.

The output is:

« A mathematical model expressed in terms of a set
of equations, and

« A set of assumptions which the system makes for
that model.

The top level description of MSG follows the sequence
of choosing control regions, then heat transfer processes,
and finally transforming processes into mathematical
forms, as shown in Figure 1. The approximate methods
for estimating gross behavior and the thresholds cali-
brated to the accuracy requirement of less than 10% er-
ror are encoded within MSG.

1-D Transient Model

The example involves heat transfer analysis ofa com-
posite made of two plates of brick and gypsum, having
the same width and height dimensions, 0.3 m on all sides,
and the same thickness, 0.02 m, shown in Figure 2. Plate

4.1 An example:



1. Preprocessing:
o identify common surfaces between components
and environments.

¢ compute the thermal resistance R; of each com-
ponent C5 in an object in each spatial dimen-
sion.

e compute the total thermal resistance Rqeq for
the object in each dimension by summing R;.

2. Choices of Control Regions:

¢ if the object has one component, use the Biot
number < the lumping threshold to cheose the
control region along each spatial dimension

e if the object has multiple components, choose
the control region CV; for each component i by
comparing the ratio R,/Ripta1 < the lumping
threshold along each dimension,

3. Choices of Physical Processes:

e instantiates processes {E, (;..} for each CV;

e eliminate E if the response time ratio or
AT/T,.; < the transient threshold

s eliminate Q,s if Q, & Q, or Q, = 0.0 or as-
pect ratio <€ the spatial threshold or ...

¢ approximate linear properties P if AP/ Payerage
< the linear threshold

4. Mathematical Transformations:

» For each CV;, transforms {E,Q,} into E =
Q-‘ + ..

o instantiates an initial condition equation for
each E‘,

 instantiates boundary condition equations for
Qdi}_funon in each CV;,

¢ expand E or Q into expressions containing the
temperature distribution T if the query is T,

¢ instantiates temperature continuity 7; = T;
along the common surfaces between the com-
ponents, ¢, j.

Figure 1: Top level Description of the MSG Algorithm
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Figure 2: Two Plates Object

A has conductivity of 0.72 W/m.K, specific-heat of 835
J/kg.K, and density of 1920 kg/m3. Plate B has con-
ductivity of 0.22 W/m.K, specific-heat of 1085 J/kg. K,
and density of 1680 kg/m3. Their initial temperature
is 273.15 K. They are exposed to an environment of
temperature 473.15 K with convection heat coeflicient
of 50 W/m?.K. The query involves the temperature of
both plates with respect to all three spatial dimensions
and time, i.e., T(z,y,2,t). The following iz a trace of
major steps that generates a one-dimensional transient
heat transfer model for the composite plates.

1. Preprocessing:
¢ MSG first identifies a commeon surface between
Plates A and B.
» Thermal Resistances for Plate 4, Plate B are
0.091 K.m?/W, and 0.028 K.m?/W. Ther-
mal resistance for each environment is 0.02
Km?/W.
o Total resistance is 0.159 K.m?/W.
2. Choices of Control Regions:

e Since the obiect is a two-plates object, MSG
uses thermal resistance ratios to determine the
type of control region in each plate. R4/ Riotar
18 equal 0.57 and Rg/Ricear 18 equal to 0.18.
Both of them are greater than the lumping
threshold of 0.1. Differential control regions,
CV4,CVpg, are chosen for both platea.

3. Choices of Physical Processes:

e For the differential control region CV,, MSG
instantiates a set of processes
{E,Q:, ...Q,M,_}, which contains the conduc-
tion processes @ in the z,y,z dimensions and
the energy storage process E.

* MSG uses the aspect ratios to estimate the
magnitudes of conduction processes in the
iy, z dimensions. Both the aspect ratios are
0.07, smaller than the spatial threshold of 0.1,
MSG removes Qy, Qyiday, @:, Q:4q: from the
set and reduces the final set of processes to
{E’Q-ts Qx+d1}'_

e MSG retains F since AT/T.p = (473.15-
273.15)/473.15 is larger than the transient
threshold.

o Linear properties are chosen for their input val-
ues which are constant.

e Similar choices are made with respect to the
control region CVp.

4. Mathematical Transformations:

o MSG maps {E1 Q- ,_Q,+¢,} into a mathemati-
cal equation Q; — Q,+d: = E for CV,4.

¢ Since the query involves temperature, MSG ex-
pands the equation Q; — Q445 = E into the
governing equation shown in Figure 3.

o MSG instantiates an initial condition equation,
Ta(z,0) = 273.15 for CV,.

o MSG instantiates two boundary condition
equations at £ = ),z = =4 for CVj,.

LING 1769



Gov:arning Equation:

lu%—Ts* = pACA"E,}

kBHF ppCpo3e

Imtm’] conditions:

Ta(z,0) = 273.15

Tg(z,0) = 273.15

Boundary conditions:

I = 0 hel[Tl —_ TA) = -—k_,l dar
z=zA:—-kpia — _ AQA
z=—z4:T, _‘ﬁ;
r=2A+zB:—h(T.a —Tg)= —kﬂ y

Figure 3: 1-D Transient Model
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I d I / a \
ka |-———- temp_a(x)| = rho_a cv_a |-~~~ temp_na(t)|

I 2 [ \ dt

\ dx /

init_eqn_a := 273.15

/ d \
-k a |====~ temp_a(x)| = - h_el (temp_a - temp_eol)
\ dx /

Figure 4: Part of MSG’s Actual Output

¢ Because of a common surface between the plate
A and B, MSG iustantiates Ty = Tp at z =
zA.

e Similar steps are repeated for CVp except only
one boundary condition is instantiated at z =
zA + 2B. The boundary condition at x = =4
has already been instantiated in the previous
step for CVy4.

The final model, shown in Figure 3, has two govern-
ing equations (PDE) describing the temperature distri-
bution in the plates in the x direction, four boundary
equations for the surfaces of the plates and two initial
conditions. Part of the actual output from MSG is shown
in Figure 4.

4.2 Implementation and Testing

MSG has been implemented in Common Lisp and CLOS
and interfaced with MAPLE, a mathematical manipu-
lation system. The system is able to formulate heat
transfer models for single and multiple components
of rectangular shape geometries, including composite
plates, concentric shell and L-shaped blocks. The sys-
tem has been tested with 27 problems taken from two
heat transfer textbooks [incropera and DeWitt, 1990;
Jaluria and Torrance, 1986] and 16 hand-crafted prob-
lems. The textbook problems come from heat transfer
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analysis in walls, in ovens, in cooling of electronic cir-
cuits and in materials bonding. The list of examples are
listed in [Ling, 1994]. The examples cover three kinds of
queries. They are: energy storage, heat flux and tem-
perature distribution varying with respect to spatial and
time dimensions. The models range from coupled nonlin-
ear three dimensional partial differential equation mod-
els to algebraic equations.

5 Discussion

This section describes several issues and consequences of
using a domain theory and problem specific behavior to
guide modeling decisions.

5.1 Models Consistent with Domain
Theory

Models are not just symbols and equations to produce
numerical results. They represent physical realities of a
domain. Engineers and scientists use models to obtain
numerical data and use the data to guide their activities
in physical world, such as planning physical experiments
and building artifacts. To be able to use the numeri-
cal data and to have confidence in the data, they must
be able to interpret their models as representing valid
physical realities according to the theory of a domain.
While they are interested in the accuracy of a model,
they would also like the model to be consistent with the
basic domain theory. Given a choice, they do not want
models which just curve-fit the data without relation-
ships to the underlying physics of a domain. The issue
is especially important in formulating models in a do-
main with a well-established theory, where models are
seen as instances of the theory applied to physical phe-
nomena. However, some approximations, such as the
order of magnitude approximation, can lead to approxi-
mate models that are inconsistent with a domain theory,
if they are applied to mathematical equations syntacti-
cally. This is illustrated in the following two examples.

In the order of magnitude approximation, a mathe-
matical expression A— B is simplified to A when A >> B,
i.e., the numerical value of A is much greater than the
numerical value of B where the notion of much greater
is defined by some numerical measure.

First Example The first example invelves a model rep-
resenting the radiant heat exchange between a sur-
face and its surroundings, shown in the left side of
Figure 5. The model is ce(T¥ — T3) where o rep-
resents the Stefan-Boltzmann constant, € represents
emissivity of a surface, T} the temperature at sur-
face and T3, the temperature at its environment.
Assuming that T¢ » 73, then the order of magni-
tude approximation can simplify the original model
to a simplified model oeT}, representing a single
radiant heat flux emitted from the surface at tem-
perature Tj. The simplified model is consistent with
the heat transfer theory.

Second Example The second example involves a
model representing the convection heat exchange
between a surface and its surroundings, shown in
the right side of Figure 5. The model ia A A(Ty —T3)
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Figure 5: Two examples of the Order of Magnitude Approximations

where h represents the convection heat coefficient,
A represents the area of a surface, T4 the tempera-
ture at surface and T,, the temperature at its envi-
ronment. Assuming that T,> T,, then the order of
magnitude approximation can simplify the model to
a simplified model hAT,. However, that simplified
model is not consistent with the heat transfer the-
ory as the expression does not represent any valid
heat transfer process. The original model represents
a convection heat flux and eliminating T, from the
original model destroys its definition, i.e., convec-
tion heat transfer depends on temperature differ-
ence instead of temperature only.

The two heat transfer examples illustrate the case
where the syntactic use of the order of approximation
can lead to approximate models inconsistent with a do-
main theory. To ensure models consistent with a domain
theory, the order of magnitude approximation cannot be
applied to any arbitrary mathematical expression. It can
only be applied to a set of physical processes in a way
that represents the action of eliminating one or more
physical processes. By focusing the approximations on
choosing the types and the number of physical processes
in adomain, MSG avoids generating models inconsistent
with the heat transfer theory. The constraint of ensuring
consistent models is already built in MSG.

5.2 Constraining Modeling Process

MSG demonstrates that the process of modeling is com-
positional at the level of choosing physical processes.
Furthermore, it demonstrates that a domain theory can
constrain how modeling decisions are made. Some mod-
eling decisions can only be made after other decisions
have been made. For example, formulating boundary
conditions has to be made after choosing physical pro-
cesses, and choosing physical processes has to be made
after choosing control regions. A consequence of con-
straining modeling decisions is that modeling choices

are also constrained by the earlier decisions, leading to
a reduced search space for MSG. If a totally lumped
control region is chosen, MSG does not need to choose
heat transfer processes since a totally lumped model will
only involve an algebraic or ordinary differential equa-
tion, either of which can be efficiently solved with many
processes. Furthermore, MSG does not need to choose
boundary equations for the totally lumped model. The
reduced search space from constraining modeling deci-
sions, and the use of simple approximate model to guide
modeling decisions contribute to the efficiency of MSG.
MSG currently takes less than 4 seconds on a SparcSta-
tion 2 to formulate a model involving coupled partial
differential equations.

MSG demonstrates an uniform approach to formu-
lating models of various complexity in a physical do-
main, from simple algebraic to complex partial differen-
tial equations models. While partial differential equa-
tions are complex to analyze and difficult to compre-
hend, they are formulated in the same way as other sim-
ple models. They do not need a different modeling ap-
proach. The complexity of a model lies not in the way
it is formulated, but in the choices made to the physical
processes.

5.3 Limitations

This approach works because of a strong domain the-
ory, where conservation laws exist and the domain spe-
cific laws are well defined, and approximate numerical
methods and thresholds calibrated against accuracy are
available. These features are present in other domains
as well, such as fluid mechanics [Panton, 1984], based on
textbook analysis and discussions with domain experts.
However, the requirement of a strong domain theory and
the availability of approximate methods and thresholds
[imit this approach to well-established physical domains.
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6 Related Work

Yip [Yip, 1993] uses the asymptotic order of magnitude
approximation to simplify partial differential equation
models in fluid mechanics. His system accepts a de-
tailed mathematical model and the constraints and val-
ues of terms in the model as inputs, and then carries out
the asymptotic order of magnitude approximation on the
input model. MSG differs from his system by using ap-
proximate models to infer the order of magnitude values
of physical processes and by carrying out approximations
on physical processes to ensure models consistent with a
domain theory.

Most of the other modeling work is based on the com-
positional approach pioneered by Falkenhainer and For-
bus [Falkenhainer and Forbus, 1991]. The compositional
approach has a library of model fragments represent-
ing various phenomena in a domain. Given a query
and a physical situation, the approach composes relevant
model fragments into a complete model. Other work
[iwasakiand Levy, 1994; Nayak et al., 1992] has proposed
ways to improve the process of selecting model frag-
ments. MSG differs from the compositional approach
by focusing its modeling decisions on physical processes
and using a domain theory to structure its modeling pro-
cess. By organizing its modeling decisions around a do-
main theory, MSG can formulate models for lumped and
distributed phenomena in an uniform and efficient way.
The compositional approach is aimed at a very broad
class of phenomena, without making any assumption of
a domain theory. MSG relies on a strong domain the-
ory, which makes MSG less broadly applicable than the
compositional approach, especially for a domain with no
well developed theory. The compositional approach can
handle qualitative and quantitative ordinary differential
equations. MSG is focused on quantitative models in-
volving algebraic, ordinary and partial differential equa-
tions. Finally, the compositional approach has paid less
attention to the issue of getting the right level of nu-
merical approximation than to getting a consistent and
coherent model.

Both Addanki et al [Addanki et al., 1991], Ellman et
al [Ellman et a/., 1993] and Weld [Weld, 1992] focus on
model selection. The work of Addanki et al uses graphs
to represent a set of models ofa physical domain, and do-
main specific rules to select models that can resolve the
conflicts between predictions and observation. Weld's
work uses the domain independent technique of inter-
model comparative analysis. Ellman et al use gradient
magnitudes to select models. In all cases, model equa-
tions are explicitly input to the system. MSG differs
from them by constructing a model from the description
of a physical phenomenon.

7 Summary

This paper describes a modeling approach to formulating
complex mathematical models involving partial differen-
tial equations. The approach is targeted to domains with
strong domain theories. The approach organizes its mod-
eling process based on the structure of a domain theory,
and uses simple approximate models to obtain problem
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specific behavior to guide its modeling decisions. By ex-
ploiting these ideas, the approach can offer an uniform
and efficient way to formulate models consistent with a
domain theory. The approach has been implemented in
a computer program, MSG, which formulates algebraic,
ordinary and partial differential equation models in the
domain of heat transfer.
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