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A b s t r a c t 

Choosing appropriate models is crucial in an­
alyzing complex physical phenomena, espe­
cial ly when supercomput ing resources and com-
plex par t ia l dif ferential equations are involved. 
This paper presents an approach to fo rmula t ­
ing mathemat ica l models guided by the struc­
ture of a domain theory and the gross behavior 
of a physical problem. The approach is mo­
t ivated by the observation that many physical 
domains, though complex and computat ional ly 
expensive to analyze, have strong domain the­
ories based on a few fundamenta l conservation 
laws and well-defined physical processes. Fur­
thermore, model ing decisions have to be guided 
by the behavior specific to a physical problem 
that the system is t r y i ng to model . By ex­
p lo i t ing a domain theory and using problem 
specific behavior, the approach offers an un i ­
fo rm and efficient way of fo rmula t ing models 
of various complexi ty, ranging f rom algebraic, 
ordinary to par t ia l dif ferential equations. The 
approach has been implemented in a computer 
program, M S G , and tested in the heat transfer 
domain. 

1 I n t r o d u c t i o n 
Model ing is an impor tan t f irst step in scientific compu­
ta t ion and engineering analysis. To understand a phys­
ical phenomenon requires a representation of the phe­
nomenon in the f o rm of a mathemat ica l model , carry­
ing out simulations of the model , and interpret ing the 
data f rom the simulat ions. The fo rm of the model 
has a dramatic impact on the cost and the accuracy 
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in understanding the phenomenon. The impact is even 
more significant in analyzing complex physical phenom­
ena that require h igh performance and supercomput ing 
resources. A few crucial approximat ions can t ransform 
complex par t ia l differential equations to ordinary differ­
ent ial equations or algebraic equations, w i th the differ­
ences in resource requirements between supercomputers 
and workstat ions. 

Th is paper describes an approach to fo rmula t ing mod­
els. The models include not only algebraic and ordinary 
differential equations for model ing lumped phenomena, 
but also partial dif ferential equations for model ing dis­
t r ibuted phenomena, i.e. values of physical phenomena 
vary w i t h t ime and spatial dimensions. Th is approach is 
based on two principles: 

• the use of the structure of a domain theory 

- to focus the approximat ions on choosing the 
types and the number of basic physical pro­
cesses, and 

— to sequence the model ing process around the 
structure of the conservation laws. 

• the use of the gross behavior of a physical phe­
nomenon, obtained through simple approximate 
models, to guide its model ing decisions. 

The approach is targeted to domains where strong 
domain theories exist and s imple approximate models 
for est imat ing gross behavior are available. It is mo­
t ivated by the observation that many physical domains 
have strong and well-defined domain theories f rom which 
models are derived. These domain theories are based on 
several fundamenta l conservation laws and well-defined 
physical processes that are governed by domain-specific 
laws. Examples of these domains are heat transfer, fluid 
mechanics and st ructura l analysis where the laws of con­
servation of mass, of energy, and of momen tum are the 
fundamenta l laws and the domain-specific laws relate the 
basic processes of mass, energy and momen tum to the 
properties of materials in their respective domains. By 
organizing the model ing process around the structure of 
a domain theory, we can provide an un i fo rm approach 
to fo rmula t ing models of various complexi ty. 

The approach is also mot iva ted by the need of incorpo-
rat ing problem specific behavior of physical phenomena 
into model ing decisions. A model reflects the behavior 
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of a physical problem at hand and the decisions behind 
the models have to be made w i th in the context of the 
behavior. Bu t how do we obta in the problem specific 
behavior to guide the model ing decisions? Simple and 
approximate models exist in a domain that can be used 
to obta in the gross behavior of a problem. These models 
only give the estimates of the gross behavior of a prob­
lem, e.g., the m a x i m u m temperature drop instead of the 
temperature d is t r ibu t ion in a sol id. However, these mod­
els are simple to compute, and the gross behavior is often 
adequate for mak ing the model ing decisions. Using the 
gross behavior of a prob lem, obtained f rom these ap­
proximate models, allows a system to quickly focus on a 
l ikely candidate model for the problem at hand. 

The approach has been implemented in a computer 
program, MSG (Model Selection and Generation), which 
formulates mathemat ica l models in the heat transfer do­
ma in . The models in this domain involve algebraic, or­
dinary and par t ia l differential equations, for model ing 
lumped and d is t r ibuted heat transfer phenomena. 

The paper is structured as follows. Section 2 in t ro­
duces the domain theory of heat transfer and its im ­
plications for organizing the model ing process. Section 
3 presents the gross behavior of heat transfer and the 
methods for obta in ing them. Section 4 describes the 
program MSG implement ing this approach and an ex­
ample problem. Section 5 describes several features of 
this approach. Section 6 compares this approach w i th 
related work, fol lowed by the summary in Section 7. 

2 Model ing Process Structured by 
Domain Theory 

Many complex physical domains have well-developed do­
ma in theories that are based on several fundamental con-
servation laws and a set of physical processes defined by 
domain specific laws. The basic physical processes are 
the under ly ing concepts and entities. They are related 
to other physical properties in the domain through the 
domain specific laws. The conservation laws govern the 
interactions of these basic processes, and dictate how 
these processes are composed in to a model. Heat trans­
fer is one of these domains. In the domain of heat trans­
fer, the fundamenta l law is the conservation of energy 
and the three basic processes are conduction, convection 
and radiat ion heat transfer, defined by the Fourier's law 
of conduct ion, the Newton's law of convection and the 
Stefan-Boltzmann law of radiat ion. When a temperature 
gradient is imposed on an object f rom its environment, 
instances of the basic heat transfer processes occur and 
their interact ion is governed by the law of conservation 
of energy. Th is law says that the net change of energy 
stored w i t h i n any bounded region of space, i.e., a con­
t ro l region1 , is equal to the net heat f low in to the region 
plus any internal heat generation w i th in the region. A l l 
mathemat ica l models, regardless of their complexity, are 
based on this conservation law. 

One way to view this conservation law is in the fo rm 

1 Also called a control volume 

of 

where Q,s represent instances of basic heat transfer pro­
cesses act ing on surfaces of the region or internal heat 
generation processes w i t h i n the region, and E represents 
internal energy change or energy storage w i t h i n that re­
gion. Regardless of the complexi ty of heat transfer mod­
els and the various forms in which the models appear, 
al l of them can be traced to this fo rm. 

Th is general and yet simple fo rm has two impl icat ions 
for the model ing process. The first imp l ica t ion is for the 
approx imat ion decisions. Since a model is a representa­
t ion of this conservation law and the physical processes 
instant iated for a region in space, the choice of these 
processes w i l l affect the final fo rm of the model . Var­
ious types and number of processes can be chosen. A 
model representing a few physical processes is less com­
plex. Simi lar ly, a model representing lumped processes, 
i.e. processes which are assumed constant w i t h respect 
to t ime and space, is less complex than a model repre­
senting differential processes, i.e. processes varying w i t h 
respect to t ime and space. In other words, the complex­
i ty of a model depends on the choices of processes, and a l l 
the approximat ions in this domain are focused on choos­
ing the types and the number of processes. A corol lary 
to the focus of choosing physical processes is that the 
model ing process is compositional at the level of physi­
cal processes. The conservation law provides a template 
to put an arb i t rary number of processes together once 
they are chosen. Processes are put in the r ight or left 
hand sides of the equation depending on their types. 

The fo rm of a model depends on the choices of physical 
processes. However, these processes depend on the type 
of a control region where the conservation law is instan­
t iated and the type of query that a model is supposed 
to answer. Th is dependency constrains how model ing 
choices should be made. In other words, the model­
ing decisions and approximat ions are not to ta l ly inde­
pendent of one another. Some of the decisions are con­
strained by earlier decisions. Th is dependency suggests 
a way to organize the model ing process in the fol lowing 
sequence. 

1. F i rs t , decide on the control regions of an object. 

2. For each control region, ident i fy the potent ia l ac­
t ive heat transfer and energy storage processes, and 
make approximat ions on them. 

3. Final ly, tu rn the processes into symbols in equa­
tions, s impl i fy the equations, and provide relevant 
in i t ia l and boundary equations to make the models 
wel l - formed. 

3 Modeling Decisions Guided by Gross 
Behavior 

The domain theory provides a set of model ing decisions, 
and a way of organizing those decisions. How are these 
model ing decisions made? In part icular, how can a sys­
tem choose the control regions and the physical processes 
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such that the final model is a candidate representing a 
physical problem w i t h certain accuracy? 

To choose a candidate mode l , the system must be 
guided by the behavior specific to the problem that the 
system is t r y i ng to model . For example, i f the tempera-
ture d is t r ibu t ion of a problem is relat ively constant in the 
x d imension, the system w i l l choose heat transfer pro­
cesses lumped in the x dimension, result ing in a model 
w i t h the temperature funct ion independent of x . The 
question is: how does a system know the temperature is 
constant in x? To know the behavior requires a model , 
but a model is what the system is looking for in the first 
place. The s i tuat ion becomes a vicious circle, where in ­
tel l igent model ing requires knowing a lot about a phys­
ical problem at hand. To know the problem requires 
a mode l , which in t u rn begs the question of where the 
model comes f rom. 

One way to avoid this vicious circle is to use simple 
models to estimate the behavior of a problem. These 
models are simple to compute. They are domain spe­
cific. They are most ly expressed in terms of rat ios and 
dimensionless numbers. They are approximate in the 
sense that they only predict gross behavior of a prob-
lem. However, the gross behavior is often adequate for 
gu id ing model ing decisions. These simple and approx i ­
mate models exist in the heat transfer domain and al low 
this approach to incorporate problem-specific behavior 
in to i ts model ing decision. For example, a control re­
gion can be lumped in the x dimension in an object 
i f the temperature d is t r ibut ion is constant in tha t d i ­
mension. Instead of f inding the temperature d is t r ibu t ion 
T ( x ) , the approach estimates the m a x i m u m temperature 
drop ∆xT in the object in the x dimension. ∆XT is the 
gross behavior of T(x) because it only predicts the max­
i m u m drop. I t does not give the temperature value at 
every point in x, as T(x) does. If tha t m a x i m u m temper­
ature drop is smaller than a threshold, then the approach 
infers that the temperature funct ion is constant in the x 
dimension2 . 

Instead of using a complex model to estimate T ( x ) , 
the approach can use some simple models to estimate 
∆XT. For example, ∆XT in a single-component solid 
can be estimated f rom the Biot number [ incropera and 
D e W i t t , 1990], hL/k, where h,k,L are respectively the 
convection coefficient, the conduct iv i ty and the thickness 
of an object in x. Th is rat io is simple to calculate and 
the values of h, L, k can be obtained f rom the inpu t de­
script ion of a problem. The rule for choosing a lumped 
control region in the x direct ion for a single component 
object then becomes: 

If the biot number hL/k is less than the thresh­
o ld of 0 .1 , choose a lumped control region in x. 

For a mult i -components object, the m a x i m u m temper­
ature drop in each component can be estimated by i ts 
thermal resistance over the to ta l thermal resistance of 
the object, and the control region for each component 
can be chosen using simi lar rules. Other simple mod­
els for est imat ing the relative magni tude of heat transfer 

2subject to some assumptions about the temperature 
profile. 

processes and the rules for choosing them are obtained 
f r om domain experts, and the textbooks [ incropera and 
D e W i t t , 1990; Jalur ia and Torrance, 1986]. 

Besides using simple and approximate models to esti­
mate the gross behavior of a problem, the approach also 
relies on a set of thresholds to determine the condit ions 
under which approximat ions can be made, e.g. the value 
of the Bio t number less than 0 .1 . These thresholds are es­
tablished based on the empir ical and experimental s tud­
ies of previous heat transfer problems. These thresholds 
are cal ibrated against accuracy requirements, and they 
establish the condit ions for mak ing approximat ions such 
that the ou tpu t result of the model would meet certain 
accuracy. For example, the Heisler charts [Heisler, 1947] 
present the relations between temperature d ist r ibut ions 
and the B io t number for various regular shape objects. 
From these charts, the m a x i m u m error for assuming un i ­
fo rm temperature distr ibut ions when the Biot number is 
less than 0.1 is less than 5%. Other studies have also 
been done to cal ibrate other thresholds for choosing var­
ious types and number of heat transfer processes [L ing, 
1994]. 

4 MSG: the Program 
Th is section presents M S G , the computer system tha t 
has been implemented based on this approach for m o d ­
el ing heat transfer. MSG is focused on choosing mathe­
mat ica l models for typ ica l heat transfer engineering anal­
ysis where accurate results w i t h a typical error of less 
than 10% would be expected. The mathemat ica l models 
are for model ing lumped and d is t r ibuted heat transfer 
behavior in regular shape objects of single and mul t ip le 
components. 

The input to MSG is 

• A descript ion of an object in terms of i ts geome­
try, components, connections, mater ia l properties, 
i n i t i a l and boundary condit ions. 

• A query that a model is required to answer, and its 
spat ial and tempora l at t r ibutes, e.g., T(x,t) would 
ask the temperature varied in the x spatial d imen­
sion and t ime. 

The ou tpu t is: 

• A mathemat ica l model expressed in terms of a set 
of equations, and 

• A set of assumptions which the system makes for 
tha t mode l . 

The top level descript ion of M S G follows the sequence 
of choosing control regions, then heat transfer processes, 
and f inal ly t ransforming processes in to mathemat ica l 
forms, as shown in Figure 1. The approximate methods 
for est imat ing gross behavior and the thresholds cal i ­
brated to the accuracy requirement of less than 10% er­
ror are encoded w i t h i n M S G . 

4 .1 A n e x a m p l e : 1-D T r a n s i e n t M o d e l 
The example involves heat transfer analysis of a com­

posite made of two plates of br ick and gypsum, having 
the same w i d t h and height dimensions, 0.3 m on a l l sides, 
and the same thickness, 0.02 m, shown in Figure 2. Plate 
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4.2 I m p l e m e n t a t i o n a n d T e s t i n g 
MSG has been implemented in Common Lisp and CLOS 
and interfaced w i t h M A P L E , a mathemat ica l man ipu ­
la t ion system. The system is able to formulate heat 
transfer models for single and mul t ip le components 
of rectangular shape geometries, including composite 
plates, concentric shell and L-shaped blocks. The sys­
tem has been tested w i t h 27 problems taken f r om two 
heat transfer textbooks [ incropera and D e W i t t , 1990; 
Jalur ia and Torrance, 1986] and 16 hand-crafted prob-
lems. The textbook problems come f rom heat transfer 

analysis in walls, in ovens, in cooling of electronic cir­
cuits and in materials bonding. The l ist of examples are 
l isted in [L ing, 1994]. The examples cover three kinds of 
queries. They are: energy storage, heat f lux and tem­
perature d is t r ibu t ion vary ing w i t h respect to spat ial and 
t ime dimensions. The models range f rom coupled non l in­
ear three dimensional par t ia l differential equation m o d ­
els to algebraic equations. 

5 Discussion 
Th is section describes several issues and consequences of 
using a domain theory and problem specific behavior to 
guide model ing decisions. 

5.1 M o d e l s C o n s i s t e n t w i t h D o m a i n 
Theory 

Models are not jus t symbols and equations to produce 
numerical results. They represent physical realities of a 
domain . Engineers and scientists use models to obta in 
numerical data and use the data to guide their act ivi t ies 
in physical wor ld , such as p lanning physical experiments 
and bu i ld ing art i facts. To be able to use the numer i ­
cal data and to have confidence in the data, they must 
be able to interpret their models as representing val id 
physical realities according to the theory of a domain . 
Wh i l e they are interested in the accuracy of a model , 
they would also l ike the model to be consistent w i th the 
basic domain theory. Given a choice, they do not want 
models which jus t curve-fit the data w i thou t relat ion­
ships to the under ly ing physics of a domain . The issue 
is especially impor tan t in fo rmu la t ing models in a do­
ma in w i t h a well-established theory, where models are 
seen as instances of the theory applied to physical phe­
nomena. However, some approximat ions, such as the 
order of magni tude approx imat ion , can lead to approx i ­
mate models tha t are inconsistent w i t h a domain theory, 
i f they are appl ied to mathemat ica l equations syntact i ­
cally. Th is is i l lust rated in the fo l lowing two examples. 

In the order of magni tude approx imat ion , a mathe­
mat ica l expression A — B is s impl i f ied to A when A >> B, 
i.e., the numerical value of A is much greater than the 
numerical value of B where the not ion of much greater 
is defined by some numerical measure. 
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where h represents the convection heat coefficient, 
A represents the area of a surface, T1 the tempera­
ture at surface and T 2 , the temperature at its envi­
ronment. Assuming that T1> T2, then the order of 
magni tude approx imat ion can s impl i fy the model to 
a simpli f ied model hAT1. However, that simplif ied 
model is not consistent w i t h the heat transfer the­
ory as the expression does not represent any val id 
heat transfer process. The or ig inal model represents 
a convection heat flux and e l iminat ing T2 f rom the 
or ig inal model destroys i ts def in i t ion, i.e., convec­
t ion heat transfer depends on temperature differ­
ence instead of temperature only. 

The two heat transfer examples i l lustrate the case 
where the syntactic use of the order of approximat ion 
can lead to approximate models inconsistent w i th a do­
main theory. To ensure models consistent w i th a domain 
theory, the order of magni tude approx imat ion cannot be 
applied to any arb i t rary mathemat ica l expression. I t can 
only be applied to a set of physical processes in a way 
that represents the action of e l iminat ing one or more 
physical processes. By focusing the approximations on 
choosing the types and the number of physical processes 
in a domain , MSG avoids generating models inconsistent 
w i t h the heat transfer theory. The constraint of ensuring 
consistent models is already bui l t in MSG. 

5.2 C o n s t r a i n i n g M o d e l i n g Process 
MSG demonstrates that the process of modeling is com­
posi t ional at the level of choosing physical processes. 
Furthermore, it demonstrates that a domain theory can 
constrain how model ing decisions are made. Some mod­
eling decisions can only be made after other decisions 
have been made. For example, fo rmula t ing boundary 
condit ions has to be made after choosing physical pro-
cesses, and choosing physical processes has to be made 
after choosing control regions. A consequence of con­
stra in ing model ing decisions is that model ing choices 

are also constrained by the earlier decisions, leading to 
a reduced search space for MSG. If a to ta l ly lumped 
control region is chosen, MSG does not need to choose 
heat transfer processes since a to ta l ly lumped model w i l l 
only involve an algebraic or ordinary differential equa­
t ion, either of which can be efficiently solved w i th many 
processes. Furthermore, MSG does not need to choose 
boundary equations for the tota l ly lumped model. The 
reduced search space f rom constraining model ing deci­
sions, and the use of simple approximate model to guide 
model ing decisions contr ibute to the efficiency of MSG. 
MSG currently takes less than 4 seconds on a SparcSta-
t ion 2 to formulate a model involv ing coupled par t ia l 
differential equations. 

MSG demonstrates an uniform approach to fo rmu­
lat ing models of various complexi ty in a physical do­
ma in , f rom simple algebraic to complex par t ia l differen­
t ia l equations models. Whi le par t ia l differential equa­
tions are complex to analyze and dif f icult to compre­
hend, they are formulated in the same way as other s im­
ple models. They do not need a different model ing ap­
proach. The complexi ty of a model lies not in the way 
it is formulated, but in the choices made to the physical 
processes. 

5.3 L i m i t a t i o n s 

This approach works because of a strong domain the­
ory, where conservation laws exist and the domain spe­
cific laws are well defined, and approximate numerical 
methods and thresholds cal ibrated against accuracy are 
available. These features are present in other domains 
as wel l , such as fluid mechanics [Panton, 1984], based on 
textbook analysis and discussions w i t h domain experts. 
However, the requirement of a strong domain theory and 
the avai labi l i ty of approximate methods and thresholds 
l i m i t this approach to well-established physical domains. 
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6 Related Work 
Y i p [Y ip , 1993] uses the asymptot ic order of magni tude 
approx imat ion to s impl i fy par t ia l differential equation 
models in fluid mechanics. His system accepts a de­
tai led mathemat ica l model and the constraints and val­
ues of terms in the model as inputs, and then carries out 
the asymptot ic order of magni tude approx imat ion on the 
input model . MSG differs f r om his system by using ap­
prox imate models to infer the order of magni tude values 
of physical processes and by carry ing out approximat ions 
on physical processes to ensure models consistent w i t h a 
domain theory. 

Most of the other model ing work is based on the com­
posi t ional approach pioneered by Falkenhainer and For-
bus [Falkenhainer and Forbus, 1991]. The composit ional 
approach has a l ibrary of model fragments represent­
ing various phenomena in a domain . Given a query 
and a physical s i tuat ion, the approach composes relevant 
model fragments into a complete model . Other work 
[ iwasaki and Levy, 1994; Nayak et al., 1992] has proposed 
ways to improve the process of selecting model f rag­
ments. MSG differs f rom the composit ional approach 
by focusing its model ing decisions on physical processes 
and using a domain theory to structure i ts model ing pro­
cess. By organizing its model ing decisions around a do­
ma in theory, MSG can formulate models for lumped and 
d is t r ibuted phenomena in an un i fo rm and efficient way. 
The composit ional approach is aimed at a very broad 
class of phenomena, w i thou t mak ing any assumption of 
a domain theory. MSG relies on a strong domain the­
ory, which makes MSG less broadly applicable than the 
composit ional approach, especially for a domain w i t h no 
well developed theory. The composi t ional approach can 
handle qual i tat ive and quant i ta t ive ordinary differential 
equations. MSG is focused on quant i ta t ive models in ­
vo lv ing algebraic, ordinary and par t ia l dif ferential equa­
tions. Final ly, the composi t ional approach has paid less 
at tent ion to the issue of get t ing the r ight level of nu­
merical approx imat ion than to gett ing a consistent and 
coherent model. 

Both Addank i et al [Addanki et al . , 1991], E l lman et 
al [E l lman et a/., 1993] and Weld [Weld, 1992] focus on 
model selection. The work of Addank i et al uses graphs 
to represent a set of models of a physical domain , and do­
ma in specific rules to select models that can resolve the 
conflicts between predictions and observation. Weld's 
work uses the domain independent technique of inter-
model comparat ive analysis. E l lman et al use gradient 
magnitudes to select models. In a l l cases, model equa­
tions are expl ic i t ly input to the system. MSG differs 
f rom them by construct ing a model f rom the descript ion 
of a physical phenomenon. 

7 Summary 
Th is paper describes a model ing approach to fo rmula t ing 
complex mathemat ica l models involv ing par t ia l differen­
t ia l equations. The approach is targeted to domains w i t h 
strong domain theories. The approach organizes its m o d ­
el ing process based on the structure of a domain theory, 
and uses simple approximate models to obta in problem 

specific behavior to guide its model ing decisions. By ex­
p lo i t ing these ideas, the approach can offer an un i fo rm 
and efficient way to formulate models consistent w i t h a 
domain theory. The approach has been implemented in 
a computer program, M S G , which formulates algebraic, 
ord inary and par t ia l dif ferential equation models in the 
domain of heat transfer. 
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