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Abstract

This paper analyzes coalition formation among
self-interested agents that need to solve combi-

natorial optimization problems to operate effi-
ciently in the world. By colluding (coordinat-
ing their actions by solving a joint optimization
problem), the agents can sometimes save costs
compared to operating individually. A model
of bounded rationality is adopted, where com-
putation resources are costly. It is not worth
solving the problems optimally: solution qual-
ity is decision-theoretically traded off against
computation cost. A normative theory of coali-
tions among bounded rational (BR) agents is
devised. The optimal coalition structure and
its stability are significantly affected by the
agents' algorithms' performance profiles (PPs)
and the cost of computation. This relationship
is first analyzed theoretically. A domain classi-
fication including rational and BR agents is in-
troduced. Experimental results are presented
in the distributed vehicle routing domain us-
ing real data from 5 dispatch centers; the op-
timal coalition structure for BR agents differs
significantly from the one for rational agents.
These problems are NP-complete and the in-
stances are so large that, with current tech-
nology, any agents rationality is bounded by
computational complexity.

1 Introduction

In many domains, self-interested real world parties (e.g.
companies) need to solve combinatorial optimization
problems to operate efficiently. Often they can save costs
by coordinating their activities with other parties. Such
seftings occur for example in distributed manufactur-
ing among multiple companies and in distributed vehicle
routing among dispatch centers. When the planning ac-
tivities are automated, it is useful to also automate the
coordination activities via a negotiating software agent
representing each party. In such automated negotiations
among self-interested agents, the question of coordina-
tion arises: what coalitions should the agents form, are
they stable, and how should costs be divided within each
coaliion? Coalition formation includes three activities.
Ore is coalition structure generation: formation of coali-
tions by the agents such that agents within each coali-
tion coordinate their activities, but agents do not coor-

‘Supported by ARPA contract NO0014-92-J-1698.

DISTRIBUTED Al

dinate between coalitions. The second is the solving of

the combinatorial optimization problem of each coalition.

Conceptually this involves distributing the tasks of the
coalition among the member agents and solving the op-
timization problem of each agent given its resources and
the tasks it wes distributed. The coalition's objective is
to maximize monetary value: money received from but-
side the system for accomplishing tasks minus the cost
of using resources.’ Third, agents within each coalition
have to agree on how to divide this value of the gener-
ated solution. These activities interact. For example,
the coalition that an agent wants to join depends on the
portion of the value that the agent would be allocated
in each potential coalition.

Coalition formation has been widely studied [Kahan
and Rapoport, 1984; van der Linden and Verbeek, 1985;
Raiffa, 1982; and Kraus, 1995; Zlotkin and
Rosenschein, 1994; Ketchpel, 1994], but to our knowi-
edge, only among rational agents. Let us call the entire
set of agents A Say, that the lowest cost achievable
by agents 5 C A working together, but without any
other agents, is cRs. This is the minimum ocost to handle
the tasks of agents 5 with the resources of agents S. A
coalition game is defined by a characteristic function Vs,
which defines the value of each coalition S:

Ve R (1)

The superscript R emphasizes that we mean the ra-
tional value of the coalition, i.e. the maximum value
that is reachable by the coalition given its optimization
problem. A rational agent can solve this combinatorial
problem optimally without any deliberation costs such
as CPU time costs or time delay costs.

If the problem is hard and the instance is large, it is
unrealistic to assume that it can be solved without de-
liberation costs. This paper adopts a model of bounded
rationality [Simon, 1982; Good, 1971], where each agent
has to pay for the computational resources (CPU cy-
des) that it uses for deliberation. A fixed computation
aost Coomp > O per CPU time unit is assumed” The
domain cost associated with coalition 5 is denoted by

1Insu*reproblems,notaII1as|sra\/etobehandled.This
can be incorporated by associating a cost with each omitted
task. Then soiving also involves the selection of tasks
to handle. ﬂweoryofhsi)em'appli&stosmgnmbm
in our example application, all tasks have to be handled, and
no ; ﬁon&&rtsidehegélstanargereoeivedﬁformem.

n practice, time can already on super-
com 2 .ﬂlenan(etforCPUﬁrrleisggedtobeso
large that the demand of the agents we are studying does not
impact the price of a CPU time unit. It is also assumed that



°s{’s) > 0> i-e. it depends on (deareases with) the al-
located computation resources rs, Fig. 1. The functions
cs('s) can be viewed as performance profiles (PPs) of
the problem solving algorithm. They are used to decide
how much CPU time to allocate to each computation.
With this model of bounded rationality, the value of a
coalition with BR agents can be defined. Each coalition
minimizes the sum of solution cost and computation cost:

95 (Goamp) = = min[es(rs) + Coomp - Ps). (2)
5

The coelition value decreases as the CPU time unit cost
Ceomp increases, Fig. 1. Our model also incorporates a
second form of bounded rationality: the base algorithm
may be incomplete, i.e. it might never find the optimal

solution. If it is complete, the BR value of a coalition
whell €.omp = 0 equals the rational value (v3{0} = u?)
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Flgure 1: Ezampit uzperiment ffrom the rehacie routing domain)
with llgunl.l 1, 2 and 3. Leﬂ perfarmanca profilas, i.a. soiution
codt as & fu ion of ailocal hon resourcer. Fught: BR
coalition vahie ar g function of computunon card.

Conceptually the agents use derign-to-lime algo-
rithms [Garvey and Lesser, 1093; Zilberstein, 1993} once
an agent has decided how mnch CPU time r5 it will
allocate to a computation, it can design an algorithm
that will find a solution of cost cs(rs). The design-to-
time framework is used instead of the snytime frame-
work [Dean and Boddy, 1988; Sandholm and Lesser,
1984; Zilberstein, 1993] because to devise a theory of
self-interested agents, the possibility that they design
their algorithms to time has to be accounted for. With
determimstic PPs, for any desired compntation time al-
location or sclution quality, a noninterruptible design-
to-time algorithm can be constructed that performs no
worse than an interruptible anytime algorithm. We as-
sume that the PPs exactly predict the solution cost at-
tained for a given CPU time allocation. So, we have
relaxed the assumption that the base level algorithm is
optimal (complete and costless), but instead we assume
that the meta-level deliberation controller is optimal (ex-
act and costless). Assuming optimality of the meta-level
is more realistic than assuming optimality of Lhe base
level, but it still does not match reality exactly. In prac-
tice there is uncertainty in each PP+ the meta-level is not
exact.? Sccondly, the PP depends on several features of

this price is common to all agents, which corresponds to an
open CPU cycle market.

*If the PPs are anly probabilistically known, anytime algo-
rithms may be desirable due to their fexibility with respect to

the problem instance, and computing the mapping from,
the instance to the PP [Sandholm and Lesser, 1994] may
take considerable time, thus making the meta-level itself
costly. In the limit, the base algorithm would be run at
the meta-evel to determine what it would achieve for
a given time setting. Assuming an optimal metaevel
enables analyzing bounded rationality at the base level
in isolation from uncertainty of the PPs. It also allows
us to sidestep the problem of having a meta-meta-level
controlling the meta-level, a meta-meta-meta-level con-
trolling the meta-metaevel, and so on ad infinitum.

We assume that the problem instances (tasks and re-
sources) of all agents are common knowledge. This is
somewhat unrealistic in open environments with a large
number of agents. In practice it is often necessary to
leam the other agents' characteristics from previous en-
counters. Alternatively, the agents can be made to ex-
plicitly dedare their tasks and resources, but they may
lie in order to gain monetarily. [Rosenschein and Zlotkin,
1994] analyze when rational agents are motivated to de-
dare truthfully. Unfortunately that work assumes only
two agents and that they can optimally solve exponen-
tially many NP-complete problems without computation
costs. Even under these assumptions, in most cases,
truth-telling is not achieved. The effect of bounded ra-
tionality on truthful revelation is unknown.

For now—this is relaxed in Section 5—we assume that
the agents solve the combinatorial optimization prob-
lems equally well and that this is common knowledge.
For any coalition's problem and for any setting of CPU
time, the cost of the solution potentially generated by
each agent is the same. The agents need not generate
the same solutions, only the same quality.

With such shared deterministic PPs, each agent knows
the value vs(ccomp) of each potential coalition S upfront.
Therefore coalition formation will take place before any
computation. After collusion, each coalition computes
its solution using the optimal amount of CPU time rs
as defined by Equation 2. Because in our model, ratio-
nality is bounded by CPU time cost, it costs the same
for one agent to use nt CPU time units as it costs n
agents to use t units. Therefore, it is best if a coalition's
optimization problem is solved by a single agent. This is
trivially true since an agent could simulate distributed
problem solving among n agents for time t by using a
local algorithm for nt. Conversely, it is not aways pos-
sble (due to redundancy etc.) for n agents solving the
problem for time £ to reach a solution of the same quality
as one agent using nt can reach. The computing agent
can be arbitrarily chosen from within the coalition, and
the coalition pays that agent its true cost for computing.
This cost along with the domain solution cost contribute
to vS(Ccomp), Which is divided among the agents in the

termination time. In generdl, for optimal meiafeasonl the
remalnl part of a probabilistic BP ng

algorithm's on at nsianoe
prevms CPU time hom and Lesser, 19%4;
Ziberstein, 1 Sud'1 conditioning, anytime algonlhms

and their integration to coaliion formation are part of our
current and are oo long o be here
holm and Lesser, 1995].
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coalition as will be presented later.

The value of a coalition may depend on the actions
of non-member agents due to positive and negative in-
teractions of the agents’ solutions. Snch settings can be
modeled as normal form games (NFGs), Fig. 2. Coali-
tion formation is usually studied in characteristic func-
tion games (CFGs), where the value of each cealition §
is given by the characteristic function »f, and is thus not
a function of the actions of non-members. CFGs arc a
strict subset of NFGs.* The equivalent of CFGs among
BR agents are BRCFGs (Fig. 2) where the value of each
coalition 5 is defined by vs(cecomp). This paper mainly
studies BRCFGs. Non-BRCFGs are addressed in Sec, 5.
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Figure 2. Venn dizgram of negotiation domuing, Normal lines
thow the clasnfication for rational agents. Dald hiner thow our new
clasnfication for BR agunts, and how it related to the rational case.
Dotted iner show the rational agent domain claisification of [Roren-
schein and Plotkin, 1994] They ure “Subadditive” to mean that an
agent'r cost for handling tasks 1s subadditive in tasks. We use sub-
additize to rafer e coaiition value funcivona that are subsdditive in
agents. The figure doas not reflact the Jact that Rossnachein and
Ziotkin do not ailew nidepayments.

The paper is organized as follows. Section 2 studies
the optimal coalition structurs for BR agents, and Sec-
tion 3 analyses its stability. Section 4 presemts experi-
mental results in the distributed vehicle routing domain
with real data. Section 5 discusses agents with different
problem solving capabilitics. Section 6 presents related
research, and 7 concludes and describes future research.

2 Optimality: BR superadditivity
Any outcome of a game can be analyzed with respect to
roctal welfare, which is defined as the sum of the agents’
pavoffs. The payoff that agent i gets is called z; € R.
The sum of the agents’ z;'s has to equal the sum of the
values of the coalitions in the coalition structure (CS)
that formed: no wealth is generated from nothing and no
wealth disappears. With bounded rational agents, these
coalition values incorporate the computation costs.

In superadditive games the agents are best off by form-
ing the grand coalition——from a social welfare viewpoint.

“The two are equivalent in constant-sum games with un-
restricted side-payments and perfect communication. In such
games, the characteristic function value of a coalition is its
minimax value from the normal form game [van der Linden
and Verheek, 1885].
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Superadditivity means that the value of one coalition
plus the valuc of ancther coalition is never more than
the value of these coalitions joined into one coalition:

Definition. 2.1 5 4 game is mperadd;isue #{¥S, T C
A ST =0),v8 7 > vR + vl See Fig. 2.

When computation cost is ignored, this is alimost always
the case, because at worst, the agents in the composite
coalition can use the solutions that they had when they
were in separate coalitions. Thus, the agents would al-
most always be beiter off from a social welfare point of
view by forming the grand coalition, i.e. CS®* = {A}. A
game can be non-superadditive only if the collusion pro-
cess itself involves some cost, e.g. anti-trust penalties.
Some non-superadditive games are subadditive, Fig. 2:

Definition. 22 A gome is subaddstive if (VST C
ASNT =8), "s\.l‘r <v5 +”T

In subadditive games, the agents are hest off by cper-
ating alone, i.e. C5%* = {{a;},{az}, ..., {a/4/}}. Some
games are neither superadditive nor subadditive, becanse
the characteristic function fulfills the condition of super-
additivity fer some coalitions and the condition of sub-
additivity for others. In such cases, the social welfare
maximizing coalition structure varies.

Now we present a new concept for BR agents that
is analogous to superadditivity among rational agents.
Frem a social welfare viewpoint, BR agents are best off
forming the grand coalition (C8* = {A}} if the game is
bounded rational superadditive (BRS), Fig. 2. This re-
quires that the best value that one coalition can reach
given the computation cost plus the best value that an-
other coalition can reach given the computation cost is
never greater than the best value that these coalition
can reach as a composite coalition given the computa-
tion cost:

Definition. 2.3 4 geme ir bounded rational super-
additive (BRS) for computation cost ceomp if (V5, T C
A4,5nT = @): ”SUT(C:mpJ > ”S(C:mp) + '"T(C:omp)-

BR superadditivity does not always coincide with super-
additivity. In general, for a given ccomp > 9, a coalition
game can be superadditive, BRS, both, or neither, Fig. 2,
Only some non-BRS games aze BR subadditive, Fig. 2:

Definiticn. 2.4 A gome is bounded rational subad-
ditive for compulation cosl ceomp f (Y5, T C A, 5NT =
@)r”SUT(Ccmp) < 'U'S(ctmy) + UT(Ccmp)-

BR superadditivity depends on the performance profiles
and the unit cost of computation. The next theorem
states a natural condition on the PPs. If the condition
holds, the game is BRS for any c.omp 2 0.

Theorem 2.1 BRS [sufficient condition). [(VS,T
C ASNT = B,¥rs > 0,¥rp > 0),25ur(rs + r7) <
cs(rs) + er{rr)] = Game is BRS Yecomp 2 0.°

The condition states that the domain cost for coalition 5§
after allocating a certain amount r5 of computation plus
the domain cost to another coalition T after allocating a
certain amount »r of computation is never ess than the

*Definitions 2.1, 2.2 and 3.1 are from game theory.
$Proofs are presented in [Sandholm and Lesser, 1995].



domain coat of these coalitions combined after allocating
7g + rr. This is always achicvable if the base algorithm
is intelligent enough, because in the worst case, the al-
gorithm can allocate rg on the problem of S and then
do the problem of T using rr separately. Given a large
coalition, it is difficuit to intelligently guess an efficient
decomposition of this type. Usually, the algorithm that
is used on the composite problem does not apply this
type of a separate solving. Whether the algotithm’s per-
formance actually satisfies the condition without using a
separate solving approach depends on the problem, the
specific instances under study, and the algorithm itself,
In general, the game can be BRS ¥o.omp = 0 even if the
above condition does not hold or the PPs:

Theorem 2.2 [(V5,T C A,5NT = 0,¥rz > 0,%rp >
0, csur(rs + »7) < es{rs) + cp{re)] & Game is BRS
Yecomp = 0.

It is reasonable to assume that the PP cg(r) is de-
creasing in r if the agent can inexpensively store the
best solution it has arrived at so far. Furthermore,
cs(r} is often convex in r: greater savings are achieved
in the early stages of computation and the savings per
time unit decrease as problem solving proceeds. We
conjecture that PPs of design-to-time algorithms are
almest always convex. On the other hand, PPs of
anytime algerithms are typically not convex at points
where the base algorithm switches from one approach
to another. One example is completing an iterative
refinement algorithm by running an exhaustive com-
plete algorithm after the vefinement phase. Another
cxample is switching from using one refinement oper-
ator {e.g. 2-swap in TSP [Lin and Kermighan, 1571;
Sandholm, 1993]) to using another refinement operator
{e.g. 3-swap in TSP). Furthermore, refinements often de-
crease solution cost in a step-wise manner rendering the
PPs locally nonconvex—as in our experiments {Fig. 1
left)”. The PPs in our experiments exhibited au over-
all convex nature, but also had true local nonconvexities
{becanse the design-to-time algorithms were constructed
from anytime algorithms, and were not tailored for each
time setting scparately, Sec. 4). Convexty is significant
because with convex PPs, a domain is BRS for all com-
putation costs if and enly ifthe condition of Theorem 2.1
on the PPs holds:

Theorem 2.3 BRS (necessory ond sufficient con-
dition). Let us restrict ourselves to such performance
profiles that YU C A, cy(r) is decreasing and convez
. Now [(V§;T € A,5NT = §,¥rs > 0,¥rr >
0}, esur(rs + rr) <€ es(rs) + er(rr)) & Gome is BRS
Yecomp = 0.

Analogous to Theorem 2.1, there is an easy sufficient

condition on the PPs that guarantecs that the game is
BR subadditive for all computation costs:

Theorem 2.4 Hounded rational subadditinsy
{rufficient condition). [[¥5,T C A, 5nT =@, ¥rs >
0,¥rr > 0), csur(rs +77) > es{rs) + or{r7)] = Game
i1 bounded rational subsdditive Ye omp > 0.

7If the algerithm is stochanstic, these step-related noncon-
vexities are reduced us the PP iz sveraged over multiple runs.

If the game is BR subadditive, agents are best off
alone, ie. by colluding with nobedy (CS5" =
{{ma},{a2},.... {814 }}). In games that are neither BRS
nor bounded rational subadditive, the optimal CS varies,
and several CSs may be equally good wrt. social welfare.
We denote any one of these best CSs by C5°.

3 Stability: bounded rational core

In the previous section we presented conditions on the
PPs that describe what CS the agents are best off form-
ing from the social welfare viewpoint. In this section we
analyze the stabifity of that CS. Can the social good
be distributed among the agents so that each agent
is motivated to stay with C5% (individual rational-
ity}? Furthermore, can it be distributed so that ev-
ety subgroup of agents is better off with €'SB* than
by forming a coalition of their own [coalition rational-
ity)? The core {C) is the solution concept that satisfies
both of these conditions {Kahan and Rapoport, 1984;
van der Linden and Verbeek, 1885; Raiffa, 1982). The
core of a game is a set of vectors £, where each 3 is a
vector of payofls to the agents in such a manner that no
subgroup (individual agents and the group of all agents
are also subgroups) is motivated to depart from CSR*,
Given payoffs according Lo £, the value of each subgroup
is less than or equal to the sum of the payoffs that the
agents of that subgroup get under C'5®*. Obviously,
only CSs that maximize welfare can be stable in the sensa
of the core, because from any cther CS the group of all
agents would prefer to switch to a €58, Formally,

Definition. 3.1 Core C = {F¥S§ C A, 3 ;2 2 vf
and 33, Ti = Zjecsn. ‘U?}_},

The core is the sirongest solution concept used for
coalition formation. It is often too strong: in many
cases it is cmpty, i.e. the social good cannot be di-
vided so that the individual and coalition rationality
conditions are satisfied [Kahan and Rapoport, 1984;
van der Linden and Verbeek, 1985; Raiffa, 1982]. A lesser
problem is that the core may include multiple #'s and the
agents have to agree on one of them. An often used so-
lution is to pick the nucleolus which is, intnitively speak-
ing, the center of the core [Kahan and Rapoport, 1984;
van der Linden and Verbeek, 1985; Raiffa, 1982}, Games
with non-empty cores are called weak, Fig. 2.

Now we introduce the analog of the core for BR agents.

Definition. 3.2 The bounded rational core (BRC)
for computation cost Ceomp s
BRC(ccomp) = {EI¥S € 4,358 2 vs(ccomp) and
Yiea® = Z,ecs- vs,{Ccomyp ) }-

If the BRC is not empty, BR agents can divide the so-
cial good among themselves in a way that no subgroup
is motivated tc break away from C§*. Sometimes the
BRC is empty, but this does pot always coincide with
the core being empty. There are games, where the BRC
and the core exist, games whete either one of them exists
separately, and games where both are empty, Fig. 2. If
the agents are best off working separately, the CS with
separate agenis is stable, Fig. 2:
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Theorem 3.1 Bounded rationol subadditive core.
Game is bounded rotional subadditive for zome ¢.omp =
BRC(Ccomp) # 0.

In domains that are not BR subadditive, the BRC is
sometimes empty. The condition C # @ can be con-
verted into mecessary and sufficient conditions on the
vf's in gamen where the grand coalition maximizes so-
cial welfare [Shapley, 1967; Charnes and Kortanek, 1966].
We convert the condition BRC{ccomp) # @ into con-
ditions on the wg(ccomp)'s analogously. Let By,..., B,
be distinct, nonempty, proper subsets of A. The set
B = {B,..., By} it called balanced if there are positive
coefficients Ay, ..., A, such that ¥i € sz{_ﬁiea,-} M=l
A minsmal balanced set includes no other balanced sets.

Theorein 3.2 Bounded rational core in grand
coalition games. In gomes where C5" = {A} for some
Ceompr BRC(Ccomp) #£ B iff for every minimal balanced
set B={By, .., BP}'E;:I Aj 5, (Ceomp) S va(Ecomp)-
Example. In any 3-agent game where
C8 = (A} for some c.omp, BRC(Ccomp) # B
iff ”{l}(c:mp) + n{].:](ccmpj < ”{1.:,3}(*‘-‘=mp) and
"{:}(Cmp) + 1"{1,3}(%««“’) < ”{1,3,3}(5:0!!!1,) and
va}(Coomp) + V{12}{Coomp) & vi1,23}(Ceomp) and
"{1}{C=MP}+"{I}(C=M;’) + vgap{eeomp) € vy1,2,3}{Ccomp)
and }oqapecomp) + FU(1.31{Ceomp) + 3V(2.3} (Ccomp) <
?(1,2,3}{Ccomy). All but the last inequality are implied
by the fact that CS* = {A].

Example. In any 4-agent game where C'S* = {A} for
SOME Ceompy BRC(Ccomp) # © ME the 41 inequalities of
Table 1 hold. Constraints 1, 2, 3 and 5 correspond to
partitions of A {all A’s are 1). They are thus implied by
the fact that C5° = {4A].

d ] G #
T | ttnayltaems ) ¥ 90,41 Eunmp] € ¥{2,2,5.4} Crermr) 3
2| rriaapcenmn) F 2 i) (Cuemp] € 911,040} Foemp} 4
3 | viiap(Caemp) + P a1 (Seemp ] + v 4} {Cenme)
2,04} Faamp L

4 ;'{l.l..}(‘un') + a0 {ceme ) + Sr s, 0p{Ecams)

< "{:.:.l.c}(‘--qp) &
5| vy (Cemema ) + '{:))(h-u..] + ¥ ipt{Crrmp ) + ¥ia}p{Eramn)

$¥ a4 {Cemms 1
& | kugy ay(Coema) + 4900 a3 (Crmmp ) + v 3,03 (Ccnme)

+opoi(oema] € P 2 0t {Eermp 4
T drpna s (Caemp) + ‘}'(1.1}(‘----) + 902,43 (Coemyp)

+3%() Ccamp) S ¥ 1.:...1}(‘“-') 12
8 ‘{l,z,;}[ﬁunr} + '{1,:}(=c--w)+ Jl"(),c}(‘-o'-r)

+ 4 e ap(Ceama) € ¥a 00,4 Ecoma) 4
9 | drinaet(Coma) + 10000, (Camma ) + §940,0,0) (Cermal

tivigalcoems) S ¥ a0eemal 1

Table 1: Cenditions for azistence of tha BAC in a f-agent grand
conlition pams. Lasi column rhows tha number of conairaints gan-
erated from that constraint by permubing the agents fincluding the
prassnted permutotion).

In BRS games, a subset of the above inequalities suf-
fices. Let us call a minimal balanced set properif no two
of its elements are disjoint.

Theorem 3.3 BRS bounded rational core. In a
geme that is BRS for some ccomp, BRC[c.omp) #
@ i for every proper minimal bolanced set B =
{Bls----Br}-E;:IJ‘J'"S;(C-:Mw) < valCcomp). Further-
more, this set of inequalities is minimal: no smaoller set
is sufficient.
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Example. In a 3-agent game that is BRS for
some toomps BRC(Coomp) # 8 iff Jus,, . (Ccoms) +
%ﬂs{l.l} (cﬂﬂ'l?) + %”5[:,;) {Coomp) < Y511,2.0} (ctm!l)' -
Example. In a 4-agent game that is BRS for some
€comp) BRC(Ccomp) # B iff the 11 conditions acquired
from Table 1's constratnts 4, 8 and 9 are satisfied.

Next we present conditions on the PPs that are suf-

ficient to guarantee that the BRC exists. According to
Theoremm 3.1, the conditions on the PPs that guarantee
BR subadditivity {Theorem 2.4) form one such set of
conditions. The following set suffices for games where
Cs* = {A):
Theorem 3.4 BRC in grand coalition games {suf-
ficiency}. In gomes where CS* = {A} for some
Ceomp = 0, [for every minimal balanced set B =
{Bi,- Bl (YB € B,¥rg > 0) L0, Aeny(rn) 2
CA(E::; A57p;)] = BRC(Ceomp) # 8. .

If C§* = {A} for all coomp = 0, the above conditions
guarantee existence of the BRC (¢ oomp ) for all ecomp > 0.
In BRS games, fewer conditions suffice:

Theorem 3.5 BRC in BRS games (sufficiency).
In o geme that is BRS for some ceomp = 0, {for ev-
ery proper minimal balanced set B = {B,,.., B,},{¥B €
B\¥rg 2 0) 37, Aiep,{re;) 2 ca(ja Mre;)] =
BRC{ccomp) # 0.

Again, if the game is BRS for all ccomp > 0, the abave

conditions guarantee existence of the BRE{c,m,] for ali
Coomp > 0.

Example. In a J-agent game that is BRS Yeomp > 0,
[(Yryi,ep > 0,%r3) > 0,9r39) 2 0), %C{x.z}gr{x.z}) +
jenairpay) + fealrpa) 2 ocpaaarpg +
%7‘{1,3} + %T{ZJ})] = VCCMP g BRC(ccmp] # 8.

4 Experimental resuits: vehicle routing

BR coalition formation was tested in the vehicle rout-
ing domain using one week real-world vehicle and order
data from 5 geographically distzibuted dispatch centers.
Each center had its own vehicles and delivery tasks. In
all, they had 771 deliveries to make with 77 vehicles.
Each vehicle had to begin and end its tour at the depot
of its center, but neither the pickup nor the drop-off lo-
cations of the orders were at the depot. The vehicles had
heterogenecus maximum load weight and mazimum load
volume constraints. All vehicles had the same maximum
route length, The domain cost cs{rs) for a coalition §
was the sum of the route lengths of the vehicles of that
coalition {while handling alf of its orders) in the sclu-
tion that had been reached after computation rs. The
problem is NP-hard, because ATSP can be trivially re-.
duced to it. It is in NP, because the cost and Feasibility
of a solution can casily be checked in polynomial time.
Thus, the problem is NP-complete. Moreover, the prob-
lem instances ir our example are so large that even the
smallesi ones are too hard to seive optimally, Therefore,
rational coalition formation algerithms for the vchicle
rauting problem {Lundgren et al., 1992] are unusable.
Our problem iz outside the domain classification of
[Rosenschein and Zlotkir, 1994], Fig. 2, because agents



do not have symmetric capabilities due to heterogeneous
fleets. If we extend their definition to allow asymmetric
capabibties, cur domain is in SOD \ TOD. If we further
drop the maximum route length constraint (this sxper-
iment will also be presented), and resirict ourselves to
domains where each center has at lcast one sufficient
vehicle to saiisfy the weight/volume constraints of any
order of any center (not truc in cur data), then the do-
main is 2 TOD. It is not a “Subadditive TOD", because
the depots are geographically distribnted.

To analysze a game we ran the same algorithm on the
vehicle routing problem of each subgroup of agents sep-
arately and thus acquired a PP for rach potential coali-
tioh. The algorithm first generates an initial solution by
giving each vehicle one long delivery and then, in order,
giving cach vehicle the delivery that can he zdded to
its route with the least cost without violating the con-
straints. The second phase of the algorithm is based on
iterative refinement. At each siep, a delivery (chosen
from a randomly ordered circular list) is removed from
the routing solution and inserted back to the solution,
but into the least expensive place while not viclating the
constraints. The drop-off location of the delivery has
to be inserted after the pickup location into the same
vehicle's route, but not nccessarily into the same leg.
We ran the refinement algorithm until no remove-insert
operation enbanced the solution: a local optimnm was
reached. In the PPs we ignored the time to construct
the initial soluticm, and only viewed how the solution
cost decreased with more CPU seconds of iterative re-
finement, Fig. 1 left. The refinement algorithm is ar
anytime algorithm, but because the PPs are exact (as
explained, they are precomputed for experimental pur-
poses by running the base algorithm itself), the agenis
da not gain information from excention on that instance
so far, Therefore the algorithm is equivalent to a design-
to-time algorithm for our purposes.

We analysed all of the (3) = 10 J-agent games that
can be acquired by choosing 3 of the 5 dispatch centers.”
Pigure 1 shows the PPs with agents 1, 2 and 3. Each
of our games is superadditive for reasons that were ex-
plained in Section 2. Thus rational agents would be best
off by forming the grand coalition. Surprisingly, rone of
the games were BRS for any tecomp, Fig. 3. For Ceomyp 'S
in the mid-range, the 3-agenl games were often BR sub-
additive (point M in Fig. 2), while in the low and high
ranges {point LH in Fig. 2), they were often neither BRS
not bounded rational subadditive, Existence of the core
for rational agents is unknown for our games: the points
M and LH might really be M’ and LH'. The BRC was
non-empty in all 3-agent games for all values of Ccomy-
So, rational agents would be best off forming the pos-
sibly unstable grand coalition, while BR agents should
form varying coalition structures {the grand coalition for
SOME Eeomp's), Which are always stable. We alsa reran
the experiments without the maximum route length re-
striction, and these results prevailed, Fig. 3.

Centers 2, 3 and 5 were located mear to each other,

*There are 7 subgroups of the 3 agents: {1}, {2}, {3},
{1.2}, {2,3}, {3,1}, {1,2,2} and 5 coalition structures: {{1},
(21 {3}) {1}, (2.33) ({23 (1,33} {43 {52}h ({2231
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Figure 3: Optimal contition atruciture (£5" ) and doundad rational
rubndditivity a4 a function of Erumy. Teited by rvaluating «li poisi-
Bie coalition structurss and iupar/subadditivity ot varying points of
Caamy CACEEn from o grid wAard £.,my it divags incremaentsd by 1%,

while 1 and 4 were far from each other and the other cen-
ters. Centers 1, 3, 4 and 5 transported heavy low volume
items, while 2 tzansported light voluminous items. Cen-
ters 1..5 had 65, 200, 82, 124, and 300 deliveries, and 10,
13, 21, 18, and 15 vehicles respectively. Both with and
without the route length restriction, 2 and 5 were best off
by only mutually colluding for any ccomp. Their deliver-
jes have considerable areal overlap due to adjacency, and
the light voluminous items and heavy low volume items
can be profitably joined into the weight and volume con-
sirained vehicles. Centers 2 and 3 did not collude as
much as 2 and 5 becausc 3's vchicles had tighter vol-
wme constraints than 5's—hindering the transport of 2's
goods. No other two centers besides 2 and 5 were always
best off in & 2-agent coalition independent of the third
agent of the game. Relaxing the route length conatraint
increased collusion between the distant 2 and 4 while
demoting collusion of the adjacent 2 and 3.

Next we analysed the (§) = 5 4-agent games and the
5-agent game with and without the route length resiric-
tion. In every game, the existence of BRC{Coomp) varied
many times as a function of c.omp, but it existed for the
largest values of Ceomp. No game was BRS for any ceomp:
but some gamts were bounded ratiomal subadditive for
interior values, Fig. 3. Thus, depending on ceomyp, the
games were at the points M, LH, or 45 {or M’, LH’,
or 45") in Figure 2. The best coalition structure var-
ied despite the fact that rational agents would be best
off forming the grand coalition due to superadditivity.
Again, whenever both agents 2 and 5 participated, they
were bast off by mutually colluding for all computation
costs. In those games no other agents colluded.

Each step of the refinement algorithm takes ©(vd?).
time, where v is the number of vehicles and d ia the num-
ber of deliveries. Becanse this is superlincar in deliveries,
a larger coalition can make fewer refineraent steps in &
given time than the agents in partitions of that coali-
tion can. To compensate, a refinement step of the larger
coalition would need to reduce solution cost more than
a refinement step of a smaller coalition. The size of the
saving has to be averaged over all refinement steps in
the optimal time allocation. If ¢comp is low, more time
is allocated, and small coalitions will often run out of
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profitable refinements. If ccomp is high, less time is allo-
cated, and all coalitions will have profitable refinements,
though the larger coalition will have time to make fewer
of them. Thus it was not surprising that in games where
the grand coalition wes optimal, it was optimal for very
small computation costs only. Surprisingly, two agents
colluding was often better than all agents working sep-
arately even for large Ceomp's. The result that higher

they also assume that all agents have the same capa-
bilities. With exponential computation they guarantee
each agent an expected value that equals its Shapley
value [Kahan and Rapoport, 1984; Raiffa, 1982]. In a
subset of STODs, "Concave Task Oriented Domains”
(Fig. 2), the computational complexity is reduced to
linear (in agents) using an encryption scheme. Yet at
least one (intractable) combinatorial problem involving

computation costs promote smaller coalitions is some- all tasks of all agents needs to be solved optimally.

what deemphasized by our choice of not including the
initial solution construction phase in the PPs. Shifting
the PPs right to begin at the time when the initial so-
lution wes finished (instead of 0) would shift the PPs of
small coalitions less than the PPs of large coalitions be-
cause the initial solution construction is superiinear both
in tasks and vehicles. Thus small coalitions would gain
an advantage—that is most significant for large Ccomp.
If the time of initial solution generation is discarded,
the best coallition structure for the greatest computation
costs depends only on the quality of the initial solutions
of the different coalitions because no refinement steps are
beneficial. For example, coaliions {1,3} (Fig. 1), {1,5}
and {2,5} achieved a better initial solution cost than the
sum of the initial solution costs of the two agents sepa-
rately, Fig. 3.

5 Different performance profiles

So far games where each agent hes the same PP for
a given coalition were presented. In general, domains
where the agents have different PPs—due to different
algorithms—are not characteristic function games for
BR agents (BRCFGs), because the value of a coalition
sometimes depends on the actions of non-members. The
value of a coalition can depend on whether an outside
agent is willing to compute the solution for the coali-
tion (for a payment) if its algorithm is better than any
of the algorithms of the agents in the coalition. Also,
interactions between domain solutions of different coali-
tions may exclude some problems from the dass BR-
CFG. In non-BRCFGs, BR superadditivity, BR sub-
additivity, and the BRC are undefined, Fig. 2. In-
stead, the Nash equilibrium may be a reasonable solution
concept—although only individual agents are motivated
to pertain to it: coalitions may prefer to deviate. These
issues are discussed in [Sandholm and Lesser, 1995].

6 Related DAI research on collusion

Coalition formation has been widely studied in game the-
ory [Kahan and Rapoport, 1984; van der Linden and
Verbeek, 1985; Raiffa, 1982]; only the most relevant con-
were here. This section compares our

work to other recent DAI work on coalition formation.
[Zlotkin and Rosenschein, 1994] analyze rational
agents that cannot make side payments, while our agents
do. Their analysis is limited to "Subadditive Task Ori-
ented Domains" (STODs), which are a strict subset of
CFGs, Fig. 2. In their solution concept, one agent han-
des all the tasks, because STODs never exhibit disec-
onomies of scale. We do not assume that one agent
can take care of all the agents' tasks. Unlike our work,
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[Ketchpel, 19%4] presents a coalition formation method
for rational agents which have different expectations of
coalition values. The (computational) origin of these ex-
pectations is not addressed. His assumption of imperfect
information differs from our setting, where the agents
have perfect information, but cannot perfectly deduce.
Ketchpel's coalition formation algorithm runs in cubic
time in the number of agents, but does not guarantee
stability. His protocol is based on mutual offers. , In
practice it is hard to prevent out-of-protocol offers such
as multiagent offers. In our approach, if the agents' pay-
off vector is chosen from within the BRC, the coalition
structure is stable against all offers. Finally, his 2-agent
auction is manipulable and computationally inefficient.
He approaches the coalition formation and the payoff
division problems simultaneously.

This is cosely related to the contracting protocol
of Sandholm [Sandholm, 1993] (TRACONET), where
agents construct the global solution by contracting a
small number of tasks at a time, and payments are made
regarding each contract before new contracts take place.
An agent updates its approximate solution after each
task transfer. In general equilibrium approaches such
as WALRAS [Wellman, 1992], non-manipulative agents
iterate over the allocation of resources and tasks, and
payments are made only after a final solution is reached.

[Shechory and Kraus, 1999 analyze coalition forma-
tion among rational agents with perfect information in
domains that are not necessarly superadditive. Their
protocol guarantees that if agents follow it, a certain
stability criterion (K-stability) is met. This requires
the solution of an exponential number of optimization
problems. Their other protocol guarantees a weaker
form of stability (polynomial K-stability), but only re-
quires the solution of a polynomial number of optimiza-
tion problems. Unfortunately, each one of these may
be intractable. Their algorithm switches from one coali-
tion structure to another guaranteeing improvements at
each step: coalition structure formation is an anytime
algorithm, although each domain problem is solved op-
timally. In our approach, each domain problem is solved
using an approximation (design-to-time) algorithm.

7 Conclusions and future research

A nomative theory of coaliions in combinatorial do-
mains was presented, where the rationality of self
interested agents is bounded by computational complex-
ity. A domain classification was presented for rational
and BR agents. The algorithms used by the agents
significantly impact the coalition structure that should
form as well as its stability. Theorems were presented
on the PPs guaranteeing BR superadditivity, BR sub-



additivity, and existence of the BRC. Although almost
all domains are superadditive, BR superadditivity is
surprisingly all but obvious in practice. Nore of the
vehicle routing games of our experiments—using real
data and a reasonable iterative refinement algorithm—
exhibited BR superadditivity. Thus, the optimal CS for
BR agents varied, although rational agents should always
form the grand coalition. Section 2 developed conditions
on the PPs that guarantee BR superadditivity, and it
discussed a separate solving approach—based on a non-
deterministic splitting step—that guarantees that the
base algorithm fulfills those conditions. We are currently
developing methods of constructing algorithms that sat-
isfy the conditions without such splitting. The observed
BR subadditivity of some of the games implies a non-
empty BRC: the best CS in those games is stable. Even
when BR subadditivity did not hold, the BRC wes often
non-empty—especially for large Ceomp. Often with su-
periinear iterative refinement steps, Iow Cemp promotes
large coaliions while high ceomp suggests smaller ones.
The best BR CSs mostly agreed with our intuitions of
what coaliions should form based on strategic domain
specific considerations such as adjacency of the dispatch
centers and the combinability of their loads.

Our model of bounded rationality is based on costly
computation resources. Future work indudes analyzing
another model, where each agent hes a fixed free CPU
and no more CPU time can be bought. If the domain
cost increases with real time due to a dynamic environ-
ment, such agents with bounded computational capabili-
ties are often best off by distributing the computation.
In the costly computation model of this paper, it is best
to allocate each coalition's computation to a single agent.
The models are equivalent if the domain cost increases
linearly with real time and distribution does not speed
up computation.

Extensions include generalizing these methods to
agents with different PPs, probabilistic PPs, and any-
time algorithms where PPs are conditioned on execu-
tion so far [Sandhom and Lesser, 1995; 19%4; Zilber-
stein, 1993]. Agents with probabilistic PPs may want
to reselect a coalition if the value of their original coali-
tion is lower than expected—but sunk computation cost
has already been incurred. Future research also includes
agents that can refine solutions generated by others.
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