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Abs t rac t 

Although backpropagation neural networks 
generally predict better than decision trees do 
for pattern classification problems, they are of­
ten regarded as black boxes, i.e., their predic­
tions are not as interpretable as those of deci­
sion trees. This paper argues that this is be­
cause there has been no proper technique that 
enables us to do so. With an algorithm that 
can extract rules1, by drawing parallels with 
those of decision trees, we show that the predic­
tions of a network can be explained via rules ex­
tracted from it, thereby, the network can be un­
derstood. Experiments demonstrate that rules 
extracted from neural networks are compara­
ble with those of decision trees in terms of pre­
dictive accuracy, number of rules and average 
number of conditions for a rule; they preserve 
high predictive accuracy of original networks. 

1 I n t r o d u c t i o n 
Researchers [Dietterich et a/., 1990; Quinlan, 1994; Shav-
lik et a/., 1991] have compared experimentally the perfor­
mance of learning algorithms of decision trees and neural 
networks (NNs). A general picture of these comparisons 
is that: (1) Backpropagation (an NN learning method) 
usually requires a great deal more computation; (2) the 
predictive accuracy of both approaches is roughly the 
same, with backpropagation often slightly more accu­
rate [Quinlan, 1994]; and (3) symbolic learning (decision 
trees induction) can produce interpretable rules while 
networks of weights are harder to interpret [Shavlik et 
a/., 1991]. In effect, a neural network is widely regarded 
as a black box due to the fact that little is known about 
how its prediction is made. 

Our view is that this is because we are not equipped 
with proper techniques to know more about how a neu­
ral network makes a prediction. If we can extract 
rules from neural networks as generating rules from de­
cision trees, we can certainly understand better how 

'Rules are in forms of "if x1 = v(x1) and X2 = v(x2) ... 
and xn = v(xn) then Cj" where xi's are the inputs to the 
network, v(xi)'s are one of the values xi can have, and Cj is 
the network's prediction. 

a prediction is made. In addition, rules are a form 
of knowledge that can be easily verified by experts, 
passed on and expanded. Some recent works [Fu, 1994; 
Saito and Nakano, 1988; Towell and Shavlik, 1993] have 
shown that rules can be extracted from networks. These 
algorithms are search-based methods that have exponen­
tial complexity. Subsets of incoming weights that ex­
ceed the bias on a unit are searched. Such sets are then 
rewritten as rules. To simplify the search process, some 
assumptions are made. One assumption is that the acti­
vation of a unit is either very close to 1 or very close to 
0. This can restrict the capability of the network since 
when the sigmoid transfer function is used as the the ac­
tivation function, the activation of a unit can have any 
value in the interval (0,1). 

In this paper, a novel way to understand a neural 
network is proposed. Understanding a neural network 
is achieved by extracting rules with a three-phase algo-
rithm: first, a weight-decay backpropagation network is 
built so that important connections are reflected by their 
bigger weights; second, the network is pruned such that 
insignificant connections are deleted while its predictive 
accuracy is still maintained; and last, rules are extracted 
by recursively discretizing the hidden unit activation val­
ues. By drawing parallels with the rules generated from 
decision trees, we show that networks can be interpreted 
by the extracted rules; the rules in general preserve the 
accuracy of the networks; and they also explain how a 
prediction is made. 

2 A Three-Phase A l g o r i t h m 
A standard three layer feedforward network is the base of 
the algorithm. Weight decay is implemented while back-
propagation is carried out. After the network is pruned, 
its hidden units activation values are discretized. Rules 
are extracted by examining the discretized activation 
values of the hidden units. The algorithm is described 
in steps below. 

2.1 Backpropagation w i th Weight Decay 
The basic structure of the neural network in this work is 
a standard three-layer feedforward network, which con­
sists of an input layer, I, a hidden layer, H, and an output 
layer, 0. The number of input units corresponds to the 
dimensionality of the examples of a classification prob-
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This pruning algorithm removes the connections of the 
network according to the magnitudes of their weights (4 
and 5). As our eventual goal is to get a set of simple rules 
that describe the classification process, it is important 
that all unnecessary connections be removed. In order to 
remove as many connections as possible, it is therefore 
imperative that the weights be prevented from taking 
values that are too large. At the same time, weights of 
irrelevant connections should be encouraged to converge 
to zero. 

2.3 Rule Extraction 
When network pruning is completed, the network con­
tains only those salient connections. Nevertheless, rules 
are not readily extractable because the hidden unit acti­
vation values are continuous. The discretization of these 
values paves the way for rule extraction. The following 
algorithm discretizes the activation values (many clus­
tering algorithms can be used for this purpose). 
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When the clustering is done, the network's accuracy 
is checked to see if it drops or not. A very small c can 
guarantee that the network with discretized activation 
values is as accurate as the original network with contin­
uous activation values. So if it's accuracy does not drop 
and there are still many discrete values, clustering can 
be performed again with a larger e. Otherwise, E should 
be reduced to a smaller value. 

After network pruning and activation value discretiza­
tion, rules can be extracted by examining the possible 
combinations in the network outputs (explained in detail 
in Section 3.2). The actual rule extraction is done by an 
algorithm that generates 100% accurate rules [Liu, 1995]. 
However, when there are still too many connections (e.g., 
more than 7) between a hidden unit and input units, the 
extracted rules may not be easy to understand. Another 
three layer feedforward subnetwork may be employed to 
simplify rule extraction for the hidden unit. This sub­
network is trained in the same ways as is the original net­
work, but in a reduced scale: the number of output units 
is the number of discrete values of the hidden unit, while 
the input units are those connected to the hidden unit in 
the original network. Examples are grouped according 
to their discretized activation values. Given d discrete 
activation values D1, D2,..., Dd, all examples with ac­
tivation values equal to Dj are given a d-dimensional 
target value of all zeros except for one 1 in position j. A 
new hidden layer is introduced for this subnetwork and 
it is then trained, pruned, and the activation values of its 
hidden units are discretized for rule extraction. If neces­
sary, another subnetwork is created until the number of 
connection is small enough or the new subnetwork can­
not simplify the connections between the inputs and the 
hidden unit at the higher level. The creation of subnet­
works is rarely needed. For example, in our experiments, 
it was only used for the Splice-junction problem. 

3 Exper iments and Results 
In this section, we describe the datasets and representa­
tions used in experiments. A detailed example is given 
to show how the three-phase algorithm is applied to ex­
tracting rules. Summary of the results on all datasets 
are given with a comparison to those produced by the 
decision tree induction methods. Understanding a neu­
ral network is achieved by being able to explain, based 
on the rules, how each prediction is made in parallel with 
understanding a decision tree by having rules generated 
from it [Quinlan, 1993]. 

3.1 Datasets and Representations 
Three datasets used are: 1. Iris - a classic dataset intro­
duced by R. A. Fisher [1936]; 2. Breast Cancer - a widely 
tested real-world dataset for the Wisconsin Breast Can­
cer diagnosis; and 3. Splice-junction - a dataset used in 
splice-junction determination originally described by No-
ordewier et al [1991]. The datasets are obtainable from 
the University of California Irvine data repository for 
machine learning (via anonymous ftp from ics.uci.edu). 
The summary of these datasets, their representations, 
and how each dataset is used in experiments are given 
below. 

• Iris - the dataset contains 50 examples each of the 
classes Iris setosa, Iris versicolor, and Iris virginica 
(species of iris). Each example is described using 
four numeric attributes (A1, A2, A3 and A4): sepal-
length, sepal-width, petal-length, and petal-width. 
Since each attribute takes a continuous value, the 
ChiMerge algorithm proposed by Kerber [1992J was 
reimplemented to discretize attribute values. The 
thermometer code [Smith, 1993] is used to bin arize 
the discretized values; 16, 9, 7, and 6 inputs (dis­
crete values) for A 1 A 2 , A 3 a n d A4respectively. 
With 1 input for bias, there are total 39 inputs and 
three outputs. Examples in odd positions in the 
original dataset form the training set and the rest 
are for testing as was done in [Fu, 1994]. 

• Breast Cancer - the dataset consists of 699 exam­
ples, of which 458 examples are classified as benign, 
and 241 are malignant. 50% examples of each class 
were randomly selected (i.e., 229 benign and 121 
malignant examples) for training, the rest for test­
ing in the experiments. Each example is described 
by 9 attributes, each attribute takes an ordinal in­
teger from 1 to 10 (10 values). Due to the ordinal 
nature, the thermometer code is used again to code 
each attribute value. Ten inputs correspond to 10 
values of each attribute with all 10 inputs on rep­
resenting value 10, the rightmost input on for value 
1, and the two rightmost inputs on for value 2, etc. 

• Splice-junction - the data set contains 3175 
examples2, approximately 25% are exon/intron 
boundaries (El), 25% are intron/exon boundaries 
(IE), and remaining 50% are neither (N). Each 
example consists of a 60-nucleotide-long DNA se­
quence categorized with EI, IE or N. Each of these 
60 attributes takes one of the four values: G, T, C or 
A that are coded as 1000, 0100, 0010, and 0001, re­
spectively. The class values (EI, IE, N) are similarly 
coded as 100, 010, and 001, respectively.For the re­
sults presented here, the training data set consists 
of 1006 examples while the testing data set consists 
of all 3175 examples. 

3.2 A Detailed Example - Iris Data 
Classification 

This example shows in detail how rules are extracted 
from a pruned network. In the experiment, 100 fully 
connected neural networks were used as the starting net­
works. Each of these networks consists of 39 input units, 
3 hidden units and 3 output units. These networks were 
trained with initial weights that had been randomly gen­
erated in the interval [-1,1]. Each of the trained net­
works was pruned until its accuracy on the training data 
dropped below 95%. The weights and topology of net­
works with the smallest number of connections and an 
accuracy rate of more than 97% were saved for possi­
ble rule extraction. The results of these experiments 
are summarized in Table 1 in which we list the average 
number of connections in the pruned networks and their 

2 Another 15 examples in the original dataset contain in­
valid values so these examples are not included in experiment. 
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average accuracy rates on the training data and the test­
ing data. Statistics in the second column of this table 
were obtained from 100 pruned networks, all of which 
have accuracy rates on the training data of at least 95 
%. In the th i rd column, the figures were obtained from 
100 pruned networks w i th accuracy of at least 97 % on 
the t ra in ing data. 

One of the smallest pruned networks is depicted in 
Figure 1. It has only 2 hidden units and a total of 8 con­
nections w i th 98.67% accuracy on the training set and 
97.33% on the testing set. We ran the clustering algo­
r i t hm of Section 2.3 on this network and found only 2 
discrete values are needed at each of the two hidden units 
to maintain the same level of accuracy on the training 
data. At hidden unit 1, 48 of 75 training examples have 
activation values equal to 0 and the remaining 27 have 
activation values equal to 1. At hidden unit 2, the acti­
vation value of 25 examples is 1 and the activation value 
of the remaining 50 examples is -0.5. Since we have two 
activation values at each of the two hidden units, four 
different outcomes at the output units are possible (Ta­
ble 2). From this table, it is clear that an example wi l l 
be classified as Iris setosa as long as its activation value 
at the second hidden uni t is equal to 1. Otherwise, the 
example is classified as Iris versicolor provided that its 
first hidden uni t activation value H_l = 0. The default 
class wi l l then be Iris virginica. 

As seen in Figure 1, only two inputs, L31 and 1.39, de­
termine the activation values of the second hidden uni t , 
H_2. However, since L39 is 1 for all the training data, 
H_2 is effectively determined by I-31. Since the weights 
of the arcs connecting input units 31 and 39 to the sec­

ond hidden unit are -5.4 and 4.8 respectively, it is easy to 
conclude that if 1.31 = 0, then H_2 is 1, otherwise, H_2 
is -0.52. This implies that an example wi l l be classified 
as Iris setosa only if L_31 is 0 (hence H_2 is 1). 

The activation value of the first hidden uni t , H_l , de­
pends only on L26 and L34. The weights of the arcs 
connecting input units 26 and 34 to the first hidden uni t 
are 5.1 and 8.1, respectively, hence H_l is 0 if and only 
if L26 = L34 = 0. Other input combinations wi l l yield 
value 1 for H_l. Hence, an example wi th 1.31 = 1, L26 
= L34 = 0 wi l l be classified as Iris versicolor. 

Wi th the thermometer coding scheme used for the in­
put , a complete set of rules can be easily obtained in 
terms of the original attributes of the iris data set. The 
accuracy of this rule set is summarized in Table 3: 

N N Ru les 3 

R u l e 1: If Petal-length < 1.9 then Iris setosa 
R u l e 2: If Petal-length < 4.9 and Petal-width < 1.6 

then Ins versicolor 
D e f a u l t R u l e : Iris virginica. 

For reference, the rule set ( D T Rules) generated by 
C4.5rules (based on a decision tree method but generate 
more concise rules than the tree itself) is included here: 

D T Ru les 
R u l e 1: If Petal-length < 1.9 then Ins setosa 
R u l e 2: If Petal-length > 1.9 and Petal-width < 1.6 

then Iris versicolor 
R u l e 3: If Petal-width > 1.6 then Ins virginica 
D e f a u l t R u l e : Iris setosa. 

3.3 C o m p a r i s o n s 
In this section, parallels are drawn between rules ex­
tracted from both neural networks and decision trees 

3The rules are fired in a top-down and left-to-right fashion. 
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(NN rules vs. DT rules). Understand ability is partly 
defined as being explicable in the sense that a prediction 
can be explained in terms of inputs (or attribute values). 
Choosing to compare NN rules with DT rules is due to 
the fact that DT rules are considered best understand­
able among the available choices. A rule in discussion 
consists of two parts: the if-part is made of a conjunc­
tion of conditions, and the then-part specifies a class 
value. The conditions of a rule are in forms of "Ai,=Vj", 
i.e., attribute A, takes value Vj. When a rule is fired, a 
prediction is given that the example under consideration 
belongs to class Ck. By examining the fired rule, it can 
be explained how the prediction is attained. If necessary, 
the intermediate process can also be explicitly explained. 

C4.5 and C4.5rules [Quinlan, 1993] were run on the 
above three datasets to generate DT rules. Briefly, 
C4.5 generates a decision tree which C4.5rules gener­
alizes to rules. Since researchers [Cheng et a/., 1988; 
Shavlik et a/., 1991] observed that mapping many-valued 
variables to two-valued variables results in decision trees 
with higher classification accuracy4, the same binary 
coded data for neural networks were used for C4.5 and 
C4.5rules. 

Being explicable is only one aspect of understandabil-
ity. A rule with many conditions is harder to understand 
than a rule with fewer conditions. Too many rules also 
hinder humans understanding of the data under exami­
nation. In addition to understandability, rules without 
generalization (i.e., high accuracy on testing data) are 
not much of use. Hence, the comparison is performed 
along three dimensions: 1. predictive accuracy; 2. av­
erage number of conditions of a rule; and 3. number of 
rules (see Figures 2-4). 

The reasoning behind the comparisons is that if NN 
rules are comparable with DT rules, since the latter are 
admittedly interpretable, so should the former. Now 
that each prediction can be explained in light of some 
rule, and those rules have direct links to the neural net­
work, it can be concluded that the network's behavior 
can be understood via those rules. 

A It's true indeed for the three datasets in our experiments. 

4 Discussion 
The comparisons made in Figures 2-4 indicate that NN 
rules are comparable with, if not better than, DT rules 
in terms of our understanding measures. The average 
number of conditions in NN rules is higher than that of 
DT for 2 of the 3 problems tested, however, the total 
number of NN rules is less than DT rules for all the 3 
problems. These observations are consistent with the 
nature of each learning algorithm, i.e., parallel vs. se­
quential. Other issues of interests arc: 

• The training time. It takes much longer time to 
train a neural network than to learn a decision tree. 
This is also true for NN rules and DT rules extrac­
tion. Due to the existence of sequential and parallel 
data types, and decision trees and neural networks 
are best suited to one type only [Quinlan, 1994], the 
two approaches are expected to coexist. When time 
is really scarce, the decision tree approach should be 
taken. Otherwise, it is worthwhile trying both be­
cause of backpropagation's other advantages (gener­
alizing better on a smaller dataset, predicting better 
in general, etc. [Towell and Shavlik, 1993]). 

• Average performance of NN rules. Because of neural 
networks' nondeterministic nature, it is not uncom­
mon that many runs of networks are needed with 
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different initial weights. As was shown in Table 1, 
the average performance for 100 pruned networks is 
very impressive (94.55%). This displays the robust­
ness of the presented algorithm. 

• Accuracy of neural networks and NN rules. There is 
a trade-off between the accuracy of the the rules ex­
tracted from the network and the complexity of the 
rules. A network can be further pruned and simpler 
rules obtained at the cost of sacrificing its accuracy. 
A notable feature of our rule extraction algorithm 
is that while it allows us to extract rules with the 
same accuracy level as that of the pruned network, 
it is also possible to simplify the rules by considering 
a smaller number of hidden unit activation values. 

• Understanding the weights of connections. Unlike 
M-of-N rules [Towell and Shavlik, 1993], NN rules 
here reflect precisely how the network works. NN 
rules given here are actually the merge of the two 
sets: 1. from the input layer to the hidden layer; 
and 2. from the hidden layer to the output layer. 
NN rules cover all the possible combinations of the 
connections with various input values and discrete 
activation values of hidden units. This is a signifi­
cant improvement over search-based methods [Tow­
ell and Shavlik, 1993; Fu, 1994] where all possible in­
put combinations are searched for subsets that will 
exceed the bias on a unit. To reduce the cost of 
searching, they normally limit the number of an­
tecedents in extracted rules. Our algorithm imposes 
no such limit. 

• Consistency between NN and DT rules. Consistency 
checking is not an easy task. In general, the possible 
rule space is very large since the training data is 
only a sample of the world under consideration. It 
is not surprising that there exist many equally good 
rule sets. Using the binary code for the Iris data, 
for example, the possible size of the rule space is 
238, but there are only 75 examples for training. 
However, for simple problem like the Iris problem, 
the rules extracted by NN and the rules generated 
by DT are remarkably similar. 

5 Conclusion 
Neural networks have been considered black boxes. In 
this paper, we propose to understand a network by rules 
extracted from it. We describe a three-phase algorithm 
that can extract rules from a standard feedforward neu­
ral network. Network training and pruning is done via 
the simple and widely-used backpropagation method. 
No restriction is imposed on the activation values of the 
hidden units or output units. Extracted rules are a one-
to-one mapping of the network. They are compact and 
comprehensible, and do not involve any weight values. 
The accuracy of the rules from a pruned network is as 
high as the accuracy of the network. Experiments show 
that NN rules and DT rules are quite comparable. Since 
DT rules are regarded as explicit and understandable, we 
conclude that NN rules are likewise. With the rules ex­
tracted by the method introduced here, neural networks 
should no longer be regarded as black boxes. 
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