Experiments
Associative-Commutative Discrimination

Leo Bachmair
Ta Chen
I.V. Ramakrishnan
Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794 (U.S.A)

Abstract

We recently proposed a data structure, called
associative-commutative discrimination nets,
that supports efficient algorithms for (many-
to-one) term matching in the presence of
associative-commutative functions. In this pa-
per we discuss the integration of such dis-
crimination nets into an actual equational
theorem prover and report on comespond-
ing experiments. The general associative-
commutative matching problem is known to
be NP-complete, but can be solved in polyno-
mial time if the given terms are linear, i.e., do
not contain multiple occurences of the same
variable. We therefore have implemented a
two-stage matching procedure. First we check
whether a match exists for the linearized ver-
sions of the given terms (where different oc-
currences of the same variable are replaced by
different new variables). If a match for the lin-
earized terms does exist, we then determine
whether there is also a match for the origi-
nal, non-linear terms (i.e., whether the pro-
posed substitutions for different occurrences of
the same variable are consistent). Our ex-
perimental results indicate that this approach
works very well in theorem proving, where most
matching attempts actually fail and are filtered
out during the first stage, so that the second,
more expensive stage of the algorithm is only
needed in comparatively few cases.

1 Introduction

Matching and unification are two fundamental opera-
tions in theorem proving. Unification is part of deduc-
tive inference rules such as resolution, whereas matching
is needed for subsumption, normalization by rewriting,
and other mechanisms for simplifying formulas and elim-
inating redundancies. Experimental evidence indicates
that the efficiency of resolution-type provers mainly de-
pends on these simplification mechanisms. For instance,
in rewrite-based equational theorem provers, most of the
time (about 80 to 90%) is spent on term rewriting and
normalization—operations that both require matching—

348 AUTOMATED REASONING

with
Nets

Siva Anantharaman
Jacques Chabin
Departement d'Informatique
LIFO, Universite d'Orleans
45067-Orleans Cedex 02 (France)

and relatively little on deducing new formulas via unifi-
cation. In resolution-type theorem provers the deletion
of subsumed dauses is critical for performance. In short,
efficient implementations of matching are indispensable
for such provers, cf. [McCune, 1992J). We should also
point out that pattern matching algorithms are a key
component in many other applications, including func-
tional and logic programming [Ramesh et a/., 1990] and
rule-based expert systems [Forgy, 1982].

It is becoming increasingly clear that many applica-
tions of theorem proving require efficient methods for
reasoning about associative-commutative functions. In
this paper we discuss our work on extending the equa-
tional theorem prover REVEAL by efficient algorithms
for matching in the presence of associative-commutative
function symbols.

2 Preliminaries

We consider terms built from function symbols and vari-
ables. The letters s and t are used to denote terms, / and
g to denote function symbols, and x, y, and z to denote
variables. The expression |, denotes the subterm off at
position p. Positions may, for instance, be represented
in Dewey decimal notation. The top-most position is de-
noted by A, and hence t|4 = t. The sequences 2 and 2.2
denote positions in t = f(a, g{a, b)), with t{; = g(a,b)
and t|z.z = b

Let AC be a set of associativity and commutativity

axioms
Fz, fly.2)) = f(f(=2,9).2)
20 = flv®)

for some function symbols /. We also write f € AC if
/ is such an associative-commutative symbol and write
s =AC t to indicate that s and t are equivalent under
associativity and commutativity. A term tis said to AC-
match another term s (and s is called an AC-instance of
t) if there exists a substitution , such that ez =4¢ .

It is convenient to represent terms equivalent under
AC by flattened terms. Let L be the set of all rewrite
rules (called flattening rules)

f(X.f(Y),Z} — f{X,Y,Z),

where f € AC, and X, Y, and Z are sequences of terms
with | X|+|Z| > 1,|¥] > 2. (By | X| we denote the length

Figure 1: A standard discrimination net for {# =
f{zs a, b}l iy = .f(ba a, a)l ty = f[z,a,y)}

of a sequence X.) Terms that can not be rewritten by
L are said to be flatlened. The flattened version of a
term 1 is denoted by f. By ~ we denote the smallest
symmetric rewrite relation (also called the permutation
congruence} for which

X, 0.Y.0,2) ~ f(X,v,Y,u,2)

if f € AC. 1t is readily seen that s is an AC-instance
of t if and only if 1o ~ 3, for some substitution #. (In
the case of flaitened terms, we have to allow 2o to be
a sequence of terms if 2 occurs as an argument of an
AC-symbol in t.)

3 Discrimination Nets

Various data structures have heen proposed for the el-
ementary operations needed in theorem proving, e.g.,
[Ohlbach, 1990; Graf, 1994]. We illustrate the basic
ideas by way of an example for one such data strueture—
discrimination nets—and its use for matching, or more
specifically many-lo-one malching, where one wishes to
identify, given terms ty,...,t, (called the paiterns) and
& (called the subject), which of the terms ¢ match s.
In rewrite-based theorem proving, the terms {; tepresent
the lefi-hand sides of the current rewrite rules, whereas
the subject term # is the term to be rewritten. This
matching problem needs to be solved for several differ-
ent subject terms, but with a fixed set of patterns. For
instance, many terms may need {o be rewritten using the
same set of rewrite rules. Thetefore, the pattern terme
are represented by a special data structure similar to a
trie and called a discrimination nel, that allows one to
quickly identify matching patterns for any given subject
term. A key ides is that common parts of terms #; be
shared in the representation of the full pattern set.

For example, suppose we have three pattern terms,
Hz,a,b), f(b,a,a), and f{2,a,y). A discrimination net
T for the set M of these three patterns is shown in Fig-
ure 1. The discrimiration net is a tree, with edges la-
belled by function symbols and variables [occurring in
texms in M) and nodes labelled by positions (of sub-
terms of terms in M) and subsets of M. The labelling
needs to satisfy the condition that for each node u, the
associated set M, consists of exnctly those terms in M

with occurrences of fanction symbols as prescribed by
the path from the root of the net to u. (The sets M, are
called match sets for obvious ressons.) Imtetior nodes
indicate partiel maiches, and leaves, complete matches.

For example, the left-most leaf in the net in Figuze 1
has match set {2}, as #; = f{(b,a,a} is the only term
in M which has an f at the root (position A}, a b at
position 1, and an a at positions 2 and 3.

To determine which patterns match a given terms s
one simply iraverses the discrimination net with the in-
put term # as a guide. More specifically, an edge is tra-
versed if its label is either identical to the corresponding
symbol in # or else is a1 variable. For example, the term
s = f(2,a,a) causes traversal of the rightmost path in
T, which yiclds match set {3} and indicates that 5 is an
instance of {3, but not of {; or #;. The traversal induced
by the texm f(b, b, b} gets stuck at the second level, in-
dicating that there is no match.

3.1 Associative-Commutative
Discrimination Nets

Let us next consider how discrimination neis may be
applied to terms with associative-commutative fenction
symbols. By the AC-nesting depth of a position in a
term we mean the number of AC-symbols that occur on
the path from the position to the root. More formally,
the AC-nesting depth at A is 0; and if n is the AC-
nesting depth at position p in ¢, then the AC-nesting
depth at a position p.iin ¢ is n+ 1, if { contains an AC-
symbol at position p, and n, otherwise. The AC-nesting
depth of a term is the maximum AC-nesting depth of
any of its positions. The top-layer § of & term ¢ is the
expression obtained from ¢ by removing all subterms at
positions with non-zero AC-nesting depth. For example,
if f € AC and g # AC, then the top-layer of g(z, f(b, c)}
is g(z, f). Obviously, if s is an AC-insiance of ¢, then
its top-layer must be an {ordinary) instance of the top-
layer of t. For example, the term g(a, g{a, a)} cannot
be an AC-instance of gz, f(b,c) as the respective top-
layers do not match. If the top-layers of the given terms
match, we need to consider the stripped-off subterms
and recursively check for the existence of suitable AC-
matches.

Thus, if » and t are flatiened terms with {o¢ ~ »,
then (i} { matches # and (ii) if p is & position of an
AC-symbol in the top-layer of ¢, then {t},)o ~ s|,. Con-
versely, if (i) and (ii) are satisfied for some substitution o,
then iz ~ s. In other words, AC-matching is completely
charactetized by conditions (i} and (ii). Cendition (i)
represents & standard matching problem, while condi-
tion {ii) leads to a bipartite graph matching problem.
Suppose |, = f(ly,...,1m} Bnd s, = f(s1,...,85),
where f € AC. We may also assume, without loss of
generality, that the terms 2;,...,1; are non-variables,
while all terms ty41,...,tm are variables, for some k with
0 < k < m. Define a bipartite gzaph G = (V3 U V3, E},
with V] = {8,...,5,}, V2 = {4,..., 144}, and E con-
sisting of all pairs (s, 1;), such that t;0 ~ s, for some
substitution ¢. It can easily be seen that if {a) either
n=morn >m >k, and (b} there is & maximum
bipartite matching of size k in the bipartite graph G,

BACHMAIR, ET AL 349

then f{t1,...,tm}o ~ f(#1,...,84), for some substitu-
tion o and hence condition {ii) is satisfied. In part (s}, if
m > k, then some of the terms ¢; contain variables and,
since we consider linear pattern terms only, a suitable
matching substitution can be found, whenever all non-
variable terms fy,...,i; are matched (and n > m, of
course). For example, if f € AC, then ¢ = f{h{a),a,b)
is an AC-instence of { = f(h{2),y): substitute s for =
and the sequence a, b (or f(e,b)} for 3.

These observations lead to the definition of an AC-
discrimination nel for a set of terms M as a hierar-
chically structured collection of standard discrimination
nets: the top of the hierarchy is a standard discrimina-
tion net for the set of top-layers of terms in M; to each
node with an incoming edge labelled by an AC-zsymbol
{(a so-called AC-nodes) another AC-discrimination net
is attached that represents the subterms of terms in Ly,
where L, is the set of terms corresponding to the AC-
node.

For example, an AC-discrimination net for the two
terms k(f(a,)¢, f(3r<)) and k(f(a,2),c. f(a, b)) where
f is the only AC-symbol, is shown in Figure 2. Both

Figure 2: An AC-Discrimipation Net

terms have the same top-layer, k(f ¢, f). The set of
terms {f{a,b), f(a,)} is associated with the first AC-
node; the set { f(y, c), f(a,b)} with the second AC-node.
The corresponding subnets represent {a, b} and {a,b,c},
respectively,

To determine which terms AC-match a given term s,
we traverse the individual standard nets in the hierarchy
as usual, and use s bipartite graph matching salgorithm
to cormbine the results from different levels of the hier-
atchy. For example, suppose k{f(b,a),c, f(a,b)) is an
input term for the above AC-net. The top-level net is
successfolly traversed to the first AC-node, call it v, at
which point the two subterms b and a are provided as in-
puts to the firast zubnet {which represents the terms e and
b}. Traversal of the subnet yields two bipartite graphs,
one for each element of the set L, = {f{a,}), f(a,2)}.
The size of each respective maximum matching indicates
that the input term f(b,a) is an AC-instance of both
f(a,b) and f(a, 2). Traversal of the top-level net resumes
st node v and continues on to the second AC-node, call
it o', with L,. = {f(yc), f(a,b)}. The input terms for

350 AUTOMATED REASONING

Figure 3: Secondary automaton of rank 2.

the second subnet are a and b. The subterm f(a,b) of
the input is found to be an AC-instance of f(a,b), but
not f(y,c). Thus, only the pattern &(f{a,2),¢, fla, b}
is identified as an AC-match. A full description of the
algorithm can be found in |Bachmair ef al., 1993].

4

3.2 Secondary Automata

The AC-matching algorithin has to construct bipartite
gtaphs of the form G = (V1 U V3, B), where ¥V} =
{#1,...,8.} is a set of input subterms, V3 = {¢1,..., 4}
is a set of {non-variable) pattern subterms, and E con-
tains an edge (#;,%;) if and only if ¢; AC-matches s,
so as to extract subsequently a maximum matching of
gize k. The set V2 depends only on the patterns; it re-
mains fixed for a given AC-net and node therein and, at
least {or applications in theorem proving, is usually small
with at most five clements. The set of vertices V] and
the set of edges E depend on the input. The graph &
is computed stepwise, via a sequence of bipartite graphs
G, ..., G,. Traversal of the subnet for input s, deter-
mines the edges incident on that node, thereby defining
Gy. Traversal of the subnet for #; determines the edges
incident on sz, which arc added to G; to yield G3; and
50 on.

For example, consider V3 = {t1,%2}. Each traversal of
the subnet for a term s; yields a bitsiring b; of length
two: the bitstring 10 is obtained if s; is an AC-instance
of {; but not of 5; and the sirings 00, 01 and 11 are inter-
preted correspondingly. The size of 2 maximum match-
ing on the bipartite graph G; can be readily determined
from b; and the size (and kind} of a maximum matching
on ;1. The computation can be conveniently repre-
sented in a finite automaton, which we call & secondary
automaton, More specifically, we speak of a secondary
autometon of rank k (denoied by S;) if V; contains k
elements.

The secondary sutomaton Sy is shown in Figure 3.2.
The initial state of the automaton represents graphs with
a maximum maiching of sike §; it three successor states
represent three different types of graphs with maximum
matchings of size 1;! and the final state represents graphs
with a maximum matching of size 2. In our algorithm we
use secondary autometa up to rank 5, which is sufficient
for theorem proving applications.

$The three cases are: (i) ¢ con be matched, but aot ¢;;
(ii) £2 can be matched, but not #;; (iii} both ¢; and ¢ can be
matched, but not at the same time.

4 Implementation of AC-Matching

The -AC-matching problem is an NP-complete problem,
but can be solved in polynomial time if pattern terms are
linear [Benanav et a/., 1987]. We have therefore designed
AC-matching as a two-phase process. In the first phase,
an AC-discrimination net for the linearized versions of
pattemns is used as a filter: if no AC-match exists for the
linearized patterns, then there certainly exists none for
the original patterns. If in the first phase some terms are
identified as AC-matches, we need to check in a second
phase whether any of these matching terms can be ex-
tended to AC-matches in the presence of non-linearity.
A straightforward AC-matching algorithm is used in this
second phase. Our experimental results provide strong
evidence that in typical theorem proving problems most
of the patterns can be eliminated during the first phase,
so that the expensive second phase is invoked only spar-
ingly and the two-phase approach results in substantial
performance gains.

4.1 Term representation

We adopt a variant of the data structure for flat terms
used in HIPER, see [Christian, 1989] for details. Flat-
tened versions of terms equivalent under AC are unique
only up to permutation congruence. For instance, the
two terms /(a, b, ¢) and /(c, a, b) are AC-equivalent if
f € AC.. We define a unique representative for each AC-
equivalence dass by using a total ordering on function
symbols and variables and lexicographically extending
it to a total ordering on terms. The minimal term in
an equivalence dass serves as the unique representative.
For example, ifa < & < ¢, then f{a, b,¢) < fc,a,b).

4.2 Standard Discrimination Nets

Let us next discuss the design and implementation of dis-
crimination nets. We first consider standard discrimina-
tion nets, which provide the basis for AC-discrimination
nets. In theorem proving, the set of (pattern) terms that
need to be represented in a discrimination net change dy-
namically. We have chosen a non-deterministic variant
of such nets in which insertion and deletion of patterns
can be performed easily. (The main difference between
deterministic and non-deterministic nets is that the lat-
ter require backtracking in order to identify all matches.
Deterministic nets require no backtracking, but may use
more space.)

Pattern terms are stored at the root of the net. Each
leaf maintains a list of pointers to the patterns in the
matchset associated with the leaf node. With each
node we maintain a linked-list representing the (labelled)
edges from that node. This list is kept sorted (according
to the edge labels), so that the traversal of the net can
be implemented by a linear search through this list.
Example 1 Figure 4 shows the discrimination net for
the set {f(x, a, 6),/(b, a, a),/(x, a, y)}, where the under-
lying ordering on symbols is x<y<a<b<f.

This variant of discrimination nets essentially corre-
sponds to the third variant described in [McCune, 1992].
In contrast to HIPER and also our earlier description of
discrimination nets in [Bachmair et al., 1993], we distin-
guish between different (non-AC) variables. Although

Figure 4: Standard discrimination net

such a distinction may potentially result in more back-
tracking and consume more memory, it has the advan-
tage that checking for the consistency of substitutions
for (non-AC) variables can be done during traversal of
the net, so that failures caused by inconsistencies can
be discovered earlier. To allow for consistency checking
we maintain a global substitution table and, whenever
descending to a branch comresponding to a (non-AC)
variable x, compare the entry for x (if present) in the
substitution table with the current subterm of the input
term.

4.3

Recall that AC-nets require additional operations such
as bipartite matching using secondary automata, inter-
section of matchsets produced by AC-subnets and re-
porting the result from one level of the net to the next
higher level. We first describe data structures that are
needed for these operations. With each AC-node v we
associate a set L, of AC-subterms. These subterms are
stored in a linked list; each element in the list is called a
control block and comesponds to one AC-subterm. In the
control block for a term t € L, we maintain information
relevant to bipartite matching and secondary automata
transitions. When a pattern term is deleted, all control
blocks corresponding to its AC-subterms must also be
deleted. To facilitate deletion, each pattern is assigned
an unique ID number and all control blocks derived from
the pattern inherit this 1D, which is then used as a search
key during deletion. The search is implemented as a sim-
ple linear search in the linked list associated with L,.

For each pattern, there is a pointer from the control
block of each AC-subterm t at AC-nesting depth / to the
control block of an AC-superterm? of ¢ at AC-nesting
depth / — 1. Similarly, if a term t is in the matchset of a
leaf, there is a pointer from the leaf to the control block
of the dosest AC-subterm enclosing this t.

Example 2 Suppose k(a,c, f(y,c)) and k(a,c, f(a,b)),
€ AC, are two patterns. We have L, —
{/(y,c),/(a,b)} represented by the list of control blocks

C and D. The enclosing AC-subterm of /(y, c) and

AC-Discrimination Nets

2 An AC-superterm of t is a super term of ¢ with AC-
function symbal at its root.

BACHVAR, ETAL 351

f(o,5) are the patterns themselves. So there is a pointer
Jrom control block C io A und D 1o B.

D AC-nodes
O eentrol blocks

A hfa, e, flg.e])
B: k(m,c, f{a, M)
C: fp. <)

Figure 5: AC-discrimination net

4.4 Secondary Automata

A secondary automaton is constructed for each desired
rank and stored during initialization of the system. Each
state of a secondary automaton is implemented as an ar-
ray of pointers. Recall that transition symbols are bit-
strings. We use the integers representing the bitstrings
as indices with the arrays. For example, Figure 6 is the
secondary automaton of rank 2 (also see Figure 3 for its
abstract representation) where each state is represented
as a four-element array. On bitstring 01, whose integer
value is 1, the automaton changes from state O to state
1.

°o1 23

Figure 6: Secondary sutomaton of renk 2

Bitstrings are obiained as follows. Note that for a
pattern f(t;,..., 2, 2Zp41,---12m), F € AC, and a sub-
Ject f(s1,...,8,), each &, 1 < i < n, can AC-match
more than one 3;, 1 € j < k. Since nondeterministic
nets are used, {; may appear in the matchsets of dif-
ferent leaf nodes, ull of which will be visited when »; is
being matched. We assign each ¢; a bitstring of length
k wuch that the bits for the bitstring for ¢; are all se-
ros except the j** bit. The input bitstring to the sec-
ondary sutomaton for #; is then obiained by performing
an inclusive-OR operation between the bitstrings of ¢;,

362 AUTOMATED REASONING

where 1; is in the matchset of a leaf node visited. For
instance, for the pattern f(h(a,z), i(a, c},e), f e AC,
the argumeats h(a, 2}, A(a, c) and e are in matchsets of
different leaf nodes, say node 1, 2 and 3, and the bit-
strings nssociated with them are 100, 010 and 001, re-
spectively. On the subject f(h(a,c}, e, ¢}, since h{a,¢)
AC-matches with both A(a,z}) and h(a, ¢), leaf nodes 1
and 2 will be visited and so the bitsiring obtained will
be 100 v 010 = 110, indicating that A{a, ¢} matches the
first and second arguments of the pattern.
Optimigation to reduce rank: The number of non-
variable arguments of an AC-subterm in a pattern deter-
mines the rank of the associated secondary automaton.
The sige |Sy| of a secondary automaton grows rapidly
with increasing k. For instance, [Sy| = 2, |52 = §,
|83] = 16, |S4| = 68 and |S5| = 406. We only con-
struct secondary mutomata up to rank 5, but this hass
not been a limitation in practice. In particular, we use
optimization techniques that have enabled us to run all
the benchmarks using automata of rank < 5. First ob-
serve that multiple oceurrences of the same term can be
merged for the purpose of constructing secondary au-
tomata. We only need to Xeep track of the multiplicity
of each distinct argument. For instance, to deal with the
subterms in f(a,a,b,¢, ¢, ¢) we only need an automaton
of rank 3, not rank 6. Also, we may partition terms
nccording to their top function symbol. For example,
suppose 1, = k(1]), 1z = k(2}), 1z = k{2}), &4 = R(1}),
t5 = k(t;), and tg = A(ly). Evidently, an instance of one
of the first three terms can not be an instance of one of
the last three terms, and vice versa. Consequently, in-
stead of using an automaton of rank 6 for all six terms,
we may use two automata of rank 3 for each of the two
subgroups. If necessary, we can partition further by look-
ing at more function symbols other than the top symbol.

4.5 Putting it all together

We are now ready to explain the operation of an in-
discrimination net based upon the above representation.
At each AC-node, we do the following steps. We check
whether (i) the number of arguments in the pattern ex-
ceeds those in the subject; or (ii) if the pattern has no
variable arguments and has fewer non-variable argument
than the subject. In such cases, the pattern is marked
unmatchable and no further action is done on behalf of
it. For patterns which pass the above test, secondary
automata are used to determine the existence of a maxi-
mum bipartite matching for the corresponding bipartite
graph. Secondary automata are used for small bipar-
tite graphs (deriving from pattern terms with few non-
variable AC-arguments). If the number of non-variable
arguments is large, we use a general bipartite matching
algorithm [Papadimitriou and Steiglitz, 1982]. In the ex-
periments reported below, we never had to resort to a
general bipartite matching algorithm.

On successful completion of the above steps, we in-
clude the AC-subterm in the matchset for the AC-node.
This matchset is intersected with those computed at
other AC-nodes at the same level of the net. We use
Stickel's algorithm [McCune, 1992] to do list intersec-
tion. Specifically, suppose L4, L, and L3 are three lists.

We first mark the elements of L1 with 1. Then those
elements of L2 that are marked with 1 are marked with
2. Finally, elements of L3 that are marked with 2 are
the results of L1 nL2 n L3. Since an intersection has
to be done at each AC-node, we can use the number of
AC-nodes visited for each level as the current value of
the mark. Finally, when a leaf node r is reached, the
matchset Mr associated with r is also intersected with
the outcome of earlier intersections at this level.

Example 3 With the AC-discrimination net in Fig-
ure 5, suppose the subject is k(f(a, ¢),c,/(a, 6)) and we
have just entered node 2. Upon processing /(a, c) through
the subnet at node 2, only B is marked with 1, since
f(a,x) of the second pattern is matched, but not f(a,b)
of the first pattern. Then, although both terms /(a, b)
and /(a, b) in L3 are in the matchset computed at node
3, only B gets marked with 2 because it is marked cur-
rently with 1. Therefore, the second pattern is selected
by the net.

5 Experimental Results

We next present experimental results we obtained with
our implementation on a Sparc 10 with 32 MB of mem-
ory. We first compare AC-discrimination nets with
straightforward AC-matching, and then show the ef
fect of the resulting savings in the context of a the-
orem prover. Finally, we show that the use of AC-
discrimination nets does no compromise on the perfor-
mance of a theorem prover on problems without associa-
tivity and commutativity.

5.1 AC-Matching

The first data set provides an indication of the effec-
tiveness of AC-discrimination nets. We took a set of
1,000 terms from a typical theorem proving application
in OTTER [McCune, 1992], and built an AC-net for
it. Then each one of these terms is used as a subject
(resulting in a successful AC-match, of course). The re-
sulting times are compared with a straightforward AC-
matching algorithm that uses no discrimination net. We
ran the algorithms in two different modes: (i) to identify
the first matching term (and then stop), or (ii) to find
all matching terms. We also repeated these tests for a
smaller subset of 100 terms.3 The results are summa-
rized in Table 1. It can be seen that AC-discrimination
nets result in a three- to four-fold speedup for finding
the first matching term (which is the variant needed for
rewriting). All times are in seconds.

5.2 AC-Completion

We then ran a number of experiments with our equa-
tional theorem prover REVEAL. All problems contained
associative-commutative function symbols. They in-
clude the following:

1. grobner: The Grobner bese of a certain ideal in a poly-
nomial ring in two variables over integers is computed
via completion;

3 We should note that the terms in the original OTTER-
do not contain AC-symbols; but we dedared one
of the (binary) symboais to be AC.

Problems et o Net ith Net | Speedup

CL_pon 10

First 0.02 8.28 1.05 7.98

All B.53 1.08 8.18

CL_pos_ 1000

Pirst 0.15 43.74 11.48 3.51

All 87.62 11.44 7.65

CL_neg 100

First 0.03 0.48 0.15 3.20

All 0.93 0.42 7.75

CL neg_1000

First 0.47 45.45 12.74 3.57
| Al 88.61 12,20 7.35

Table 1: Performance of AC-Discrimination Nets

2. grpfini30: A canonical rewrite system is computed for
an abelian group of order 30, spedified with three gen-
erators;

3. jacobson: Commutativity is proved for rings satisfying
X*=X;

4. moufang: The uilinearity of the assodator is proved
for (non-associative) altemative rings;

5. robbinh : It is proved that any Robbins algebra is a
Huntington algebra (and hence a Boolean algebra) if
there exists an element ¢, such thatc +c=c;

6. robbinh2 : Similar to robbinh, but under the assumption
that there exist eements ¢, d such thatc-fd—c;

7. ugsl2 : Certain properties of some 'unitary quantum
groups' are proved

Table 2 summarizes timings for these and several
other AC-problems. We compare the perfomance of
the prover with AC-discrimination nets (under columns
'ACN' in the table) with a more naive strategy 'NaT
without AC-nets. Ore of the key components of our
prover is the normalization of terms by rewriting, which
requires (AC-)matching. Given a set T of rewrite rules
and a term s to be normalized, the prover takes one rule
from T and tries to match it at the root of s. In case of
failure, the next rule in T is tried, and so on, until either
a match is found or else all rules in T are exhausted.
In the latter case, the process is restarted at the next
position of s. We measured (a) the time to nomalize
terms with respect to the current rewrite system and
(b) the total time leading to proofs. The speedups are
given for both the normalization and for total comput-
ing times. The speedups for normalization, naturally,
are significantly greater than those for total times.

Since the prover needs to find only one matching pat-
tern, from Table 1 we may expect an average speedup
of about 4 for finding the first matching pattern. Since
in normalization about half the time is spent in find-
ing a match, we can expect to improve normalization
by a factor of 2 on the average. This is consistent with
the speedup figures for normalization in Table 2. Fi-
nally, about 70% of the total computing time is spent
in normalization and the rest on other operations, such
as unification (for deduction of so-called critical pairs),
etc. So we can expect a speedup of about 35% on the

BACHMAIR, ETAL 353

Time Speedup
Normalisation Total

Prob. Nui | ACN Nai | "ACN

balukes 1.82 1.40 3.15 275 [130 | 118
boolston 1.35 D.T9 2.89 2.38 [1.71 | 1.22
grobner 18.18 6.66 30.08 18.95 | 2.737] 1.59
grpfini30 2.69 1.88 171 7.10 | 143 | 1.09
hunt2acm 91.63 | 95.72 | 118.01 | 121.68 | 0.9¢ | 0.97
Jacobson 137.34 | 61.06 | 169.94 89.75 | 2.25 | 1.89
midlaw 0.29 0.20 0.99 0.90 | 1.46 | 1.10
moufang 45.74 | 12.7% 58.97 26.12 | 3.58 | 2.26
newpb 5.26 4.00 8.19 718 [132 | 1.14
newph? .07 | 5.67 | 10.99 9.63 [1.25 | 1.14
robbinh i 1.18 6.47 450 | 2.64 | 1.44
ugel? 10.15 1.38 15.35 6.74 | 7.36 | 2.27

Table 2: Performance of AC-Discrimination Nets

average for completion. This is again consistent with the
speedups in Table 2 we obtained for our examples.
Finally, we like to mention that memory consumption
of the AC-discrimination nets for the problems in Ta-
ble 2 never exceeded the memory required for storing the
patterns, i.e., the extra memory needed at most doubled.

5.3 Non-AC Problems

As mentioned earlier, standard discrimination nets have
been used quite successfully to solve many-to-one non-
AC-matching problems. It is critical that the perfor-
mance of our AC-matching algorithm do not degrade
when used for non-AC problems. Table 3 shows that
this has been accomplished in our implementation. All
the problems in there are non-AC The second col-
umn are the timings obtained by standard discrimi-
nation net while the third column pertains to AC-
discrimination nets. Observe that the overhead of using
AC-discrimination net for non-AC problems is negligi-
ble.

[Problema SN | ACN | Ratio
assoc 0.54 0.56 0.08
groupl 074|076 | 0.97
groupr 0.59 0.60 D.58
furtin - 0.83 0,85 D.98
huntingle 14.84 | 15.05 0.99
ternary 4.09 4.36 0.94

Table 3: Timings for some Non-AC Problems Using
Standard Net and AC-Net

6 Summary

In this paper, we have presented the design, implemen-
tation and experimental results of an AC-discrimination
net based AC-matching algorithm. This algorithm has
been integrated into the equational theorem prover RE-
VEAL, which we used for our experiments. Our imple-
mentation exploits the fact that although AC-matching
is iVP-complete, it can be solved in polynomial time if
patterns are restricted to linear terms. It solves the

364 AUTOMATED REASONING

many-to-one AC-matching in two phases. In the first
phase only those patterns are selected that AC-match
under the assumption that all (AC) variables are differ-
ent (i.e., linear). The consistency of the substitutions
computed for (AC) variables are checked in the second
phase. The experimental results show that a high per-
centage of patterns are filtered out in the first phase,
leaving very few patterns for the more complex consis-
tency checking in the second phase. For instance, for
our benchmark problem ugsl2, no more than one pat-
tern was selected by the AC-discrimination in 98% of
the cases (no pattern was selected in 88% and one pat-
tern in 10% of the cases). We also ran experiments with
different search strategies and obtained similar results.
In particular, we want to mention that on robbhin2 we
were able bring down the total time from 2135 minutes
to 1755 minutes using AC-discrimination nets. All these*
results and the speedups we obtained provide strong ev-
idence that AC-discrimination nets and secondary au-
tomata are indeed useful tools for significantly improving
the performance of theorem provers for AC problems.

Acknowledgements. We would like to thank the
anonymous reviewers for their helpful comments. This
research was supported in part by the NSF under grants
CDA-9303181, INT-9314412 and CCR-9404921.

References

[Bachmair et al, 1993] L. Bachmair, T. Chen, and Iv Ra-
makrishnan. Associative-commutative discrimination nets.
In Proceedings of the 4 th International Joint Confer-
ence on Theory and Practice of Software Development,
CAPP/FASE, 61-74, Orsay, France, April 1993.
Springer-Veriag 668.

[Benanav et al., 1987] D. Benanav, D. Kapur, and P. Naren-
dran. Complexity of matching problems. Journal of Sym-
bolic Computation, 3:203-216, 1987.

[Christian, 1989] J. Christian. High-Performance Permuta-
tive Completion. PhD thesis, The University of Texas at
Austin, August 1989.

[Forgy, 1982 C. Forgy. Rete, a fast algorithm for the many
pattems many objects Match problem. Artificial Intelli-
gence, 19:17-37, 1982

[Graf, 194] P. Graf. Extended path-indexing. In 72th Con-
ference on Automated Deduction, pages 514-528. Springer-
Verlag LNCS 814, 194.

McCune, 1992] W. McCune.
EéFen'menis with discrimination-tree indexing and path
indexing for term retrieval. Journal of Automated Reason-
ing, 9:147-167, 1992.

[Ohlbach, 1990] H.J. Ohlbach. Abstraction tree indexing for
terms. In Proceedings of the 9th European Conference
on Artificial Intelligence, pages 479-484, London, August
1990. Pitman Publishing.

[Papadimitriou and Steiglitz, 19821 C. H. Papadimitriou
and K. Steigliz. Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, 1982.

[Ramesh et al, 1990] R. Ramesh, 1.V. Ramakrishnan, and
D.S. Warren. Automata-driven indexing of prolog dauses.
In Seventh Annual A CM Symposium on Principles of Pro-
gramming Languages, pages 281-290, San Francisco, 1990.

