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Abstract 

This paper proposes logic programs as a specifi
cation for robot control. These provide a formal 
specification of what an agent should do depending 
on what it senses, and its previous sensory inputs 
and actions. We show how to axiomatise reactive 
agents, events as an interface between continuous 
and discrete time, and persistence, as well as ax-
iomatising integration and differentiation over time 
(in terms of the limit of sums and differences). This 
specification need not be evaluated as a Prolog pro
gram; we use can the fact that it will be evaluated in 
time to get a more efficient agent. We give a detailed 
example of a nonholonomic maze travelling robot, 
where we use the same language to model both the 
agent and the environment. One of the main moti
vations for this work is that there is a clean interface 
between the logic programs here and the model of 
uncertainty embedded in probabilistic Horn abduc
tion. This is one step towards building a decision-
theoretic planning system where the output of the 
planner is a plan suitable for actually controlling a 
robot. 

1 Introduction 
Since Shakey and STRIPS [Fikes and Nilsson, 1971], logic 
and robotics have had a tumultuous history together. While 
there is still much interest in the use of logic for high-level 
robotics (e.g., [Lesperance et al, 1994; Caines and Wang, 
1995]), there seems to be an assumption that low-level 'reac
tive' control is inherently alogical. This paper challenges this 
assumption. 

This paper investigates the idea of using logic programs as 
a representation for the control of autonomous robots. This 
should be seen as logic programming in the sense of logic + 
control [Kowalski, 1979]; we use a logic program to specify 
what to do at each time, and use an execution mechanism 
that exploits a derived notion of 'state* in order to make it 
practical. 

The main highlights of this approach are: 
1. An agent can be seen as a transduction: a function from 

inputs (sensor values) into outputs (action attempts or 
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actuator settings). These are 'causal' in the sense that 
the output can only depend on current inputs and previous 
inputs and outputs. This function will be represented as 
a logic program specifying how the output at any time 
is implied by current and previous inputs. The causality 
ensures that we have acyclic rules. 

2. The logic programs are axiomatised in phase space 
[Dean and Wellman, 1991] (the product of space and 
time, i.e., the predicates refer to times as part of the 
axiomatisation) in a similar manner to the event cal
culus [Kowalski and Sergot, 1986]. This allows us to 
axiomatise persistence as well as accumulation (integra
tion) over time and differentiation with respect to time. 

3. The notion of 'state' is a derived concept; the state is 
what needs to be remembered about the past in order for 
the agent to operate in the present. The axiomatisation 
is in terms of how the 'current' action depends on cur
rent inputs and past inputs and other values; the state is 
derived so that the output, instead of being a function of 
the current inputs and all past history, is a function of the 
current inputs and the state. 

4. Although the specification of what to do looks like a 
Prolog program, it is not evaluated as a Prolog program. 
Instead we exploit the fact that the agent exists in time; 
that inputs are received in sequence, and that all previous 
inputs have already been received (and no subsequent 
inputs have been received) when the agent makes a de
cision. Instead of treating this as a logic program that 
may need to do arbitrary computation reasoning about 
the past, we actively maintain a state. The reasoning 
about what to do at any time depends only on the current 
inputs and the remembered state. 

This perspective is useful for a number of reasons: 
1. It provides for a representation for an agent's behaviour 

in a language with a well defined semantics (see [Apt 
and Bezem, 1991]). 

2. It lets us model both the robot and the environment within 
the same language. The robot axioms can be evaluated in 
two modes. In the 'situated' mode, the agent gets sensor 
values directly from the environment, and acts in the 
environment In simulation mode, we also have a model 
of the environment, and can run the models together as 
a simulation of the integrated system. 
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3. There is a clean way to integrate this with models of 
uncertainty (e.g., for noisy sensors and sloppy and un
reliable actuators). The logic programs here are of the 
form that can be used within a probabilistic Horn abduc
tion system [Poole, 1993]. One of the aims of this work 
is to produce a representation for robot behaviour that is 
both suitable for controlling a real robot and also can be 
the output of a decision-theoretic planning system. 

4. The logic programs form an executable specification of 
what an agent should do. Although they can be evalu
ated reasonably quickly using current logic programming 
technology, it may be possible to compile these speci
fications into circuits for robots (in a manner similar to 
[Gaboury, 1990]). 

5. It shows how two traditions in AI (namely logic-based 
AI and robot programming), seemingly at odds, can be 
unified. Whether we are successful in this remains to be 
seen. In particular, this paper should be seen as a proposal 
and an initial feasibility study — there is still much work 
that remains to be done before this is a competitor for 
programming robots. 

6. Inspired by constraint nets [Zhang and Mackworth, 
1995], this work shows how to model hybrid continuous-
discrete systems. The axioms will all be true (in the limit) 
for continuous time. We derive discrete events from con
tinuous time. 

2 Representation 
The problem that we are trying to solve is to represent, simu
late and build an agent that senses and acts in the world. The 
agent receives a sequence (trace) of inputs (percepts or sensor 
values) and outputs a sequence (trace) of outputs (actions or 
actuator settings). 

We assume a time structure T that is totally ordered and 
has a metric over intervals. T can either be continuous or 
discrete. A trace is a function from T into some domain A. 

A transduction is a function from (input) traces into (out
put) traces that is 'causal' in the sense that the output at time 
t can only depend in inputs at times t' where t' < t. An agent 
will be a specification of a transduction. 

Transductions form a general abstraction of dynamic sys
tems [Zhang, 1994; Zhang and Mackworth, 1995; Rosen-
schein and Kaelbling, 1995]. The problem that we consider 
is to use logic programs to specify transductions. 

The language that we use is that of acyclic logic programs 
[Apt and Bezem, 1991 ], with a limited repertoire of predicates 
that explicitly refer to time. We assume that the acyclicity 
corresponds to temporal ordering (if time t\ is before time t2 
then predicates referring to time t\ will be lower in the acyclic 
indexing that those referring to time t2). We will use negation 
as failure — for those who do not like this, we mean the 
completion of the program (which forms a sound and complete 
semantics for acyclic programs [Apt and Bezem, 1991]). The 
axioms below assume a limited form of arithmetic constraints. 

A fluent [McCarthy and Hayes, 1969] is a function that 
depends on time. Each fluent has an associated set called 
the range of the fluent. A propositional fluent is a fluent 
with range {true false}. Syntactically a fluent it a term in our 
language. 

Definition 2.1 An agent specification module is a tuple 
(I,0,R,L,A)where 
J is a set of fluents called the inputs. The inputs specify 

what sensor values will be available at various times. The 
range the the input trace is the cross product of the ranges 
of the fluents in the inputs. Atom sense (F/, Val, T) is 
true if input fluent Fl has value Val at time T. 

O is a set of fluents called the outputs. An output is a propo-
sitional fluent that specifies actuator settings at various 
times. These can also be seen as the actions of the agent 
(in particular, action attempts). The atom do(Fl, Val, T) 
is true if the agent sets actuator Fl to value Val at time 
T, or to 'do' action Fl = Val at time T. 

R is a set of fluents called the recallable fluents. These are 
fluents whose previous value can be recalled. Recallable 
fluents will be used to model persistence as well as inte
gration and differentiation. 

L is a set of fluents called the local fluents. These are fluents 
that are neither inputs, outputs nor recallable. The pred
icate val(Fl, Val, T) is true if local fluent Fl has value 
Val at time T. 

A is an acyclic logic program. A specifies how the outputs 
are implied by the inputs, and perhaps previous values 
of the recallable fluents, using local fluents, arithmetic 
constraints and other (non-temporal) relations as inter
mediaries. 
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2.1 Pure Reaction 
We can model pure reaction, that is memoryless systems built 
from combinational networks (as in, e.g., [Agre and Chapman, 
1987]), where the output is a function of the immediately 
available inputs. A logic program (with all fluents referring to 
the same time) can represent arbitrary combinatorial circuits. 

12 Persistence 
The use of set, now and was allows recallable fluents to 
persist Once a value of a fluent is set that value persists 
until a new value is set. At any time it is always the last 
value set that we look at (it is this property that allows us to 
build efficient implementations) — where 'last' means means 
'before now* for was and 'at or before now* for now. 

When setting the value of fluent ft at time T, we cannot 
use now for that fluent and time in the proof for set, as this 
violates the acyclicity assumption. We can however, use the 
was predicate for that fluent and time. 

Persistent values are true in left closed, right open intervals. 
If fluent // was set to value v at time t\ and was set to a 
different value at time t2 (and no other settings for value v 
occurred in between), then the fluent // has value v in the 
interval t1, t2). This is the opposite convention to the event 
calculus [Shanahan, 1990]. We want this convention as robots 
have internal state so that it can affect what they will do; if 
a robot realises at time t2 that it should be doing something 
different, then it should change what it is doing immediately, 
and not wait 

This notion of persistence is close to that of the event calcu
lus [Kowalski and Sergot, 1986; Shanahan, 1990] (see Section 
4.5). 

'This is to allow us to model 'transport delays' (see Section 4.2), 
that are essential for the modelling of analogue systems. In general 
using this facility means that we have to maintain a history of set 
values and not just a state of set values. 
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2.4 Truth in the limit 
The axioms given for was and now are incomplete — they 
do not specify the structure of time. 

If time is discrete3, then there are no interpretation problems 
with the axioms above. In particular, we make the predicate 
time(ti) true for each 'time* *,. The predicate was always 
refers to the previous time point (or to the last time point when 
the value was set), and there is always some finite duration of 
each time interval. 

If time is continuous, there are semantic difficulties in in
terpreting these sentences (in particular the integration and 
differentiation formulae that allow for the setting of values at 
each time point). We cannot interpret the integration and dif
ferentiation axioms 'in the limit', as in the limit, V = V1 and 
T = T\; the integration axioms become cyclic (and tautolo
gies), and the differentiation axioms provide no constraints 
on the value of Df. 

In order to be able to interpret the above sentences we have 
to consider the limit as finite discretizations become finer and 
finer (in the same way that integration is defined). The axioms 
will talk about what is true for each discretization. The values 
that 'was' refers to will be well defined for each of these 
discretizations. The meaning for the continuous case will be 
what is true in the limit. 

To define the limit, consider a uniform discretization with 
time interval dt > 0. For each dt we consider the discretiza
tion that consists of the time points k x dt for some integer 
it. 

Figure 1: Coupled Robot and Environment 

3 An Example in Detail 
We demonstrate the representation using an example of mod
elling a robot and an environment These two axiomatisations 
will highlight different features; the robot model will highlight 
reactive systems with remembered events; the environment 
model will highlight integration over time. 

The example is of a maze travelling robot that is continu
ously trying to go East (i.e., at 0° orientation), but may have 
to avoid obstacles. The robot can sense obstacles and its di
rection of travel, but only has control over its direction of 
steering. 

3.1 Robot Model 
We assume that the robot can sense which direction it is trav
elling in, has a sensor on the front of the robot and a sensor 
on the right that can detect obstacles. The only control that 
the agent has is to change the steering angle — we assume 
that the agent can instantaneously change from steering left, 
right or straight (but steering takes time to achieve the desired 
effect). This example is adapted from [Zhang, 1994]. 

For the robot specification, we axiomatise what the steering 
should be depending on current, and perhaps previous sensor 
values. 

We use the following predicates defining the inputs at dif
ferent times: 
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3.3 Computation 
If we were to run the above axiomatisation as a Prolog pro-
gram, the code is hopelessly inefficient The problem is that 
we have to consider all previous times to check whether an 
event occurred (at least all previous times where inputs ar
rived). Moreover to check whether an event occurred, we 
have to check all previous times to check whether a previous 
event occurred. As you can imagine, such computation is 
hopelessly slow. 

In order to make this efficient, we take advantage of the 
fact that we are evaluating in time: at each time all previous 
observations have arrived and no subsequent observations 
have arrived. We exploit the fact that all of the references to 
the past are in terms of of was. Instead of using the axioms 
defining was explicitly, we actively maintain a state, always 
remembering the latest values that were set. The predicate 
was can be implemented by looking up the lastest set values. 
In other words, the set values are remembered forming the 
state of the agent. The logic program is evaluated by proving 
the output from the current inputs and the current state. 

Figure 2 shows a simulation of the robot in the maze. It 
is simulated by discretising time with one time unit intervals. 
Other discretizations, as long as they are not too coarse give 
similar results. 

The above simulation (of both the robot and the environ
ment), ran faster than 20 steps per second, on a 68040 running 
Sicstus Prolog. Partial evaluation should be able to speed 
this up, and it seems that it should be possible to compile the 
logic program specification into hardware (as does [Gaboury, 
1990]). Thus it seems as though the logical specification of 
robot action is not impractical from an efficiency point of 
view. 

4 Discussion and Comparison 
This paper is not intended to just define yet another robot 
programming language. Let us take the very general view of 
an agent as a 'causal' function from input history to outputs 

[Zhang and Mackworth, 1995; Rosenschein and Kaelbling, 
1995]. Suppose we want to use logic as a formal specification 
for the actions of the robot, for example in order to prove 
theorems about the robot behaviour. If we are to treat values 
of the inputs at various times and values of the outputs at 
various times as propositions, then the constraint imposed by 
the robot function is that it can't be the case that the inputs have 
certain values and the output is not the appropriate function 
of the inputs; but this is exactly the definition of a definite 
clause: inputs imply the outputs. 

It might be argued that the logic here is too weak to represent 
what we want to, for example it cannot represent disjunction. 
We have to be careful here; if a robot is to do something, it 
cannot be unsure about its own actions. It must commit to 
one action in order to carry it out A robot cannot 'do' action 
a\ V a2 without doing one of them. This does not mean that 
the agent cannot be ignorant (or unsure) of what other agents 
will do, or be unsure about what values it will receive from 
the environment For a general discussion of these issues, 
and a way to handle them within the logic presented here (by 
allowing independent 'choices' made by different agents and 
nature) see [Poole, 1995]. 

4.1 Noisy sensors and actuators 
The above axiomatisation showed how to model partial in
formation about the environment (the agent had very lim
ited sensing ability). In this section we sketch a way 
to model noisy sensors and actuators using a continu
ous version of probabilistic Horn abduction [Poole, 1993; 
1995]. 

The general idea of probabilistic Horn abduction is that 
there is a probability distribution over possible world gen
erated by unconditionally independent random variables. A 
logic program gives the consequences of the random choices 
for each world. Formally, a possible world selects one value 
from each alternative (disjoint set); what is true in the possible 
world is defined by the unique stable model of the selection 
and the acyclic logic program [Poole, 1995]. The probability 
of the world is the product of the probabilities of the values 
selected by the world. In this framework, the logic programs 
can still be interpreted logically, and the resulting framework, 
although based on independent random variables, can repre
sent any probability distribution [Poole, 1993]. 

To model noisy sensors, we add an extra 'noise* term to the 
rules. For example, to represent additive Gaussian noise for 
the compass sensor, with standard deviation 3, we can use the 
rule: 
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actuator is also unreliable, then the errors explode. Unreliable 
actuators can be modelled similarly to the noisy sensors, for 
example, 

Where a.error is treated analogously to cjnoise. 
When the dynamics are linear and the noise is Gaussian, 

the posterior distributions can be solved analytically, as in the 
Kalman filter (see [Dean and Wellman, 1991]). 

42 Constraint Nets 
Constraint nets [Zhang and Mackworth, 1995] form a mod
elling language for hybrid systems that combines discrete and 
continuous time, and discrete and continuous domains into a 
coherent framework. This is done by abstracting the notion of 
time so that it covers both discrete and continuous models of 
time, and using "events' as the interface between continuous 
and discrete time. 

Constraint nets are built from three basic transductions. 
Transliterations, which do not depend on the past, are axioma-
tised here by allowing (acyclic) logic programs to specify how 
current outputs depend on current inputs. Our was predicate 
corresponds to unit delays. Transport delays of time r can 
be modelled as the atom now(Fl, V,T -r) — to implement 
these we have to maintain a history of at least r long, and not 
just a state. 

43 Logic Control 
COCOLOG [Caines and Wang, 1995] is a logic for discrete 
control that shares many features of the discrete form of the 
logic here. The main difference is that in COCOLOG, the state 
of the system is an explicit term of the language. The language 
is also more complicated than the simple Horn clauses used 
here and the main control loop is extra-logical. 

The declarative control of Nerode and Kohn [1994] uses 
Prolog for control. Their main aim is for a Prolog program to 
prove that some action is optimal. Their Prolog rules are at a 
much different level than the simple rules used here, which are 
impractical when using Prolog's back-chaining search strat
egy. 

4.4 GOLOG 
GOLOG [Lesp&ance et al., 1994] is a programming language 
for robots based on the situation calculus. Unlike the proposal 
in this paper, GOLOG programs are not sentences in a logic. 
Rather the logic is at the meta-level providing a semantics for 
the Algol-like GOLOG language. 

One intriguing idea is to use the logic programming ap
proach here to write a low-level controller that interprets 
GOLOG programs. This could be done by having two state 
variables, one that is the current action the agent is 'doing' 
and one is a list of actions 'to do'. The rules could be used 
to reduce expressions in time, for example to interpret action 
sequences we can use: 

Similarly, we can interpret more complicated constructs such 
as while loops as well as monitoring 'primitive' actions (e.g., 
we can see setting the goal direction in the above example as 
a high level action that decomposes into continuous action, 
and is monitored as to when it is complete). A full discussion 
of this is beyond the scope of this paper. 

4.5 Event Calculus 
The event calculus [Kowalski and Sergot, 1986; Shanahan, 
1990] provides a mechanism to represent persistent proper
ties over intervals from events that make the properties true 
and false. What is new in this paper is deriving events from 
changes in continuous properties, having cumulative proper
ties, and exploiting evaluation in time to gain efficiency. 

There is quite a simple translation to map the event calculus 
into the framework of this paper. The event calculus uses the 
predicates: happens(E,T) is true if event E happens at 
time T; initiates(E, P) is true if event E makes P true; 
terminates(E, P) is true if event E makes P no longer true. 
These can be mapped into the fluent representation used here: 

— rr — v_, _ t. 
If we want the convention used in this paper that predicates 
are true in left closed intervals, we can represent holds(P, T), 
(meaning predicate P holds at time T) by: 

One main advantage of our representation is that, when we 
act in time, and all of the set's are done in temporal ordering, 
and we maintain a state, then we can implement holds very 
fast, by looking up the last value that was assigned to the 
variable. 

Shanahan's notion of 'autotermination' is similar to our 
deriving events from continuous change. 

4.6 Other Mixes of Logic and Continuous Time 
There have been other proposed mixes of logic and continu
ous time (e.g., [Sandewall, 1989; Shanahan, 1990; Dean and 
Siegle, 1990; Trudel, 1991; Pinto and Reiter, 1995]), but in all 
of these either "during the time span of a situation no fluents 
change truth values" [Pinto and Reiter, 1995] or the axioma-
tiser needs to know a priori how properties accumulate (they 
effectively do integration off-line). For robot control, we do 
not know how the sensor values will change; the best we can 
do is to derive (estimate) integrals online. None of these other 
proposals let us do this. 

5 Conclusion 
This paper has argued the logic programs can be used effec
tively as a programming language for robot control. The logic 
program forms an executable specification of what the robot 
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should do. The same language can be used for modelling the 
robot and the environment (and also multiple robots). This 
axiomatisation can be combined with probabilistic Horn ab
duction [Poole, 1993] to allow for modelling uncertainty in 
the environment (e.g., exogenous events, noisy sensors and 
unreliable actuators). 

This paper has not described some ideas about improving 
efficiency by adaptive sampling: by partially evaluating the 
logic program, we can determine what inputs we must look 
for in order for an event to occur. When running the robot, 
we can build into our sensors detectors for these conditions; 
when detected, we can run the program in a forward direction 
to derive events. In the simulation, we can query the envi
ronment to determine when these events would occur. Such 
ideas are currently being pursued. 
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