
I n t e g r a t i n g R e a c t i o n P l a n s a n d L a y e r e d C o m p e t e n c e s T h r o u g h S y n c h r o n o u s 
C o n t r o l 

R. Pe te r Bonasso 

The A u t o n o m o u s Systems Labora to ry 
The M I T R E Corpora t ion 

7525 Co lsh i re D r i v e , M c l e a n , V i r g i n i a 22102 
pbonasso@mitre.org 

A b s t r a c t 

This paper describes an agent architecture and its 
implementation for situated robot control in field 
environments. The architecture draws from the ideas of 
universal plans and subsumption's layered control, 
producing reaction plans that exploit low-level 
competences as operators. The architecture has been 
implemented in an extended version of the GAPPS/Rex 
situated automata programming language. This 
language produces synchronous virtual circuits which 
have been shown to have formal epistemic properties. 
The resulting architecture exhibits robust task 
execution, has high-level goal representations, and 
maintains consistent semantics between agent states 
and the environment. Ongoing experiments using the 
architecture with two land mobile robots and one 
undersea mobile robot are described. The robots 
perform their tasks robustly during normal changes in 
the task environments. 

1 I n t r o d u c t i o n 

We are interested in programming robots to carry out tasks 
robustly in field environments. Field environments are those 
in which events for which the robot has a response can 
occur unpredictably, and wherein the locations of objects 
and other agents is usually not known with certainty until 
the robot is carrying out the required task. We expect the 
agent to be able to deal with its own mechanical and sensor 
limitations (e.g., wheel slippage, limited sensor sampling 
rates), and with natural changes in the flow of events (e.g., 
normally moving obstacles or other agents, transition from 
day to night). But when confronted with events for which it 
has no response (e.g., a meteor shower or runaway train), we 
expect the agent only to safely cease operations. 

As researchers began to realize that traditional AI 
planning techniques produced robot plans which failed in 
field environments, a number of new approaches to robot 
control emerged under the general heading of situated 
reasoning. These approaches stress a tight coupling of 
sensing and action to deal with changing situations and data 
uncertainty. Two such approaches are reaction plans 
[Schoppers, 1989] and subsumption [Brooks, 1986]. 
Essentially an enumeration of actions to take for all possible 
preconditions, reaction plans have a strong appeal for those 
interested in field robots. The ability to retry a subtask in the 

face of a changing situation, detected through continuous 
sampling of the environment, promises robust execution of 
tasks. Additionally, such plans can be generated using 
formal techniques, providing a theoretical basis for plan 
analysis. Yet, for any useful application, it has been shown 
[Ginsberg, 1989] that such plans, if required to map raw 
sensor input into primitive actuator output, can quickly 
become exponentially large. 

The subsumption approach also has a strong appeal. This 
is not only because it has been used successfully on actual 
robots, but also because as higher level competences are 
developed, the competences of the lower layers of the 
architecture are retained as default behaviors for unexpected 
or critical situations. Yet the subsumption approach has 
generally not included room for goal representations to go 
beyond what is sometimes termed insect intelligence. 

This paper describes an intelligent agent architecture 
wherein reaction plans use subsumption competences as 
operators. The key benefits are that the reaction plans need 
only map agent states into competences, thus reducing their 
size, and that the formal goal representation of the reaction 
plan can augment the insect intelligence of the subsumption 
competences. In our work we commit to layered control and 
to the combining of directives between layers. But we do 
not commit to the original subsumption language, 
asynchrony of finite state machines, or the use of inhibition 
and suppression techniques. Thus, the term layered 
competences is used rather than subsumption for the 
remainder of this paper. 

In considering implementing the architecture, we wanted 
the resulting code to run synchronously. One of the thrusts 
of our work is to analyze agent operations for safety 
[Bonasso et al.t 1990]. If the executing software has 
guaranteed constant cycle times from sensor input to 
actuators commands, we can isolate the software operations 
from sensor and actuator physics for analyzing ranges of 
safe operations. Constant t ime software requires 
synchronous operations. We also wanted to insure that the 
formal semantics of any abstract representations still held in 
the on-board software. Synchronous operations allows for 
simpler semantics about the agent's most recent perception 
of the world and the formal rationale for carrying out the 
next action. 

The desire for synchronous operations and consistent 
semantics led us to implement the architecture in the 
GAPPS/Rex language [Kaelbling, 1988]. The language 
brings to bear formal semantics about the relationship 
between an agent's internal states and those of the 

Bonasso 1225 



environment [Rosenschein and Kaelbling, 1986]. As well, 
the accompanying robot programming environment can 
build both the reaction plans and the layered competences of 
the architecture, while the resulting circuits guarantee 
constant cycle times. 

2 D o m a i n s o f I n t e r e s t 

We are initially interested in robots carrying out retrieval, 
delivery and reconnaissance tasks in field environments. 
These tasks consist of general navigation from the start 
point to the area of interest, grasping and ungrasping or 
directed sensing, and then general navigation back to the 
start point or subsequent sites. Though not complex, these 
tasks are the basis for many jobs robots are expected to carry 
out in field environments. Loading and unloading cargo, 
explosive ordinance disposal, planetary exploration, aerial 
tracking of ground phenomena, deep ocean mapping and 
exploration, all fundamentally consist of retrieval, delivery 
or reconnaissance tasks. 

Because the architecture does not yet address plan 
development at runtime (but see Other Related Work), we 
further assume that the robot can be informed by other 
agents or humans as to changes in its mission. 

We have begun experiments with several robots for such 
tasks as described above, and current results show that the 
architecture works well under these conditions. 

3 P r o p o s e d A r c h i t e c t u r e 

As stated above, the architecture consists of reaction plans 
which use competences for operators. Figure 1 shows a 
sample reaction plan for a delivery task for a one-armed 
mobile robot in our indoor experiments. The preconditions 
of the plan are generated by hand for simple plans, or 
automatically via goal regression for more complex plans. 
On each pass of the control loop, these preconditions, shown 
here as a logic vector, are tested and the appropriate action 
is taken. 

The numbers to the left show the linear order of subtasks 
to accomplish the delivery task. Task activity commences 
when a widget appears, at which time the robot obtains the 
widget to be delivered and locates the receiver. The robot 
then moves to the receiver and places the widget on the 
receiver platform. Finally, the robot backs away from the 
receiver and retracts the arm. Since the preconditions are 
checked continuously, the reaction plan provides for robust 
operations. For example, if the receiver moves during the 
MOVE-TO operation (step 5), the receiver-located 
precondition wi l l be false, causing the robot to re-acquire 
the receiver (step 4). Thus, the robot wi l l track the receiver 
while moving toward it. Likewise, if while the robot is 
raising its arm (step 6), the platform moves under the 
grasped widget, then the widget w i l l be over the platform 
and the robot w i l l skip step 7 and execute the PLACE 
operation of step 8. 

This plan is sufficient at the given level of detail for 
delivery tasks with actual robots in field environments only 
if the operators such as MOVE-TO, GET-CLEAR and 
GRASP are competent. That is, the operators must be able 
to deal with variations in the environment as part of their 

design, thus unburdening the reaction plan of those 
considerations. This is the key contribution of this work to 
the growing body of situated reasoning research. Figure 2 
shows the concept for the layered competences in the 
architecture. The figure is notional. For instance, the lowest 
level perception results could be made available to the 
highest level reasoning. And there may be more than three 
layers of competence, though in practice, we have used the 
three layers shown. 

There are three hallmarks of these layered competences. 
The first is the basic trait of the subsumption architecture: 
higher level competences subsume those of the lower levels. 
For example, once the robot has a competence to avoid 
obstacles on the fly, any high-level navigation vector which 
is generated by, say, a MOVE-TO reaction plan operator, 
w i l l be adjusted to insure avoiding a previously unseen 
obstacle. This merging of directives (shown by the valve 
icon in Figure 2) can take the form of simple constraints 
placed on the higher layers by the lower layers or can 
involve more sophisticated combination algorithms. In our 
work with an underwater robot, it was sufficient to average 
the 3D obstacle avoidance vector with the navigation 
mission vector. In our work with a ground mobile robot we 
use a combination algorithm based on a template of 
geometric constraints [Slack, 1990] for robust outdoor 
navigation. 

The second hallmark is that the lowest level dictates the 
smallest cycle time, and higher-level cycles are multiples of 
that time. Our implementation generates synchronous 
circuits which, at each strobing or tick of the circuit, 
guarantees outputs for the lowest-level competence. 
Subsequent ticks may produce additional outputs from 
higher levels in the architecture. This insures that the lower 
levels can be configured to effect emergency reactions 
tailored to the fastest problematic events in the environment, 
and yet those reactions w i l l be blended with higher-level 
outputs as they become available. 

The third hallmark is that levels of perception processing 
roughly match the levels of reactive competence, i.e., that 
perception at each level is task-driven. Thus, in the 
implementation, there may be global structures to allow for 
search efficiency, but task-related perception algorithms, if 
not individual representations, can exist at each level. For 
example, in one of our developments, the proposition 
(aware-p ?class-of-things) is used as part of the LOCATE 
competence (top layer). If the predicate is not true, then the 
robot's database of objects must be updated via a directed 
sensor search algorithm. At the lowest layer, for obstacles, 
the agent becomes aware simply by receiving raw data, such 
as the signal from a bumper contact switch. 

4 I m p l e m e n t a t i o n 

As mentioned before, we have chosen to use the 
GAPPS/Rex robot programming environment for our 
implementation, since the resulting circuits are constant time 
and have formal semantics. The architecture dictates a 
programming methodology as follows. First write GAPPS 
goal reduction rules for the invocation of competences. With 
the rules in Figure 3, for example, a HERO robot wi l l turn 

1226 Robotics 



Preconditions 

WIA ERA WIG RCL DTR AIP WOP WIP 

Actions 

RETIRE arm. set WIA 
toF 
GET-CLEAR of receiver 

PLACE widget 

GET-NEAR receiver 

RAISE arm 

MOVE-TO receiver 

LOCATE receiver 

GRASP widget 

POSITION-FOR-GRASP 

Stay out of trouble 

T= true, F=false, * = don't care 
WIA = Widget Is Available, ERA = Ebow Room Available 
WIG = Widget In Grasp, RCL = Receiver Located 
DTR = Distance To Receiver < reach distance 
AIP = Arm in place position, WOP = Widget over platform 
WIP = Widget Is Placed 

Comments 

Task complete 

So arm can be 
retracted 
A simple release 
So widget wiN be 
over platform 
So arm is at plat­
form level 
Arm Is oriented 
in front of robot 
Via perception or 
being informed 
After getting some 
elbow room 
Or accept from a donor 

Default; no plan; survive, 
energy conservation.etc. 

Figure 1. A Reaction Plan for Widget Delivery 

Figure 2. Layered Competences 

Bonasso 1227 



from the nearest obstacle and move slowly away. Figure 4 
shows similar rules for a wander operation. 

After writing these rules, the next step is to write the Rex 
code for the functions that make up the competence 
execution, such as the (set-avoidance-turn <arg>) function 
and the (moving-slowly) and (no-obstacles) predicates in the 
example. 

Finally, one builds the reaction plan using the goal 
expressions in the reduction rules. A simple plan can be 
built using a prioritization of goals. The GAPPS (prio-and 
gl ... gn) tries to satisfy n goals, but failing that tries to 
satisfy n-1 goals, etc. An example plan to have a HERO 
robot wander safely around an area would be: 

(prio-and (maint not-crashed)(ach wander)) 

(defgoalr (maint not-crashed) 
(if (no-obstacles) 

(do anything) 
(ach avoid nearest obstacle))) 

(defgoalr (ach avoid nearest obstacle) 
(if (notm (Hero-at-avoidance-angle)) 

(ach turn to avoidance angle) 
(if (notm (moving-slowly)) 

(ach moving slowly) 
(do anything)))) 

(defgoalr (ach turn to avoidance angle) 
(and (do update? !*turn-command*) 

(do left-motor-dist 
(set-avoidance-turn !*left*)) 

(do left-motor-speed 
!*caution-drivc-speed*) 

(do right-motor-dist 
(set-avoidance-turn !*right*)) 

(do right-motor-speed 
!* caution-drive-speed*))) 

(defgoalr (ach moving slowly) 
(and (do update? !*move-command*) 

(do left-motor-dist !*max-move-dist*) 
(do left-motor-speed !*caution-drive-speed*) 
(do right-motor-dist !*max-move-dist*) 
(do right-motor-speed 

!*caution-drive-speed*))) 

Figure 3 . GAPPS reduction rules for obstacle avoidance. 
Terms with asterisks are global parameters which are formed 
into a structured memory location by the ! symbol. Ach and 
maint are abbreviations for achieve and maintain respectively. 
Notm is a Rex machine for the not function. The do command 
essentially sends the specified value to a vector of outputs. 

An abstract of the resulting circuit is shown in Figure 5, 
where it is compared to a wander circuit from the 
subsumption approach. The two circuits are surprisingly 
similar: they both have wander and runaway competences, 
make use of a sonar map, and receive feedback via optical 
encoders on the robot's wheels. Moreover, the performance 
of the GAPPS wander circuit, implemented on our Denning 

mobile robot, is the same as that of the robot using the 
subsumption architecture; i.e., the robot can wander 
aimlessly about for hours without colliding with stationary 
objects or slow-moving humans. 

(defgoalr (ach wander) 
(if (notm (Hero-at-wander-angle)) 

(ach turn to wander angle) 
(if (notm (moving-at-speed)) 

(ach moving-at-speed) 
(do anything)))) 

(defgoalr (ach turn to wander angle) 
(and (do update? !* turn-command*) 

(do left-motor-dist (set-wandcr-tum !*left*)) 
(do left-motor-speed !* normal-drive-speed*) 
(do right-motor-dist 

(set-wandcr-turn !*right*)) 
(do right-motor-speed 

! *normal-drive-speed*))) 

Figure 4. GAPPS rules for wandering. The function set-
wander-turn uses the sonar readings to find open spaces. 

Figure 5. Circuits for wander routines from [Brooks, 
1986] (above) and layered competences from 
GAPPS goals (below) 

1228 Robotics 



There are important differences. The avoid block and the 
IF block both serve to produce the correct heading under the 
right conditions, but the avoid block is part of the wander 
competence, whereas the IF block specifically mediates 
between competence layers as a result of specifying a 
natural prioritization of high-level goals. Also, the GAPPS 
circuit is a synchronous circuit. That is, it reads the sensors 
and computes outputs to the wheels in continuous cycles of 
a guaranteed constant time. The subsumption circuit 
functions as a network of asynchronous finite state machines 
whose timing is a function of the environmental conditions. 
Finally, the GAPPS circuit allows for states, such as the 
robot's current heading angle, used in the (HERO-at-
wander-angle) and (HERO-at-avoidance-angle) predicates. 
Because of the circuit synchrony, it can be shown that the 
robot knows in a formal sense its current angle with respect 
to its actual position in the environment [Rosenschein and 
Kaelbling, 1986]. 

With the architecture described in this paper, we can 
make the high-level goal specification even more complex 
as in the hand-crafted reaction plan shown in Figure 6. A 
recent extension to GAPPS described in [Kaelbling, 1990] 
supports goal regression and allows the GAPPS compiler to 
generate these plans automatically. It is not clear that this 
can be done in the original subsumption architecture or 
programming language. 

A further advantage to using GAPPS is that we can 
organize the merging of constraints and the combination of 
competences differently for different tasks at compilation 
time. For example, the GAPPS coding in Figure 7 invokes 
an obstacle avoidance competence via the (maint not-
crashed) goal during a navigation action. Figure 8 shows 
how a simple change to the top-level goal makes the 
obstacle avoidance competence active during the entire 
mission. This kind of compile-time wiring can carry down 

(defgoalr (ach place object on platform) 
(if (new-mission-in- inputs) 

(if (andm (notm (object-placed)) (notm (have-object))) 
(ach get-object) 
(if (andm (notm (object-placed)) 

(notm (arm-in-raised-position))) 
(ach arm-raised) 
(if (andm (notm (object-placed)) 

(notm (near-enough-to-platform))) 
(ach get near to platform) 
(if (notm (object-placed)) 

(ach place-object) 
(if (andm (object-placed) 

(notm 
(HERO-clear-of-platform))) 

(ach HERO clear of platform) 
(if (andm (object-placed) 

(notm (HERO-retired))) 
(achretire-HERO) 
(do anything))))))) 

(do anything))) 

Figure 6. A reaction plan for object delivery by a HERO 2000 
to a mobile platform. 

;; This reduction rule says if there is no new-mission input by 
;; the user, then look for an object to be delivered. Else place the 
;; object on the receiver platform. 

(defgoalr (ach carry out any missions) 
(if (notm (new-rnission-in-inputs)) 

(ach look for new mission) 
(ach object placed on receiver platform))) 

;; To "look" for a new mission, look for an object in the 
;; strongest light (robot has light and proximity sensors, no 
;; camera). Else try to move to the strongest light while not 
;; bumping into anything. If there is an object in the light, the 
;; robot sets a possible-new-mission flag in the output which 
;; will trigger an input routine to ask the user if there is indeed a 
;; mission with the object in question. 

(defgoalr (ach look-for-new-mission) 
(if (some-object-exists-in-the-light) 

(and (ach turn to object in the light) 
(do possible-new-mission? !yes)) 

(prio-and (maint not-crashed) 
(ach move-toward-strongest-light)))) 

Figure 7. Reduction rules for (ach carry out any missions) 

(defgoalr (ach carry out any missions) 
(if (notm (new-mission-in-inputs)) 

(ach look for new mission) 
(ach object placed on receiver platform))) 

;; To "look" for a new mission, look for an object in the 
;; strongest light (robot has light and proximity sensors, no 
;; camera). Else try to move to the strongest light . 

(defgoalr (ach look-for-new-mission) 
(if (some-object-exists-in-the-light) 

(and (ach turn to object in the light) 
(do possible-new-mission? !yes)) 
(ach move-toward-strongest-light))) 

Figure 8. Reduction rules for the goal 
(prio-and (maint not-crashed) (ach carry out any missions)) 

through the competences via the Rex functions, though the 
results are not as perspicuous in the Rex code as in the 
GAPPS language. 

The original GAPPS/Rex environment generated a single 
circuit for each compilation. Code could be arranged in 
groups of modules which represented the layers of 
competences, but all modules were constrained to execute to 
completion in one cycle, making the cycle time proportional 
to the size of the enure circuit If sufficient CPU speed or a 
parallel architecture is readily available, this is not a 
problem. However, most commercially available platforms 
have the equivalent of an M68000 or less, so we needed to 
adhere to the architecture's proportional timing relationships 
among levels to insure that the most critical "reflex" actions 
could execute in a minimum time cycle. A recent change to 
the Rex compiler allows us to code competences in 
accordance with the architecture's timing relationships, by 

Bonasso 1229 



specifying a maximum execution time of submodules of 
code. 

5 O t h e r R e l a t e d W o r k 

The work by Chapman and Agrc [1987] can be grouped 
with subsumption as research in intelligence emerging 
strictly from activity. Our layered competences generate 
behaviors exhibit ing a certain amount of emergent 
intelligence. However, with reaction plans, we add goal 
representation and explicit ordering of behavior priorities. 

A direct alternative to the reaction plan is Firby's reaction 
action packages (RAPs) [1989]. The RAPs depend on an 
extant primitive execution layer, which could be the layered 
competences of the above architecture. The semantics of the 
RAPs are formally derived, but it is not clear how they 
extend to the machine level. 

The research in subsumption, situated automata, and 
emergent intelligence (e.g., [Chapman, 1990]) all use circuit 
languages. Another circuit language is Gat's Behavior 
Description Language (BDL)[Gat and Mil ler, 1990). This 
makes first class objects out of the channels that connect 
behaviors. Like the original Rex system, BDL results in a 
synchronous system where all behaviors execute on each 
cycle, and, like GAPPS, making the connections explicit 
allows the programmer to arrange the behaviors to suit the 
task (and/or hardware) available. No formal semantics of the 
behavior states have been worked out, but analysis might 
show them to be similar to those of Rex. 

Recent work by Maes [1990] is similar to the work 
described here in that she uses competences for plan 
operators as we do in the reaction plans. It is dissimilar in 
that she uses explicit pre/post conditions for sequencing 
competing behaviors rather than subsumption. Also her goal 
is run-time planning which the architecture in this paper 
does not yet address. [Kaelbling, 1990] discusses how 
runtime planning might be done in GAPPS, and we are also 
looking at integrating deliberative and situated paradigms 
(see for instance [Elsaesser and Sanborn, 1990]). 

6 E x p e r i m e n t s 

In our current experiments, we are using two HERO 2000 
mobile robots with 5-degrees of freedom arms, a Denning 
MRV- I I I mobile robot, and a remotely-piloted vehicle 
(RPV) for undersea operations at the Woods Hole 
Oceanographic Institute (WHOI). As of this writ ing our 
results are qualitative, i.e., the robots carry out their tasks as 
expected without getting into trouble in unknown or 
partially known environments. We are currently attempting 
to quantify the results with measures of effectiveness such 
as number of collisions or the task completion time as 
functions of the number and arrangement of environmental 
obstacles. 

The architecture was originally developed in the context 
of a simulation of cooperating agents executing retrieval 
tasks, and was subsequently implemented in GAPPS/Rex on 
a HERO to execute the wander behavior. The HERO uses 
ultrasonic sensors, optical encoders on its wheels, arm 
joints, and gripper, and a light intensity sensor. A code 
generator was developed to translate the Rex circuits into 

the HERO'S native BASIC language for downloading and 
subsequent on-board execution. Presently, the HERO 
executes a delivery task in an indoor laboratory environment 
(see Figures 6 and 7). A mission is signaled to the robot by a 
human's proximity. The robot distinguishes the human from 
other objects by asking questions. Then the robot accepts the 
object from the human and moves to a mobile platform 
where the object is deposited. A flashlight is used to identify 
the receiver platform (the room lights are dimmed during 
the runs). The HERO avoids obstacles and slow-moving 
other agents, and deals robustly with the receiver platform 
being moved mischievously by humans under joystick 
control during the PLACE operation. 

We have implemented layered competences in 
GAPPS/Rex on the Denning MRV- I I I mobile robot for 
navigation among indoor and outdoor obstacles. The 
Denning has a ring of 24 acoustic sensors, an infra-red 
navigation beacon system, and an inclinometer. The 
Denning hosts an M68000 running the OS9 real-time 
operating system. The GAPPS runtime environment for 
Unix was adapted for OS9, so that complete GAPPS circuits 
generated in C can be run autonomously on the Denning. 
However, our circuits using more than simple vector 
techniques are too large to achieve useful responses on­
board, so we typically use an RS232 tether to a faster 
computer. 

The robot accurately achieves and maintains a 20-50 foot 
trajectory in the face of both natural and human-introduced 
obstacles in our Autonomous Systems Laboratory 
environment and in one of our employee parking lots. The 
robot wi l l halt and adjust its heading when a human passes 
by unexpectedly. Currently, to avoid automobiles moving 
faster than its one foot per second speed, it relies on the 
human intelligence behind the wheel. The robot wi l l soon be 
instrumented with a real-time stereo system [Bonasso and 
Nishihara, 1990] to conduct outdoor retrieval tasks. 

The WHOI RPV has a transponder-based navigation 
system for location updates, and an adaptive trajectory 
control algorithm which we use as our MOVE and TURN 
competences (see [Bonasso, 1991]). The navigation 
computation and control algorithms execute on a transputer 
architecture. To improve the vehicle's awareness, a three-
dimensional Proximity Obstacle Detection System (PODS) 
using sonar altimeters was designed and integrated on board 
the vehicle. We then used the architecture to successfully 
develop a pilot support system wherein a human pilot steers 
the vehicle while the vehicle autonomously avoids obstacles 
and the walls of a test tank. Thus, the architecture was able 
to integrate the natural intelligence of the pilot (the reaction 
planner), the heuristic obstacle avoidance behavior, and the 
analytical competence of the control-theory routines. 
Follow-on experiments, based on these results, are being 
planned for a second vehicle with a manipulator, and for a 
deep ocean mapping task. 

It has been our experience that once one is familiar with 
the GAPPS/Rex system, useful working robot programs can 
be constructed literally overnight. We used the same basic 
programming methodology outlined in this paper for 
different tasks, with different robots, both for semi-
autonomous and autonomous operations. A l l of these codes 
were developed via the GAPPS language while adhering to 

1230 Robotics 



die principles of the above described architecture essentially 
in a few days, resulting in the robots being endowed with 
task-achieving capability almost immediately. Thus, there 
are indications that the architecture and its implementation 
promise to be generally useful for a variety of tasks on a 
variety of robots. However, the tasks in the above 
experiments have not required extensive sensor processing. 
The outdoor retrieval task with stereo vision, and the ocean 
mapping tasks use more sophisticated sensors and should do 
much to confirm or deny these preliminary indications. 

7 C o n c l u s i o n s 

We have developed an architecture for retrieval, delivery 
and reconnaissance tasks which integrates the intuitively 
attractive traits of reaction plans and subsumption for the 
control of robots in field environments. The approach adds 
to each what was lacking — robust operators for the reaction 
plans and a goal representation for subsumption. We attain 
desired synchronous operations and formal semantics by 
implementing the architecture in GAPPS/Rex. This 
programming environment allows us to build flexible 
combinations of competing behaviors as appropriate for the 
task. 

So far, experiments seem to qualitatively bear out the 
utility of our approach. The robots used perform their tasks 
robustly during normal changes in the task environment. In 
addition, analytical competences from other disciplines or 
natural intelligence have been easily integrated into this 
architecture with good effect. Further experiments with 
additional sensors in more complex environments are 
underway. 

A c k n o w l e d g e m e n t s 

We wish to acknowledge the excellent efforts by Leslie 
Kaelbling and Nathan Wilson in making the necessary 
changes to GAPPS/Rex which support the architecture 
described in this paper. Thanks are due also to Jim 
Antonisse, Lashon Booker, Leslie Kaelbl ing, Stan 
Rosenschein, and Marc Slack for helpful comments on an 
earlier draft of the text. 

Re fe rences 

[Bonasso and Nishihara, 1990] R. Peter Bonasso and H. 
Keith Nishihara. Using Real-Time Stereopsis For Mobile 
Robot Control. In Proceedings of the International 
Symposium on Applications in Optical Science and 
Engineering, Vol 1387, pages 237-244, Boston, July 1990. 
SPIE. 

[Bonasso et al., 1990] R. Peter Bonasso, Vincent Hwang, 
James Sanborn, and Wil l iam Stoney. Investigating Robot 
Safety and Robustness In An Autonomous Systems 
Laboratory. In Proceedings of the 1990 International 
Conference on Space Applications of AI, Robotics, and 
Automation, pages 105-108, Kobe, Japan, Nov. 1990. 
A IAA. 

[Bonasso, 1991] R. Peter Bonasso. Underwater Experiments 
With A Reactive System For Autonomous Vehicles. In 
Proceedings of the 9th National Conference on Artificial 
Intelligence. Anaheim, CA., July 1991. A A A I Press. 

[Brooks, 1986] Rodney A. Brooks. A Robust Layered 
Control System for a Mobile Robot. IEEE Journal of 
Robotics and Automation, RA-2:14-23, April 1986. 

[Chapman, 1990] David Chapman. Vision, Instruction, and 
Action. PHD Dissertation. MIT TR # 1204. 1990. 

[Chapman and Agre, 1987] David Chapman and Philip E. 
Agre. Abstract Reasoning As Emergent From Concrete 
Activity. In Reasoning About Actions and Plans, pages 411-
424. Los Altos, CA, 1987. Morgan Kaufman. 

[Elsaesser and Sanborn, 1990] Christopher Elsaesser and 
James Sanborn. An Architecture for Adversarial Planning, 
Systems, Man, and Cybernetics, 20(1): 186-194, Jan-Feb, 
1990. IEEE. 

[Firby, 1989] James R. Firby. Adaptive Execution in 
Complex Dynamic Worlds. PHD Diss. YALEU/CSD/RR 
#672, Yale University. 1986. 

[Gat and Miller, 1990] Erann Gat and David Miller. BDL: A 
Language For Programming Reactive Robotic Control, JPL 
Pub, forthcoming. 

(Ginsberg, 1989] Matthew L. Ginsberg. Universal Planning: 
An (Almost) Universally Bad Idea. AI Magazine, 10(4): 40-
44,1989. 

[Kaelbling, 1988] Leslie Pack Kaelbling. Goals As Parallel 
Program Specifications. In Proceedings of the Seventh 
National Conference on Artificial Intelligence, pages 60-65, 
Minneapolis-St. Paul, Minnesota, 1988. AAA I Press. 

[Kaelbling, 1990] Leslie Pack Kaelbling. Compiling 
Operator Descriptions into Reactive Strategies Using Goal 
Regression. TR90-10. Teleos Research. Palo Alto, CA. 
1990. 

[Maes, 1990] Pattie Maes. Situated Agents Can Have Goals. 
Robotics and Autonomous Systems, 6(1 &2): 49-70, 1990. 

[Rosenschein and Kaelbling, 1986] Stanley J. Rosenschein 
and Leslie Pack Kaelbling. The Synthesis of Digital 
Machines wi th Provable Epistemic Properties. In 
Proceedings of the Conference on Theoretical Aspects of 
Reasoning About Knowledge, pages 83-98. Morgan 
Kaufman. 1986 

(Schoppers, 1989] Marcel J. Schoppers. In Defense of 
Reaction Plans As Caches. AI Magazine, 10(4): 51-60, 1989 

[Slack, 1990] Marc G. Slack. Situationally Driven Local 
Navigation for Mobile Robots, JPL Pub. 90-17, 1990. 
NASA. 

Bonasso 1231 


