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Abs t rac t : This paper describes the development of an 
architecture and implementation of a graphical tracing 
system for the parallel logic programming language 
PARLOG. Novel features of the architecture include a 
graphical execution model of PARLOG; a range of 
representational techniques that allow the user a choice of 
perspective and granularity of analysis; and ongoing work on 
graphical tools that provide user-defined visualisations of 
their programs, either before the program is run, or 
afterwards by demonstration from a textual trace. The aims 
of the architecture are threefold: (1) to aid program 
construction and debugging by providing an informative 
graphical trace of the program's execution; (2) to provide the 
user with a choice of representational techniques, at a 
preferred level of granularity; and (3) to allow users to define 
their own visualisations, that more truly map onto their 
conception of the problem, and which support the way they 
wish to view the execution information. 

1. In t roduct ion 

One of the central tenets of our current research on 
visualisation is that different visualisation techniques are 
optimal for different tasks and purposes. Any representation 
necessarily makes some things explicit at the expense of 
others. In this work I aim to show how using different 
presentation styles, which show different aspects of the 
execution process, can produce a practical visual model of a 
PARLOG virtual machine, and one that can benefit 
teaching, tracing, and also debugging. 

In this current work on PARLOG I am interested in 
letting users get their own perspective on the program, and 
one that suites their needs best. This has resulted in the 
development of a repertoire of representation techniques that 
give the user complimentary perspectives, using different 
levels of detail and abstraction. In addition users are able to 
come up wi th their own perspectives using special 
visualisation defining tools. 

Background material to the current discussion can be found 
in the following. PARLOG is described in Gregory (1987) 

and Conlon (1989). A good review of program visualisation 
techniques can be found in Myers (1990) and Utter and 
Pancake (1989). A visual programming style front-end for 
PARLOG has been proposed by Ringwood (1989). Conlon 
and Gregory (1990) present an impressive system for the 
textual tracing of PARLOG, including the ability to closely 
monitor (incremental) I/O, processes, and communication 
channels. 

This paper wi l l first briefly introduce a basic model of the 
visual execution of PARLOG (see Brayshaw, 1990a for a 
fuller treatment). This model wi l l then be generalised to 
show how we can embed it within a series of visual stories 
of a program's execution. There is an inherent problem in 
many representation systems that in def in ing a 
representation some things are made expl ici t , others 
impl ic i t , some things highl ighted, some hidden. By 
providing different prespectives on the execution behaviour 
of the program we wi l l attempt to demonstrate how a fuller 
and more informed view of the program can be gained from 
looking at the program as its different faces are revealed in 
the series of visualisations. Then I shall discuss how we 
can further utilise these representational techniques so that 
users can modify them and produce their own visualisations, 
before f inal ly adding some conclusions. A l l the 
representations use the same execution model, however the 
information is presented from different perspectives, 
emphasising different aspects of execution. 

2. A visual execution model of PARLOG 

PARLOG provides an interesting test case for the use of 
program visualisation, not only to try and generalise our 
own earlier work on visualisating Prolog (Eisenstadt and 
Brayshaw, 1987,1988; Brayshaw and Eisenstadt, 1988, 
1991), but also to deal with the special dynamics of 
parallelism and associated problems like starvation and 
deadlock (e.g. see Ringwood, 1988). The basic model is 
built around the concept of the node representing a process, 
and the shading of the nodes indicating the process state (as 
in fig. 1 below). 
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This then is the core. To it we now must add a more 
detailed execution model. The one I use is adopted from 
Conlon (1989), because it provides a good conceptual model 
for novices and experts alike of the workings of PARLOG. 
It considers process evaluation to proceed in four stages, 
namely testlcommitloutput/spawn, which are discussed in 
detail below. 

Tes t The clauses of the goal are tested to see if they are 
candidates. Clauses are tested via OR-Parallel search. For 
each clause, two tests, of head and guard, are carried out by 
AND-Parallel search. Clauses can be thought of as racing to 
be the first clause to satisfy both head and guard tests. 

C o m m i t The process commits to the first clause to 
pass the test stage. A l l other input matching or guard 
evaluation, associated with other possible candidate clauses, 

ceases. The commit stage marks the end of the race between 
the guards. 

O u t p u t Once a clause has been committed to, any 
output arguments can then be bound. 

Spawn The process then reduces to the sub-goals 
in the chosen clause body. As a result, concurrent sub-
processes are spawned, one for each of the subgoals. The 
process succeeds if all the sub-processes succeed. If however 
one of the conjunctive sub-processes fails, then the overall 
process goal fails. If the spawned (reduced to) goal is a leaf 
node in the execution space, then the call succeeds 
immediately and the goal succeeds. 

Figure 2 considers how this maps onto a simple database 
query. 

Figure 2. An example of the basic execution model adopted from (Conlon, J 989). 
Let us now consider the actions of PARLOG when doing 
this simple query. On attempting a goal, the process tests 
in parallel the head and the guard of all the clauses of the 
goal. In figure 2, we see that we are attempting to prove 
that d r i n k s ( j o h n , W h a t ) is true against the database 
d r i n k s ( m i k e , w h i s k y ) , d r i n k s ( j o h n , bee r ) , and 
dr inks(he len , wine). At the top of the figuure we see 
the test phase of a goal evaluation (a). The icon on the left 
shows we are currently evaluating a goal. The goal itself is 
drawn to the right of it. The mode declarations (whether an 
argument is input or output) arc shown by the shaded arrows 
above the goal. These correspond to the modes of the 
respective arguments. indicates input, and 

output. Thus we can see that d r i n k s ' s first 
argument must be input, and its second output. When we 
match the heads in parallel we produce a local evaluation 
space for each clause, as shown in the three boxes below the 
main process state icon. We can thus see at a glance what 
the different possible binding enviroments are. The goal is 
shown at the top of the box, the attempted head match 
below. Database clauses are indexed by number on the left. 
Variables are shown renumbered by subscripts, to avoid 
name clashes. In the main body of the clause the renaming 

is by number, however in the transient parallel evaluation 
spaces of the evaluation lest phase, we show the temporary 
variable bindings subscripted by letter. Finally, arrows are 
used to show data-flow and pattern matching, in the same 
manner as Eisenstadt and Brayshaw (1988). Thus we can see 
that of the three possible clauses, only the second clause 
d r i n k s ( j o h n , b e e r ) matches the goal d r i n k s ( j o h n , 
W h a t 1 ) . 

In the top part of figure 2, we can see that only clause two 
of d r i nks matches the database. As a result, clause two 
wins the test phase and is committed to. We write the name 
of the clause next to the node indicating the state of the 
process, and commit at that choice point. Any output 
variables can now be unified, as we see figure 2(c). Finally 
we spawn any new sub-processes in the body of the clause. 
As d r inks is defined as a simple fact, the evaluation now 
succeeds as we see in the final snapshot, and hence we can 
see that the overall evaluation has succeeded with the result 
d r i n k s ( j o h n , beer) . 

The view we have just given is a very fine-grained account 
of the executon process. We can however develop a much 
coarser grained model, suitable for monitoring much larger 
programs. We do this simply by omitting details of the 
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unification of the program and considering instead just the 
name of the process and its state, indicated by the icon on 
the left-hand-side. If I want to see more information about 
the unification, the different possible binding environments 
in the test phase, or the data-flow arrow, I can use the same 
technique of zooming we introduced in (Eisenstadt and 
Brayshaw, 1987), to reveal more fine-grained information. 
Also notice that because the coarse grained representation is 
only a superset of the fine-grained view, I can arbitrarily 
interleave coarse and fine traces. I w i l l demonstrate this 
notation further when we incorporate this account in 
different representational models. 

3 . I n t e g r a t e d m u l t i p l e representa t ions o f 
P A R L O G p r o g r a m s 

So far we have only introduced a model of individual 
processes. We now need to say how these individual views 
can be related together to give a model of execution that 

considers a program made up of many of these nodes. A l l 
the views that are discussed are tightly integrated. The user 
can readily swap from one to the other. Coarse grained 
views can be opened out into fine-grained ones, and vice 
verca, by mouse-clicking on the nodes. A i l the views of the 
program also have a replay panel, so the trace history can be 
wound back to the beginning and browsed through, running 
it forward and back as the user sees fit. The basic modus 
operandi of the current system is that the user runs the 
program and then gets a visualisation of it after the run, the 
user being able to choose different representation style as 
appropriate. Other representations can be called up from a 
menu or the user can choose to build new representations 
(or use an existing user-defined visualisation). 

An AND/OR tree gives us our kernel prepresentation 
style. Amongst its strengths are its good mapping to the 
source code and compactness. Our basic representation is 
introduced below. 

Figure 3. The basic AND/OR 
On the left we see the basic notation we use; ANDs are 

distinguished from ORs by the conjunction bar l inking arcs 
in the tree. Alternative clauses can be viewed via ORs and 
conjoined sub-processes in a clause body as ANDs. Guards 
are distinguished by characteristic line stippling. Once the 
processes commits to one particular choice, the successful 
guards change to a broader hashed line style to disunguish 
them from the surrounding unsuccessful ones. These 
unsuccessful nodes are left in whatever state they were in 
when the commitment took place. The fact that one of the 
clause guards is shown as being successful necessarily 

tree representations employed. 
implies that these others have not been. Program dynamics 
can be revealed by using the replay panel which can show 
what happens and when. When a clause commits processes 
are shown in whatever state they were in when they were 
terminated, as this can be informative about how and why a 
particular process failed/successfully committed at a 
particular point. Using dynamics, suspended goals can be 
see as evaluating root nodes, their lack of activity showing 
dynamically the suspension, and graphically we reinforce 
this model by showing a line underneath to distinguish them 
f r o m n o n - s u s p e n d e d n o d e s . 
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Figure 4. Mixing coarse and fine-grained views. 
In figure 3 all the nodes that we dealt with were coarse-

grained descriptions. As we noted earlier we can however 
introduce fine grained information as wel l . To do this we 
can zoom in on selected nodes. In figure 4 above, we can 
see the effect of doing this for the nodes a and test5. In 
both cases we now have our fine-grained view of execution 
again. Notice also, that at the moment that we have taken 
the snapshot in figure 4, tests is in the process of its test 
phase. We can see the individual clause evaluation 
environments below the bottom of the process node. The 

environments for a are not shown by default, other than 
when the process was in its test phase, but can be brought 
up again and displayed as at the point of commitment, by 
mouse-clicking on the node. 

Another description of PARLOG can be in terms of many 
intercommunicating processes. According to such a model, 
PARLOG can be thought of as a kind of object-oriented 
language. To support this view we have developed a process 
communica t ion mode l , i l lust rated in f igure 5. 

Figure 5. A process communication model. We can see what data is being communicated and between whom, by looking at 
what information is on which channel. Notice, the re-occurring shapes caused by recursive filter and sift processes 

In this model we view each process as a node, and link the 
processes together according to the data-flow between them. 
On these links we show either the data-flow that has 
occurred in an incremental fashion, or just the new elements, 
depending upon the user's preference. The nodes in the 
diagram are actually the same as tliose in the tree based 
views that we have been looking at previously. In the trees, 
each process was depicted by a node whose visual state 
descriptor mapped onto that of the process. We can use the 
same notation in the data-flow diagrams. We can view these 
data-flow diagrams as horizontal cross sections of the trees. 
However, the logical control shown in the trees is removed. 
The data-flow diagram need not be made up of simple cross-

sections; the slices can come from arbitrary parts of the 
program, hence arbitrary process communication can be 
seen. It is important to remember, however, that the 
relation between the two representations is essentially one of 
perspective; one representation emphasises control, making 
data-flow impl ic i t , the other pulls data-flow between 
processes out front, but hides the overall control relations 
between the processes. 

A final representation style we employ is based on the 
metaphor introduced in (Domingue and Eisenstadt, 1989). 
This metaphor aims to make repetetive or cycle-based 
behaviour explicit. In PARLOG, constructs like recursion 
allow us to conceptualise a program carrying out some form 
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of repetetive process. Although we could detect this type of 
behaviour in the other traces it would be implicit within the 
trace representation we are employing. The cycle table aims 
to make this explicit. The basic form is to consider a list of 
items to viewed on a per-cycle basis and place these items 
down one axis of the table. Down the other we consider the 
individual cycles. The cross section of these two axis then 

Figure 6. A schematic view of the cycle based representation, 
These representation styles form the basis of our library. 

Thus currently we can distinguish between three different 
execution metaphors and two types of granularity. In the 
next section we wi l l discuss how to use these execution 
metaphors with new canonical units defined by the user. 
Moreover, the architecture is open to the extent that we can 
expand the system by embracing other metaphors of 
execution, whilst still maintaining our execution model and 
levels of granularity. The important notion has been the 
ability to see execution from different perspectives: goal 
reduction, process communication, and iteration. 

4. User Defined Visualisations 

One of the important proposed features of this system is the 
provision for users to be able to define their own 
visualisations. This section wi l l describe possible ways we 
are exploring to go about doing this. Taking any one of the 
representations as a template, users should be able to 
program a new mapping between their program and the trace 
they have generated, thereby producing a new visualisation, 
of their own design. We have here tried to design additional 
tools that let the user write this mapping more easily, 
without getting involved in heavy code production to 
program the debugger. To this end we wi l l discuss two 
tools. The first lets the user define visualisation by 
selecting nodes from the call graph of the program before it 
is run. Thus the programmer can, a priori, decide what trace 
to see of his/her program, design the trace, and then run the 
program. The second method works post execution. It 
allows the user to take a textual trace of the program and 
describe the mapping between representation template and 
textual trace in terms of it instances, as shown in the trace. 
Thus the user can define his/her own visualisation based on 
a posthumous analysis of the trace. In addition however, the 
most crucial concept that distinguishes these user defined 
mappings is that they need not be in terms of individual 
nodes in the underlying trace. Instead, groups of nodes can 
be considered as an individual clich6, and mapped as one into 
the representation template. Thus higher level descriptions 
of the program can be rendered in the visualisation by 
showing the mapping these higher level events have to the 
underlying symptomatic footprint they leave in the program 
trace. By thus analysing the program trace and detecting the 
user defined footprints, these events can then be mapped into 

tells us what event happenned on what cycle to what item. 
In PARLOG we have defined a default mapping between 
recursive processes and the cycle table. Likewise we can 
also look at guards on each invocation of a processes, so 
that each new guard becomes a new conceptual "cycle". 
Doing this allows us to compare the behaviour of the guard 
on each sucessive invocation. 

call the cycle table. 
the representation template chosen, and a user defined 
visualisation produced. This is implemented as a sequential 
search of the trace history. However, as relative temporal 
information is also preserved, simulated concurrency is 
therefore possible. How this proceeds depends on the 
representation chosen, as we wi l l discuss below. 

In trees and process communication views arbitary 
mappings may be produced by describing the footprints of 
individual nodes. Thus nodes in the tree need not be 
individual processes, but instead represent much larger 
cliches about the program. The way we propose to go about 
doing this is as fol lows. The template consists of an 
abstract model of the representation with a series of roles 
(c.g.nodcs, links etc.) which the user has to instantiate with 
a series of generators. These are defined as clich6 patterns to 
look for in the trace history, each such cliche is said to be 
defined by the characteristic footprint it leaves behind in the 
trace when it occurs. Each trace footprint has a script 
associated with it, that is defined using one of the two 
techniques we wi l l discuss below. For each process, the 
tracer searches the trace history of the process and its 
spawned subprocesses. At specific points in the script, the 
script can allow for nested clichd patterns. Thus a script 
could say that between the call and exit of a particular 
process, go and look for cliches that occurred within this 
particular subtree. In this manner hierarchical abstractions 
can be produced. 

For cycle tables the process is slightly different. Here, 
there are three critical things to define. The first is what 
event marks the beginning of a new conceptual cycle. Then 
what are the items (termed agents) that we wish to consider 
on these cycles. Finally we have to define what are the 
events we wish to sec. The algorithm then computes the 
fol lowing. It first looks for cycle events, starting from a 
particular root process, and searching downwards. Once it 
has found the intervals that make up the cycle, it then looks 
for each agent, to see which events clichds happenned to it 
in that particular cycle. If more than one event occurred the 
default is to show the last. Earlier ones can be picked up 
using the replay notion introduced earlier. Note that the 
dynamics of this display can be (though by no means need 
to be) very different from the parallel dynamics of the 
PARLOG code underneath. In other words, this model can 
be used to map a different conceptual model of the machine, 
and indeed might be used to serialise out a particular piece of 
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code, if that helped the user's conceptualisation of the 
problem. 

In order to make the definit ional process of these 
mappings more easy, we arc constructing the following two 
tools. 

4.1 Graphical techiniques for pre-
execution trace construct ion 

This is a generalisation of a technique developed for 
Prolog in (Brayshaw, 1990b). The user is first asked to 
choose a representational style. For whatever style they 
choose, they have to f i l l in the role fillers in the template 
they wish to use. They can do this by identifying the 
footprint in terms of the program's call graph. The call 
graph plots out the potential execution space of a program. 
From it the user can then specify which nodes in the 
execution space they wish to group together, and in what 
calling structure, in order to specify the footprint of the 
cliche they are interested in. The footprint is produced by 
specifying a pattern of nodes from the call tree. The 
footprint they are defining is that pattern in the final 
execution trace that constitutes an instance of the concept 
they are defining. Each time they choose a node they are 
prompted to further conditionalise their choice by adding a 
script to that node. The final script for the footprint is the 
conjunction of the scripts for the individual nodes. Variable 
naming is unique to the entire script and not just local to an 
individual node script, so constraints between local nodes 
can be so recongnised. The language for the scripts is 
Prolog, since this is the language in which the tracer is 
embedded. In order to write the script the user is given a 
menu based authoring tool. 

The tool allows the user to say what the patterns in the 
trace for this footprint arc. Legal patterns are derived from 
the execution descriptors originally designed to describe 
Prolog execution (Eisenstadt, 1985), but here generalised to 
PARLOG. They include a call (with optional reference to a 
particular clause), call success or failure, and the options to 
be specific about the type of failure. To the left of this 
menu is the general script editing area. Users can type into 
this if they so wish, or edit what is there. Additional Prolog 
goals can further constrain the script. Additionally however 
the user can edit the script by means of a menu. Suppose 
we selected an example node called a in the call graph. The 
default script is that for this pattern to hold, a is simply 
called, and we can express this by the line call(a(_,_,_)). 
However, we can make this pattern much more specific. We 
can sec any calls to specific clauses of a (namely clauses 
1,2, and 3), which resulted in failure due to sub-process 
failure. To do this and create the script, we have to choose 
the appropriate options from the menu, and then specify to a 
separate dialog what are the numbers of the clauses we wish 
to consider. Nodes can be added to a footprint by repeatedly 
selecting them from the call graph and defining scripts in 
this way. The calling structure specified from the call graph 
between the individual nodes is also made a precondition of 
the script. Once a clichd definition is complete a double 
click ends the definition process. Where appropriate the user 
can call upon an icon editor to define a special symbol for 

that cliche or choose to use the built in representational 
styles. This definitional processes can be repeated to define 
any number of clich6s. 

4.2 Def in ing visualisations f rom the 
textual trace of a progam 

This second technique attempts to allow the user to work 
from a textual trace of the program. The textual trace has 
the same symptom descriptors as we saw in the previous 
section, again adopted from Eisenstadt(1985). Users can 
define a clich6, and associate it with the role fi l ler of a 
template, by first choosing a representation style and a 
particular role. They can then define the clich6 footprints by 
selecting instances of these footprints as they have 
manifested themselves in the runtime trace of the program. 
Several instances can be presented as examples of the 
footprint. Where the new is information is more specific, 
this is then added to the definition of the script defining the 
footprint. When generalisations are involved the tracer has a 
series of syntactic rules it fo l lows (true automated 
generalisations not being possible without a model of the 
language semantics). So for example when two examples 
differ by an argument containing different literals, it is 
assume that the value doesn't matter and the values are 
replaced by a variable. Likewise the user can choose to 
automatically hollow out a term as short hand for making 
the example more generic. During the whole operation, the 
script that is being developed can be seen and edited, and 
augmented by additional constraints in Prolog. Once the 
scripts are defined, and depending upon the representation 
chosen, the new definitions are used to try and produce a new 
visualisation of the program. We see this process of 
visualisation production as potentially being an iterative one 
so that if the resulting views are not to the programmers' 
l iking they can go back and edit the scripts to produce new 
ones. Scripts developed from the call graph descriptions can 
also be re-edited in this fashion, and in light of the actual 
program execution as seen in either the textually based 
traces, or the four graphical based views. 

5. Scaling Issues and Other Approaches 

Text tracing systems can be thought of as a type of program 
visualisation system. To convice yourself of this just 
consider the amount of layout, structuring and indenting that 
makes them readable. Like their graphical conterparts, to be 
successful they really have to present the required 
informat ion in an acceptable manner. Thus any 
visualisation system, be it textual or graphical, has to think 
about scaleability, and when you consider scalcability, you 
have to consider the types of representations used. We have 
discussed ways of tackling the scaling issue for graphics 
elsewhere (Brayshaw and Eisenstadt, 1991). The point 1 
want to make here is that there isn't some special dichotomy 
which destinguishes textual visualisations from graphical 
visualisations. Both are required to provide sufficient 
information, and selective information. Exhaustive program 
traces, in either mode, can be too unwieldy to use, if not 
useless, and take too long. For either system, what is 
required is an informative trace of a limited part of the 
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program. I therefore believe that it is misleading to think 
that somehow text traces are "practical" while graphics ones 
not. They are different ways of exploring the information 
space, and what makes program visualisation exciting is 
finding what possibilities graphics affords for openning up 
new routes. 

6. Conclusions. 

In this paper I have argued for the use of different perspective 
techniques to visualise PARLOG. These have focused on an 
execution model, embedded wi th in three metaphoric 
description of the system (goal reduction, process 
communication, and iteration), and portrayed either at fine, 
coarse, or user defined levels of detail. These techniques are 
currently being realised in an implementation that has been 
described in this paper. The system is written in Prolog 
using an extended and modified version of the PARLOG 
meta-interpreter for a subset of the language developed in 
Pinto (1987). 

The current development is particularly focussing on 
realising the type of f lexibi l i ty of representation style 
discussed in section 4. In particular, one desirable future 
development would be to make the whole of the definitional 
process of these new footprints graphical, and minimise the 
amount of "programming" envolved. 
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