
An Architecture for Visualizing the Execution of
Parallel Logic Programs

Mike Brayshaw

Human Cognition Research Laboratory
The Open University

Milton Keynes, England, MK7 6AA.
Tel: [444] (0)908 65 5015

FAX: [444] (0)908 65 3744
email: mc_brayshaw@vax.acs.open.ac.uk

Abs t rac t : This paper describes the development of an
architecture and implementation of a graphical tracing
system for the parallel logic programming language
PARLOG. Novel features of the architecture include a
graphical execution model of PARLOG; a range of
representational techniques that allow the user a choice of
perspective and granularity of analysis; and ongoing work on
graphical tools that provide user-defined visualisations of
their programs, either before the program is run, or
afterwards by demonstration from a textual trace. The aims
of the architecture are threefold: (1) to aid program
construction and debugging by providing an informative
graphical trace of the program's execution; (2) to provide the
user with a choice of representational techniques, at a
preferred level of granularity; and (3) to allow users to define
their own visualisations, that more truly map onto their
conception of the problem, and which support the way they
wish to view the execution information.

1. In t roduct ion

One of the central tenets of our current research on
visualisation is that different visualisation techniques are
optimal for different tasks and purposes. Any representation
necessarily makes some things explicit at the expense of
others. In this work I aim to show how using different
presentation styles, which show different aspects of the
execution process, can produce a practical visual model of a
PARLOG virtual machine, and one that can benefit
teaching, tracing, and also debugging.

In this current work on PARLOG I am interested in
letting users get their own perspective on the program, and
one that suites their needs best. This has resulted in the
development of a repertoire of representation techniques that
give the user complimentary perspectives, using different
levels of detail and abstraction. In addition users are able to
come up wi th their own perspectives using special
visualisation defining tools.

Background material to the current discussion can be found
in the following. PARLOG is described in Gregory (1987)

and Conlon (1989). A good review of program visualisation
techniques can be found in Myers (1990) and Utter and
Pancake (1989). A visual programming style front-end for
PARLOG has been proposed by Ringwood (1989). Conlon
and Gregory (1990) present an impressive system for the
textual tracing of PARLOG, including the ability to closely
monitor (incremental) I/O, processes, and communication
channels.

This paper wi l l first briefly introduce a basic model of the
visual execution of PARLOG (see Brayshaw, 1990a for a
fuller treatment). This model wi l l then be generalised to
show how we can embed it within a series of visual stories
of a program's execution. There is an inherent problem in
many representation systems that in def in ing a
representation some things are made expl ici t , others
impl ic i t , some things highl ighted, some hidden. By
providing different prespectives on the execution behaviour
of the program we wi l l attempt to demonstrate how a fuller
and more informed view of the program can be gained from
looking at the program as its different faces are revealed in
the series of visualisations. Then I shall discuss how we
can further utilise these representational techniques so that
users can modify them and produce their own visualisations,
before f inal ly adding some conclusions. A l l the
representations use the same execution model, however the
information is presented from different perspectives,
emphasising different aspects of execution.

2. A visual execution model of PARLOG

PARLOG provides an interesting test case for the use of
program visualisation, not only to try and generalise our
own earlier work on visualisating Prolog (Eisenstadt and
Brayshaw, 1987,1988; Brayshaw and Eisenstadt, 1988,
1991), but also to deal with the special dynamics of
parallelism and associated problems like starvation and
deadlock (e.g. see Ringwood, 1988). The basic model is
built around the concept of the node representing a process,
and the shading of the nodes indicating the process state (as
in fig. 1 below).

870 Logic Programming

This then is the core. To it we now must add a more
detailed execution model. The one I use is adopted from
Conlon (1989), because it provides a good conceptual model
for novices and experts alike of the workings of PARLOG.
It considers process evaluation to proceed in four stages,
namely testlcommitloutput/spawn, which are discussed in
detail below.

Tes t The clauses of the goal are tested to see if they are
candidates. Clauses are tested via OR-Parallel search. For
each clause, two tests, of head and guard, are carried out by
AND-Parallel search. Clauses can be thought of as racing to
be the first clause to satisfy both head and guard tests.

C o m m i t The process commits to the first clause to
pass the test stage. A l l other input matching or guard
evaluation, associated with other possible candidate clauses,

ceases. The commit stage marks the end of the race between
the guards.

O u t p u t Once a clause has been committed to, any
output arguments can then be bound.

Spawn The process then reduces to the sub-goals
in the chosen clause body. As a result, concurrent sub-
processes are spawned, one for each of the subgoals. The
process succeeds if all the sub-processes succeed. If however
one of the conjunctive sub-processes fails, then the overall
process goal fails. If the spawned (reduced to) goal is a leaf
node in the execution space, then the call succeeds
immediately and the goal succeeds.

Figure 2 considers how this maps onto a simple database
query.

Figure 2. An example of the basic execution model adopted from (Conlon, J 989).
Let us now consider the actions of PARLOG when doing
this simple query. On attempting a goal, the process tests
in parallel the head and the guard of all the clauses of the
goal. In figure 2, we see that we are attempting to prove
that d r i n k s (j o h n , W h a t) is true against the database
d r i n k s (m i k e , w h i s k y) , d r i n k s (j o h n , bee r) , and
dr inks(he len , wine). At the top of the figuure we see
the test phase of a goal evaluation (a). The icon on the left
shows we are currently evaluating a goal. The goal itself is
drawn to the right of it. The mode declarations (whether an
argument is input or output) arc shown by the shaded arrows
above the goal. These correspond to the modes of the
respective arguments. indicates input, and

output. Thus we can see that d r i n k s ' s first
argument must be input, and its second output. When we
match the heads in parallel we produce a local evaluation
space for each clause, as shown in the three boxes below the
main process state icon. We can thus see at a glance what
the different possible binding enviroments are. The goal is
shown at the top of the box, the attempted head match
below. Database clauses are indexed by number on the left.
Variables are shown renumbered by subscripts, to avoid
name clashes. In the main body of the clause the renaming

is by number, however in the transient parallel evaluation
spaces of the evaluation lest phase, we show the temporary
variable bindings subscripted by letter. Finally, arrows are
used to show data-flow and pattern matching, in the same
manner as Eisenstadt and Brayshaw (1988). Thus we can see
that of the three possible clauses, only the second clause
d r i n k s (j o h n , b e e r) matches the goal d r i n k s (j o h n ,
W h a t 1) .

In the top part of figure 2, we can see that only clause two
of d r i nks matches the database. As a result, clause two
wins the test phase and is committed to. We write the name
of the clause next to the node indicating the state of the
process, and commit at that choice point. Any output
variables can now be unified, as we see figure 2(c). Finally
we spawn any new sub-processes in the body of the clause.
As d r inks is defined as a simple fact, the evaluation now
succeeds as we see in the final snapshot, and hence we can
see that the overall evaluation has succeeded with the result
d r i n k s (j o h n , beer) .

The view we have just given is a very fine-grained account
of the executon process. We can however develop a much
coarser grained model, suitable for monitoring much larger
programs. We do this simply by omitting details of the

Brayshaw 871

unification of the program and considering instead just the
name of the process and its state, indicated by the icon on
the left-hand-side. If I want to see more information about
the unification, the different possible binding environments
in the test phase, or the data-flow arrow, I can use the same
technique of zooming we introduced in (Eisenstadt and
Brayshaw, 1987), to reveal more fine-grained information.
Also notice that because the coarse grained representation is
only a superset of the fine-grained view, I can arbitrarily
interleave coarse and fine traces. I w i l l demonstrate this
notation further when we incorporate this account in
different representational models.

3 . I n t e g r a t e d m u l t i p l e representa t ions o f
P A R L O G p r o g r a m s

So far we have only introduced a model of individual
processes. We now need to say how these individual views
can be related together to give a model of execution that

considers a program made up of many of these nodes. A l l
the views that are discussed are tightly integrated. The user
can readily swap from one to the other. Coarse grained
views can be opened out into fine-grained ones, and vice
verca, by mouse-clicking on the nodes. A i l the views of the
program also have a replay panel, so the trace history can be
wound back to the beginning and browsed through, running
it forward and back as the user sees fit. The basic modus
operandi of the current system is that the user runs the
program and then gets a visualisation of it after the run, the
user being able to choose different representation style as
appropriate. Other representations can be called up from a
menu or the user can choose to build new representations
(or use an existing user-defined visualisation).

An AND/OR tree gives us our kernel prepresentation
style. Amongst its strengths are its good mapping to the
source code and compactness. Our basic representation is
introduced below.

Figure 3. The basic AND/OR
On the left we see the basic notation we use; ANDs are

distinguished from ORs by the conjunction bar l inking arcs
in the tree. Alternative clauses can be viewed via ORs and
conjoined sub-processes in a clause body as ANDs. Guards
are distinguished by characteristic line stippling. Once the
processes commits to one particular choice, the successful
guards change to a broader hashed line style to disunguish
them from the surrounding unsuccessful ones. These
unsuccessful nodes are left in whatever state they were in
when the commitment took place. The fact that one of the
clause guards is shown as being successful necessarily

tree representations employed.
implies that these others have not been. Program dynamics
can be revealed by using the replay panel which can show
what happens and when. When a clause commits processes
are shown in whatever state they were in when they were
terminated, as this can be informative about how and why a
particular process failed/successfully committed at a
particular point. Using dynamics, suspended goals can be
see as evaluating root nodes, their lack of activity showing
dynamically the suspension, and graphically we reinforce
this model by showing a line underneath to distinguish them
f r o m n o n - s u s p e n d e d n o d e s .

872 Logic Programming

Figure 4. Mixing coarse and fine-grained views.
In figure 3 all the nodes that we dealt with were coarse-

grained descriptions. As we noted earlier we can however
introduce fine grained information as wel l . To do this we
can zoom in on selected nodes. In figure 4 above, we can
see the effect of doing this for the nodes a and test5. In
both cases we now have our fine-grained view of execution
again. Notice also, that at the moment that we have taken
the snapshot in figure 4, tests is in the process of its test
phase. We can see the individual clause evaluation
environments below the bottom of the process node. The

environments for a are not shown by default, other than
when the process was in its test phase, but can be brought
up again and displayed as at the point of commitment, by
mouse-clicking on the node.

Another description of PARLOG can be in terms of many
intercommunicating processes. According to such a model,
PARLOG can be thought of as a kind of object-oriented
language. To support this view we have developed a process
communica t ion mode l , i l lust rated in f igure 5.

Figure 5. A process communication model. We can see what data is being communicated and between whom, by looking at
what information is on which channel. Notice, the re-occurring shapes caused by recursive filter and sift processes

In this model we view each process as a node, and link the
processes together according to the data-flow between them.
On these links we show either the data-flow that has
occurred in an incremental fashion, or just the new elements,
depending upon the user's preference. The nodes in the
diagram are actually the same as tliose in the tree based
views that we have been looking at previously. In the trees,
each process was depicted by a node whose visual state
descriptor mapped onto that of the process. We can use the
same notation in the data-flow diagrams. We can view these
data-flow diagrams as horizontal cross sections of the trees.
However, the logical control shown in the trees is removed.
The data-flow diagram need not be made up of simple cross-

sections; the slices can come from arbitrary parts of the
program, hence arbitrary process communication can be
seen. It is important to remember, however, that the
relation between the two representations is essentially one of
perspective; one representation emphasises control, making
data-flow impl ic i t , the other pulls data-flow between
processes out front, but hides the overall control relations
between the processes.

A final representation style we employ is based on the
metaphor introduced in (Domingue and Eisenstadt, 1989).
This metaphor aims to make repetetive or cycle-based
behaviour explicit. In PARLOG, constructs like recursion
allow us to conceptualise a program carrying out some form

Brayshaw 873

of repetetive process. Although we could detect this type of
behaviour in the other traces it would be implicit within the
trace representation we are employing. The cycle table aims
to make this explicit. The basic form is to consider a list of
items to viewed on a per-cycle basis and place these items
down one axis of the table. Down the other we consider the
individual cycles. The cross section of these two axis then

Figure 6. A schematic view of the cycle based representation,
These representation styles form the basis of our library.

Thus currently we can distinguish between three different
execution metaphors and two types of granularity. In the
next section we wi l l discuss how to use these execution
metaphors with new canonical units defined by the user.
Moreover, the architecture is open to the extent that we can
expand the system by embracing other metaphors of
execution, whilst still maintaining our execution model and
levels of granularity. The important notion has been the
ability to see execution from different perspectives: goal
reduction, process communication, and iteration.

4. User Defined Visualisations

One of the important proposed features of this system is the
provision for users to be able to define their own
visualisations. This section wi l l describe possible ways we
are exploring to go about doing this. Taking any one of the
representations as a template, users should be able to
program a new mapping between their program and the trace
they have generated, thereby producing a new visualisation,
of their own design. We have here tried to design additional
tools that let the user write this mapping more easily,
without getting involved in heavy code production to
program the debugger. To this end we wi l l discuss two
tools. The first lets the user define visualisation by
selecting nodes from the call graph of the program before it
is run. Thus the programmer can, a priori, decide what trace
to see of his/her program, design the trace, and then run the
program. The second method works post execution. It
allows the user to take a textual trace of the program and
describe the mapping between representation template and
textual trace in terms of it instances, as shown in the trace.
Thus the user can define his/her own visualisation based on
a posthumous analysis of the trace. In addition however, the
most crucial concept that distinguishes these user defined
mappings is that they need not be in terms of individual
nodes in the underlying trace. Instead, groups of nodes can
be considered as an individual clich6, and mapped as one into
the representation template. Thus higher level descriptions
of the program can be rendered in the visualisation by
showing the mapping these higher level events have to the
underlying symptomatic footprint they leave in the program
trace. By thus analysing the program trace and detecting the
user defined footprints, these events can then be mapped into

tells us what event happenned on what cycle to what item.
In PARLOG we have defined a default mapping between
recursive processes and the cycle table. Likewise we can
also look at guards on each invocation of a processes, so
that each new guard becomes a new conceptual "cycle".
Doing this allows us to compare the behaviour of the guard
on each sucessive invocation.

call the cycle table.
the representation template chosen, and a user defined
visualisation produced. This is implemented as a sequential
search of the trace history. However, as relative temporal
information is also preserved, simulated concurrency is
therefore possible. How this proceeds depends on the
representation chosen, as we wi l l discuss below.

In trees and process communication views arbitary
mappings may be produced by describing the footprints of
individual nodes. Thus nodes in the tree need not be
individual processes, but instead represent much larger
cliches about the program. The way we propose to go about
doing this is as fol lows. The template consists of an
abstract model of the representation with a series of roles
(c.g.nodcs, links etc.) which the user has to instantiate with
a series of generators. These are defined as clich6 patterns to
look for in the trace history, each such cliche is said to be
defined by the characteristic footprint it leaves behind in the
trace when it occurs. Each trace footprint has a script
associated with it, that is defined using one of the two
techniques we wi l l discuss below. For each process, the
tracer searches the trace history of the process and its
spawned subprocesses. At specific points in the script, the
script can allow for nested clichd patterns. Thus a script
could say that between the call and exit of a particular
process, go and look for cliches that occurred within this
particular subtree. In this manner hierarchical abstractions
can be produced.

For cycle tables the process is slightly different. Here,
there are three critical things to define. The first is what
event marks the beginning of a new conceptual cycle. Then
what are the items (termed agents) that we wish to consider
on these cycles. Finally we have to define what are the
events we wish to sec. The algorithm then computes the
fol lowing. It first looks for cycle events, starting from a
particular root process, and searching downwards. Once it
has found the intervals that make up the cycle, it then looks
for each agent, to see which events clichds happenned to it
in that particular cycle. If more than one event occurred the
default is to show the last. Earlier ones can be picked up
using the replay notion introduced earlier. Note that the
dynamics of this display can be (though by no means need
to be) very different from the parallel dynamics of the
PARLOG code underneath. In other words, this model can
be used to map a different conceptual model of the machine,
and indeed might be used to serialise out a particular piece of

874 Logic Programming

code, if that helped the user's conceptualisation of the
problem.

In order to make the definit ional process of these
mappings more easy, we arc constructing the following two
tools.

4.1 Graphical techiniques for pre-
execution trace construct ion

This is a generalisation of a technique developed for
Prolog in (Brayshaw, 1990b). The user is first asked to
choose a representational style. For whatever style they
choose, they have to f i l l in the role fillers in the template
they wish to use. They can do this by identifying the
footprint in terms of the program's call graph. The call
graph plots out the potential execution space of a program.
From it the user can then specify which nodes in the
execution space they wish to group together, and in what
calling structure, in order to specify the footprint of the
cliche they are interested in. The footprint is produced by
specifying a pattern of nodes from the call tree. The
footprint they are defining is that pattern in the final
execution trace that constitutes an instance of the concept
they are defining. Each time they choose a node they are
prompted to further conditionalise their choice by adding a
script to that node. The final script for the footprint is the
conjunction of the scripts for the individual nodes. Variable
naming is unique to the entire script and not just local to an
individual node script, so constraints between local nodes
can be so recongnised. The language for the scripts is
Prolog, since this is the language in which the tracer is
embedded. In order to write the script the user is given a
menu based authoring tool.

The tool allows the user to say what the patterns in the
trace for this footprint arc. Legal patterns are derived from
the execution descriptors originally designed to describe
Prolog execution (Eisenstadt, 1985), but here generalised to
PARLOG. They include a call (with optional reference to a
particular clause), call success or failure, and the options to
be specific about the type of failure. To the left of this
menu is the general script editing area. Users can type into
this if they so wish, or edit what is there. Additional Prolog
goals can further constrain the script. Additionally however
the user can edit the script by means of a menu. Suppose
we selected an example node called a in the call graph. The
default script is that for this pattern to hold, a is simply
called, and we can express this by the line call(a(_,_,_)).
However, we can make this pattern much more specific. We
can sec any calls to specific clauses of a (namely clauses
1,2, and 3), which resulted in failure due to sub-process
failure. To do this and create the script, we have to choose
the appropriate options from the menu, and then specify to a
separate dialog what are the numbers of the clauses we wish
to consider. Nodes can be added to a footprint by repeatedly
selecting them from the call graph and defining scripts in
this way. The calling structure specified from the call graph
between the individual nodes is also made a precondition of
the script. Once a clichd definition is complete a double
click ends the definition process. Where appropriate the user
can call upon an icon editor to define a special symbol for

that cliche or choose to use the built in representational
styles. This definitional processes can be repeated to define
any number of clich6s.

4.2 Def in ing visualisations f rom the
textual trace of a progam

This second technique attempts to allow the user to work
from a textual trace of the program. The textual trace has
the same symptom descriptors as we saw in the previous
section, again adopted from Eisenstadt(1985). Users can
define a clich6, and associate it with the role fi l ler of a
template, by first choosing a representation style and a
particular role. They can then define the clich6 footprints by
selecting instances of these footprints as they have
manifested themselves in the runtime trace of the program.
Several instances can be presented as examples of the
footprint. Where the new is information is more specific,
this is then added to the definition of the script defining the
footprint. When generalisations are involved the tracer has a
series of syntactic rules it fo l lows (true automated
generalisations not being possible without a model of the
language semantics). So for example when two examples
differ by an argument containing different literals, it is
assume that the value doesn't matter and the values are
replaced by a variable. Likewise the user can choose to
automatically hollow out a term as short hand for making
the example more generic. During the whole operation, the
script that is being developed can be seen and edited, and
augmented by additional constraints in Prolog. Once the
scripts are defined, and depending upon the representation
chosen, the new definitions are used to try and produce a new
visualisation of the program. We see this process of
visualisation production as potentially being an iterative one
so that if the resulting views are not to the programmers'
l iking they can go back and edit the scripts to produce new
ones. Scripts developed from the call graph descriptions can
also be re-edited in this fashion, and in light of the actual
program execution as seen in either the textually based
traces, or the four graphical based views.

5. Scaling Issues and Other Approaches

Text tracing systems can be thought of as a type of program
visualisation system. To convice yourself of this just
consider the amount of layout, structuring and indenting that
makes them readable. Like their graphical conterparts, to be
successful they really have to present the required
informat ion in an acceptable manner. Thus any
visualisation system, be it textual or graphical, has to think
about scaleability, and when you consider scalcability, you
have to consider the types of representations used. We have
discussed ways of tackling the scaling issue for graphics
elsewhere (Brayshaw and Eisenstadt, 1991). The point 1
want to make here is that there isn't some special dichotomy
which destinguishes textual visualisations from graphical
visualisations. Both are required to provide sufficient
information, and selective information. Exhaustive program
traces, in either mode, can be too unwieldy to use, if not
useless, and take too long. For either system, what is
required is an informative trace of a limited part of the

Brayshaw 875

program. I therefore believe that it is misleading to think
that somehow text traces are "practical" while graphics ones
not. They are different ways of exploring the information
space, and what makes program visualisation exciting is
finding what possibilities graphics affords for openning up
new routes.

6. Conclusions.

In this paper I have argued for the use of different perspective
techniques to visualise PARLOG. These have focused on an
execution model, embedded wi th in three metaphoric
description of the system (goal reduction, process
communication, and iteration), and portrayed either at fine,
coarse, or user defined levels of detail. These techniques are
currently being realised in an implementation that has been
described in this paper. The system is written in Prolog
using an extended and modified version of the PARLOG
meta-interpreter for a subset of the language developed in
Pinto (1987).

The current development is particularly focussing on
realising the type of f lexibi l i ty of representation style
discussed in section 4. In particular, one desirable future
development would be to make the whole of the definitional
process of these new footprints graphical, and minimise the
amount of "programming" envolved.

7* Acknowledgement

This work is currently supported by MRC/SERC/ESRC
UK Joint Research Council Grant #89/CS31, the support of
which is gratefully acknowledged. The author would also
like to thank Marc Eisenstadt for many discussions about
visualisation and program debugging, and for detailed
comments on an earlier draft of this paper.

8. References

Brayshaw, M. Visual Models of PARLOG Execution.
September 1990. TR-64, Human Cognit ion Research
Laboratory, The Open University, Mil ton Keynes, England.

Brayshaw, M. Visualizing Cyclic Behaviour in Prolog.
TR-66, Human Cognition Research Laboratory, The Open
University, Mil ton Keynes, England, Dec'90.

Brayshaw, M. and Eiscnstadt, M. Adding Data and
Procedural Abstraction to the Transparent Prolog Machine.
In R.A. Kowalsk i and K.A. Bowen (Ed.), Logic
Programming Cambridge, MA : M I T Press, 1988.

Brayshaw, M. and Eiscnstadt, M. A Practical Graphical
Prolog Tracer. International Journal of Man-Machine
Studies., 1991

Conlon, T. Programming in PARLOG. Wokingham,
UK: Addison-Wesley, 1989.

Conlon, T. and Gregory, S. Debugging Tools for
Concurrent Logic Programming, TR-90-22, Computer
Science Department, University of Bristol, October 1990.

Domingue, J. and Eisenstadt, M. A New Metaphor for
the Graphical Explanation of Forward Chainging Rule
Execution, Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI-89), Detroit, 1989 .

Eisenstadt, M. , Retrospective Zooming: a knowledge
based tracing and debugging methodology for logic
programming. Proceedings of the Ninth International
Conference on Artificial Intelligence (IJCAI-85). Los
Angeles: Morgan Kaufmann, 1985.

Eisenstadt, M., and Brayshaw, M. Graphical debugging
with the Transparent Prolog Machine (TPM). Proceedings
of the Tenth International Joint Conference on Artificial
Intelligence (IJCAI-87). Los Angeles: Morgan Kaufmann,
1987.

Eisenstadt, M. , and Brayshaw, M. The Transparent
Prolog Machine (TPM): an execution model and graphical
debugger for logic programming. Journal of Logic
Programming, 5(4),pp. 277-342, 1988.

Gregory, S. Parallel Logic Programming in PARLOG:
The language and its implementation. Wokingham, UK:
Addison-Wesley, 1987.

Myers, B.A. Taxonomies of visual programming and
program visualisation. Journal of Visual Languages and
Computing, 1(1), 1990.

Pinto, H. Implementing Meta-Interpreters and Compilers
for Parallel Logic Languages in Prolog, A1AI-PR-14,
University of Edinburgh, 1987.

Ringwood, G.A. PARLOG86 and the Dining Logicians.
Communications of the ACM., 31(1), pp. 10-25., January
1988.

Ringwood, G.A. Predicates and Pixels, New Generation
Computing, 7, pp.59-80, 1989.

Utter, P.S. and Pancake, C M . Advances in Parallel
Debuggers:New Appraoches to Visualisation. Cornell
Theory Center, CTC89TRI8 12189, Cornell University,
M Y , 1989.

876 Logic Programming

