
A Forma l i za t i on of Exp lanat ion-Based Macro -opera to r Learn ing

Prasad T a d e p a l l i
Department of Computer Science

Oregon State University
Corvallis, OR 97331-3202

(tadepaJli@cs.orst.edu)

A b s t r a c t

In spite of the popularity of Explanation-Based
Learning (EBL), its theoretical basis is not
well-understood. Using a generalization of
Probably Approximately Correct (PAC) learn­
ing to problem solving domains, this paper for­
malizes two forms of Explanation-Based Learn­
ing of macro-operators and proves the sufficient
conditions for their success. These two forms of
EBL, called "Macro Caching" and "Serial Pars­
ing," respectively exhibit two distinct sources
of power or "bias": the sparseness of the so­
lution space and the decomposability of the
problem-space. The analysis shows that expo-
nential speedup can be achieved when either
of these biases is suitable for a domain. Some­
what surprisingly, it also shows that computing
the preconditions of the macro-operators is not
necessary to obtain these speedups. The the­
oretical results are confirmed by experiments
in the domain of Eight Puzzle. Our work sug­
gests that the best way to address the ut i l i ty
problem in EBL is to implement a bias which
exploits the problem-space structure of the set
of domains that one is interested in learning.

1 I n t r o d u c t i o n

Explanation-Based Learning (EBL) treats learning as
improving the efficiency of a problem solver [Dejong and
Mooney, 1986, Mitchell ei a/., 1986]. The standard EBL
systems start with complete and correct, if inefficient,
problem solvers. Learning involves taking a set of exam­
ples, i.e., problem-solution pairs, as input and produc­
ing an efficient problem solver as output. The examples
provide information about the problem distribution and
eliminate the need to search for solutions.

While there are satisfactory formal models of empir­
ical learning based on variants of Probably Approxi­
mately Correct (PAC) learning [Valiant, 1984, Haus-
sler, 1990], EBL systems are not theoretically well-
understood. There are some practical problems in EBL
which can be directly attributed to the lack of adequate
theoretical understanding. Firstly, there is no clear defi­
nition of "success" for EBL systems. Because of this rea­

son there hasn't been a rational method to decide when
to stop learning. Any satisfactory formalization of EBL
should specify what it means to succeed and should pro­
vide an effective method to recognize success. Secondly,
it is known that EBL systems do not always lead to per­
formance improvement with learning. After learning a
large number of rules, they might face what is called
the "ut i l i ty problem," i.e., the problem of complexity of
using the learned knowledge [Minton, 1990]. Since the
ut i l i ty problem can far outweigh the reduction in search
due to learning, a successful formalization should take
this into account and characterize the sufficient condi­
tions for a guaranteed performance improvement.

This paper introduces a variation of the formal frame-
work for performance improvement learning of [Natara-
jan and Tadepalli, 1988]. We call this framework Proba­
bly Approximately Correct (PAC) Problem Solving. Us­
ing this framework, we analyze two forms of macro-
operator learning, namely, Macro Caching and Serial
Parsing. One of the main results of this paper is an
explication of the biases exhibited by these two forms of
EBL. In particular, Macro Caching and Serial Parsing
implement two distinct biases: (a) the sparse solution
space bias and (b) the macro table bias. The sparse so-
lution space bias says that most problems in the domain
can be solved by a small number of operator sequences.
The macro table bias says that the solution to a prob­
lem can be constructed by serially composing a set of
macro-operators that solve a series of subproblems. We
show that when a domain and the hypothesis space of
the learning system satisfy these biases, it leads to an
exponential speedup in problem solving. Somewhat sur­
prisingly, the analysis also reveals that it is not necessary
to compute the preconditions of macro-operators in or­
der to obtain this speedup. The theoretical predictions
of our analysis are confirmed by an implementation of
Serial Parsing in the domain of Eight Puzzle.

The main contribution of this paper is a successful
integration of EBL work with PAC learning. It also
extends Korf's work on macro-operator learning [Korf,
1985] to incremental learning by observation. Our work
also suggests that the ut i l i ty problem in EBL can be
solved by building learning programs that implement bi­
ases which exploit the domain structure.

The rest of the paper is organized as follows: Section
2 introduces PAC Problem Solving. Sections 3 and 4

616 Learning and Knowledge Acquisition

describe Macro Caching and Serial Parsing, respectively.
Section 5 presents experimental results in the Eight Puz­
zle domain. Section 6 discusses the related work, and the
final section summarizes the contributions.

2 Probab ly Approx ima te l y Correct
P rob lem Solving

In order to formally analyze EBL, we need to precisely
define what it means for EBL, or any other speedup
learning method, to succeed. The problem definition
in [Mitchell et a/., 1986] is not sufficient for our pur­
poses, because it does not address the issue of learning
from multiple examples. This section presents a defi­
nition which draws from the earlier formal frameworks
presented in [Natarajan and Tadepalli, 1988].

The key difference between purely empirical learning
and EBL is that an EBL system is also provided with a
"domain theory," which, we assume, is in the form of a
set of goals and operators. However, this domain theory
is too inefficient to use directly to solve problems. The
operationality constraint of EBL [Mitchell et a/., 1986]
may be viewed as defining a hypothesis space of poten­
tial efficient problem solvers, one of which is the target
problem solver. In this paper, we view the problem of
performance improvement as learning an efficient, ap­
proximate problem solver from the domain theory and
the example solutions of some target problem solver in
the hypothesis space.

Define a problem domain D to be the tuple (S,G,0),
where

This allows choosing the operator representation which is
best suited to the domain rather than being constrained
by the needs of the learning technique.

Secondly, unlike the standard EBL approaches, our
goals and operators are not parameterized. At first
glance, this appears to seriously l imi t the power of EBL.
Somewhat surprisingly, this is not the case. This is be­
cause, for most domains, the maximum number of pos­
sible instantiations of any parameterized operator (or
macro-operator) must be bounded by a polynomial fac­
tor so that the cost of instantiating it is not exorbi­
tant. This means that every parameterized operator (or
macro-operator) can be replaced with at most a poly­
nomial (in the length of the state description) num­
ber of non-parameterized operators. To take a domain
like chess as an example, every parameterized opera­
tor (e.g., move pawn) can be replaced with n x n non-
parameterized operators (e.g., move pawn from e2 to
e4), where n is the length of the state description, i.e.,
the number of squares on the chess board. Since, as our
later definitions show, our formalization ignores all poly­
nomial factors in sample size, learning time, and prob­
lem solving time, our results do not change whether the
operators are parameterized or not. A parameterized
model was considered and similar results were proved in
[Tadepalli, 1990]. For simplicity of exposition, this paper
considers only non-parameterized operators.

A problem solver f for D is a deterministic program
that takes as input a problem, (s, g), and computes its
solution sequence, if such exists.

A hypothesis space H is a set of problem solvers.
An example for a domain D is a pair (($, g), where
is a solution sequence of (s, g).
A meta-domain M is any set of domains.
A learning algorithm for M is an algorithm that takes

as input the specification of any domain D E M and
some number of examples of problem solving wi th a tar­
get problem solver in H and computes as output an ap­
proximation for a problem solver for D.

The learning protocol is as follows: First, the do­
main specification is given to the learner. The teacher
then selects a problem distribution from a set of al­
lowed distributions and a target problem solver from
the hypothesis space. The learning algorithm has ac­
cess to a routine called SOLVED-PROBLEM. At each
call, SOLVED-PROBLEM randomly chooses a problem
in the input domain, solves it using the target problem
solver, and returns the example (the {problem solution)
pair). The learning algorithm must output an approxi­
mate problem solver with a high probability after seeing
a reasonable number of examples. The problem solver
need only be approximately correct in the sense that it
may fail to produce correct solutions with a small prob­
ability.

De f i n i t i on 1 Formally, an algorithm A is a learning
algorithm for a meta-domain M in a hypothesis space H
with respect to a set of problem distributions T, if for any
domain D M, any choice of a problem distribution P
in T, and any target problem solver f H,

1. A takes as input the specification of a domain D

Tadepalli 617

Notice that our domain specification is not as "ex­
plicit" as typical EBL programs require them to be. The
operators need not be described in the STRIPS formal­
ism, and goals need not be logical formulae. In fact, they
need not be declaratively represented at all, but may be
described by procedures whose run time is reasonably
bounded. Thus, our learning framework requires the
learning techniques to be more independent of the oper­
ator representation than the standard EBL techniques.

1This can be extended to partial functions by assuming
that any operator, when applied to a state in which it is not
applicable, will lead to a "dead state."

M, an error parameter E, and a confidence param­
eter 6,

2. A may call SOLVED-PROBLEM, which returns ex-
amples (x, f(x)) forD, where x is chosen with prob­
ability P(x) from S xG. The number of oracle calls
of A and its running time must be polynomial in the
maximum problem s i z e a n d the length of its
input.

3. For all D M and distributions P T, with prob­
ability at least A outputs a program /' that
approximates f in the sense that
where fails on x while f succeeds}.

4. There is a polynomial R such that, for a maxi­
mum problem size n, , maximum length I and
maximum step length r of any solution output by
SOLVED-PROBLEM, and an upper bound t on the
running times of programs in D on inputs of size
n, if A outputs f', the run time of f1 is bounded by

This framework is very similar to that introduced in
[Natarajan and Tadepalli, 1988]. The main difference is
the idea of the hypothesis space which is not present in
[Natarajan and Tadepalli, 1988]. Another difference is
that it uses a less powerful SOLVED-PROBLEM oracle
than the USEFUL oracle of [Natarajan and Tadepalli,
1988] which is capable of generating optimal solutions for
any problem. We also insist that SOLVED-PROBLEM
must solve all problems using the same target problem
solver chosen from the hypothesis space.

The first two conditions in Definition 1 require that the
learning algorithm must terminate and output the prob­
lem solver within reasonable computational time limits.
The third condition requires that with probability at
least 1 — 8, the learning algorithm should output an ap­
proximate problem solver for the domain. The problem
solver is approximate in the sense that it is allowed to fail
to find a solution with a probability less than e while the
target problem solver succeeds when tested on problems
chosen according to the same distribution that was used
in training. Note that the problem solver might find any
correct solution and not necessarily the same solution
that the target problem solver would have found. This
is one reason why this framework is not subsumed by
that of PAC learning of functions described in [Natara-
jan, 1989]. The final condition is to ensure that the
problem solver output by the learning algorithm scales
reasonably well.

We call this framework Probably Approximately Cor­
rect (PAC) Problem Solving.

3 Macro Caching

In this section we describe Macro Caching and charac­
terize the sufficient conditions for it to be a learning al­
gorithm for a meta-domain.

We define a macro-operator (or a macro) to be any se­
quence of operators. Macro Caching consists of verifying
that an operator sequence solves the problem by execut­
ing it (the "explanation" step of EBL) and storing the
entire operator sequence from the start to the goal state
in the example as a single macro. Unlike the standard

Input domain specification D W, error parameter c,
confidence parameter

Test-counter := 0
1 := 1
While Test-counter __ do

Let SOLVED-PROBLEM() return
(problem (s,y), solution B)

If (s, g) is solvable by the current problem solver
Then

Increment the Test-counter by 1.
Else Begin

Reset the Test-counter to 0.
Update the problem solver by learning

from
i := i + 1
End;

End While;
Output current problem solver;

Table 1: Stochastic testing scheme.

implementations of EBL, our algorithms do not rely on
precondition computation. Thus, a macro may only be
viewed as a potential solution sequence, which must be
tested at the problem solving time. The problem solver
works by applying each macro to the current state and
testing whether it succeeds. If some macro succeeds in
achieving the goal, it returns the macro; otherwise it
fails.

The idea is to pick enough examples so that after ex­
tracting the macros from these examples, one is reason­
ably certain that the learned problem solver is probably
approximately correct. One difficulty remains, however.
The number of examples necessary for successful learn­
ing depends on the the number of necessary macros, and
we do not a priori know this number. Hence, a differ­
ent approach called "stochastic testing," used in [An-
gluin, 1988], is adapted to our problem. The idea is to
stochastically determine whether learning is complete by
testing the program on randomly selected examples. In
this "on-line" model, the program is tested as it is be­
ing trained, and the learning is terminated as soon as it
succeeds on enough number of consecutive random ex­
amples. The testing scheme, described in Table 1, has
a slightly better bound on the number of test examples
than that of [Angluin, 1988].

D e f i n i t i o n 2 A problem solver f for a domain D and a
problem distribution P satisfies a sparse solution space
bias if there is a set of operator sequences mf such that,
on any problem
and is bounded by a polynomial Q in the problem
size n.

Intuitively, the sparse solution space bias implies that
there is a small number of operator sequences out of
which solutions can be selected, so that the simple strat­
egy of remembering all of them and trying them one
by one would work well. The small number of op-
erator sequences might be due to (a) the small num-

618 Learning and Knowledge Acquisition

ber of problems that have a non-zero probability in the
given problem-distribution (sparseness of problem dis­
tribution) or (b) the large number of states that satisfy
the goal (high density of goal states), or a combination
of both. To give an example of the second case, if a goal
in the blocks world is to achieve a state in which there
is a clear block on the table, it can be achieved by one
of three macros: a null macro, a macro which puts the
block being held in hand on table, and another macro
which picks up a block on the top of a tower and places
it on the table. This works for an exponential number of
(in fact, all) init ial states because an exponential number
of states also satisfy the goal.

T h e o r e m If H is defined by the set of problem solvers
that satisfy the sparse solution space bias for all domains
D in M and all distributions P in T, then stochastic
testing with Macro Caching is a learning algorithm for
M in H with respect to T.

P r o o f (sketch): Notice that, at any stage i, the learner
has to succeed on (2 ln(i -f 1) + In randomly chosen
test problems for the learner to terminate. At any stage
i, the probability that the learner succeeds on all its
tests when its macros are not, in fact, adequate to solve
a randomly chosen problem with a probability greater
than i s less t h a n w h i c h turns
out to be less t h a r . So, i f the program terminates
at some stage j, tne proDability that we have a problem
solver whose probability of failure is greater than c is less
than or equal to di

By the sparse solution space bias, the number of
macros necessary to solve the domain is bounded by
a polynomial Q{n,t). Since the lack of each such
macro can cause at most one failure in our algorithm,
the number of failures i satisfies . Hence,
the total number of iterations of the while loop, and
the total number of examples needed is bounded by

which is a polynomial. It
can be seen that the program runs in polynomial t ime.*

Macro Caching's main l imitat ion is due to its assump­
tion that a small number of macros can solve most prob­
lems in the problem-space. For example, it does not
work in domains like Rubik's Cube and Eight Puzzle,
where each macro can solve at most one problem, and
the problem distribution is not sparse.

4 Serial Parsing

This section describes how EBL can succeed for arbitrary
problem distributions by exploiting a problem-space
structure called serial decomposability [Korf, 1985].

Here we make the assumption that states are
representable as vectors of discrete valued features,
(v1,..., v n) , where the maximum number of values a fea­
ture can take is bounded by a polynomial in n.

In Rubik's Cube, the variables are cubie names, and
their values are cubie positions. In Eight Puzzle, the
variables are tiles, and their values are tile positions.
Note that the above assumption makes it difficult to rep­
resent domains with relations, e.g., the blocks world.

A domain is serially decomposable for a given total or­
dering on the set of features if the effect of any operator
in the domain on a feature value is a function of the val­
ues of only that feature and all the features that precede
it [Korf, 1985].

Rubik's Cube is serially decomposable for any ordering
of features (also called "totally decomposable,,). In Eight
Puzzle, the effect of an operator on any tile depends only
on the positions of that tile and the blank in the original
state. Hence Eight Puzzle is serially decomposable for
any ordering that orders the blank as the first feature.

Note that serial decomposability is a property of the
domain as well as its representation. If Eight Puzzle is
represented with positions as variables and tiles as their
values, then it is not serially decomposable.

We assume that there is a single, fixed goal state de-
scribed by (g 1 , . . . , g n) . 2

Korf defines a macro table as a set of macros Mj,i
such that if Mj,i is used in a solvable state s where the
features 1 thru i — 1 have their goal values, g1,.. .,gi-1
and the feature i has a value j, then the resulting state
is guaranteed to have goal values g1, . . . , gi, for features
1 thru i.

Korf showed that if a domain is serially decomposable
and every state reachable from a solvable state is also
solvable, then it has a macro table [Korf, 1985]. If a
domain is serially decomposable for the feature ordering
(l , . . . , n) , then any move sequence that takes a state

can be
used as a macro Mj,i-, since the values of features 1 thru
i in the goal state only depend on their values in the
init ial state, and not on the values of other features.

If a full macro table with appropriately ordered fea­
tures is given, then it can be used to construct solutions
from any init ial state without any backtracking search
[Korf, 1985].

De f i n i t i on 4 A problem solver f satisfies a macro table
bias for a domain D in M if there is a feature ordering
O = (l , . . . , n) such that, (a) D is serially decompos-
able for O, and (b) f constructs all its solutions using a
macro table M as follows: for each feature i from 1 to
n, macros Mj,i are successively applied, where j is the
value of feature i in the state before applying the macro.

Since each application of macro Mj,i guarantees that
the features 1 thru i wil l have their goal values, any
solvable problem is solved in n macro applications by
such problem solver. Kor fs learning program builds a
macro table by exhaustively searching for a correct en­
try for each cell in the table [Korf, 1985]. Thus, Kor fs
work might be characterized as "learning by doing." Our
method, called Serial Parsing, extends his work to incre­
mental learning of macro tables by observation.

Instead of Macro Caching, the stochastic testing algo-
r i thm now calls Serial Parsing to extract the macros in
a solution sequence. For a goal (g1 , . . .,gn), Serial Pars­
ing proceeds from the beginning, varying i from 1 thru
n, applying the operators in the solution to the cur­
rent state ("explanation" step of EBL), and collecting
each operator subsequence that occurs between a state

2This can be generalized with parameterization.

Tadepalli 619

, and and storing it
as the macro Mj,i. If the domain is serially decompos­
able for the feature ordering 1 . . . n , this is guaranteed
to yield correct macros. Note that the structure of the
macro table eliminates the need to compute the precon­
ditions for macros.

For example, in Eight Puzzle, let r, /, u, and d repre-
sent the primitive operators of moving a tile right, left,
up, and down respectively. Macros are represented as
strings made up of these letters. For notational ease,
features (tiles) are labeled from 0 to 8, 0 standing for
the blank and i for tile i. A macro . represents the
sequence of moves needed to get the tile to the goal
position from its current position j, while preserving the
positions of all previous tiles including the blank. The
positions are numbered by the tile numbers in the goal
state, which is assumed to be fixed. The goal state and
an example start state along with a solution are shown
in Figure 1.

Given the problem and the solution in Figure 1,
Serial Parser breaks down the solution as

amples the system constructs a table of macros. The
problem solver works as described in Definition 4. It
fails if the macro table is missing some necessary macro
at any point.

The result of this section can now be stated and
proved. Unlike Theorem 3, the next theorem is
distribution-independent.

T h e o r e m 5 If (a) H is the set of all problem solvers
defined by the macro table bias for domains in M,

6 1 3 1 2 3
8 4 7 8 4
2 5 7 6 5

Solution: drrdludruuldrdluuldrurdllurdurdl

Figure 1: A training example in Eight Puzzle

(b) the number of distinct feature values in D is bounded
by a polynomial function of maximum problem size, and
(c) the feature ordering of the target problem solver is
input to the learner,
then stochastic testing with Serial Parsing is a learning
algorithm for M in H.

P r o o f (sketch): We already saw that, if at some stage
i, stochastic testing terminates, then, with a probability
at least it outputs a problem solver which has a
probability of success of at least We wil l now see
that the number of examples and the running time of
the algorithms are polynomially bounded.

Conditions (a) and (b) imply the existence of a macro
table, whose size (number of macros in the table) is
bounded by a polynomial in the problem-size. Condi­
tions (a) and (c) guarantee that the Serial Parser would
learn at least one missing macro from the example when­
ever the macro-based problem solver fails to solve a prob­
lem. Hence, by arguments similar to those of Theorem
3, the examples are bounded by
which is a polynomial. It also follows that the learner
runs in polynomial time. Since the macro-based problem
solver never needs to backtrack, it runs in time polyno­
mial in all the relevant parameters.•

The above theorem shows that Serial Parsing exploits
serial decomposability, a problem-space structure which
allows it to compress the potentially exponential number
of solutions into a polynomial size macro table.

The macro table bias requires that the teacher's solu­
tions (provided by the SOLVED-PROBLEM) are com­
posed from a macro table. This assumption is needed in
the proof because Serial Parser can only learn a macro if
the solution contains that macro. This assumption may
not be true in general because, every problem might have
several solutions, some of which may not be obtained by
composing macros from a macro table. In fact, this as­
sumption is most likely violated if the teacher gives only
optimal solutions, because finding optimal solutions for
the N x N generalization of Eight Puzzle is intractable
[Ratner and Warmuth, 1986]. Hence the macros learned
from optimal solutions do not fit into macro tables. How­
ever, if the learner is allowed to ask queries, i.e., ask the
teacher to solve carefully designed problems, it is possi­
ble to learn macro tables in polynomial time irrespective
of how the teacher solves the problems by designing a
problem for each cell in the macro table and storing the
solution as a macro.

620 Learning and Knowledge Acquisition

Table 3: Experimental Results on Eight Puzzle.

5 Exper imenta l Results

Serial Parsing was implemented in the Eight Puzzle do-
main. The program SP (Serial Parser) was trained by
randomly selecting a solvable problem (with uniform dis­
tr ibution), constructing a solution using a macro table,
and giving them to the learner. SP was trained with
stochastic testing for several values of and After
each training session, it was also tested on 100 indepen­
dent random test examples to estimate the error rate.
The results are shown in Table 3. Each row represents
the averages after training the system 10 times with the
same values of and

The first column shows e which is set to be the same
as 6. The second column shows the total number of
examples used unti l after the last macro was learned.
The third column shows the number of examples used
for stochastic testing after the last macro was learned.
The fourth column shows the total number of examples
used. The fifth column shows the total number of macros
learned. The sixth column shows the error rate after
learning was complete, averaged over 100 independent
test problems. The final column shows the CPU msecs
for solving a single problem after learning was complete,
averaged over 100 problems. (The measurements were
taken on a sun SPARCstation 1 with 8MB of real mem­
ory.)

The ful l macro table contains 35 macros. In most cases
all 35 macros were learned even when E and S were set
to high values. The number of examples increased with
decreasing e and 6, as can be expected. The most im­
portant thing to notice is that the system was able to
learn the ful l macro table wi th approximately 30 train­
ing examples. W i th Macro Caching , 91/2 macros and
many more examples would have been required for per­
fect learning!

It is clear from the last column that our program did
not suffer from the ut i l i ty problem. The CPU time was
fairly constant with decreasing and After learning
was complete, SP was able to solve any randomly cho­
sen solvable problem in less than 8 msecs of CPU time.
The two main reasons for the speed of SP are : (a) the
macro-based problem solving is linear in the length of
the solution, and (b) the operators and goals are repre­
sented efficiently and avoid the overhead of the logical
representations.

6 Discussion and Related W o r k
Recently, there have been a few formal frameworks pro­
posed to capture performance improvement learning.
For example, [Cohen, 1989] analyzes a "Solution Path
Caching" mechanism and shows that organizing the so­
lution sequences of the examples in a tree and restricting
the search of the problem solver to this tree improves the
performance of the problem solver wi th a high probabil­
ity. Solution Path Caching is similar to Macro Caching
in that they both can be shown to be polynomial-time
learning algorithms for domains defined by sparse solu­
tion space bias. By defining learning as producing a
polynomial-time problem solver as opposed to simply
running faster than the original problem solver, we have
more stringent conditions on successful learning in our
framework. Hence, Solution Path Caching (like Macro
Caching but unlike Serial Parsing) fails to learn (by our
definition) in domains like Eight Puzzle.

Greiner and Likuski formalize EBL as adding redun­
dant learned rules to a horn-clause knowledge base to
hasten query-processing [Greiner and Likuski, 1989].
This model is extended to recursive domain theories in
[Subramanian and Feldman, 1990]. They conclude that
learning macro-rules in EBL in such domains is not prof­
itable in general unless strong assumptions are made
about the problem distribution. While our result on
Macro Caching is consistent with their conclusion, we
also show that the structure of the problem-space can be
exploited to make learning profitable in other domains.

Serial decomposability is just one example of a
problem-space structure. [Etzioni, 1990] describes an­
other kind of problem-space structure called "non-
recursive explanations" which explains the successful
performance of PRODIGY in a number of domains.
When this structure is present, the size of the explana­
tion of a control heuristic is independent of the solution
length. Somewhat surprisingly, Etzioni also found that
examples were not the key reason for PRODIGY'S suc­
cessful performance [Etzioni, 1990]. Etzioni's program
STATIC matches PRODIGY'S performance by statically
analyzing the problem-space without using any exam­
ples. Thus, even though [Etzioni, 1990] explains why
PRODIGY works, it fails to explain the role of exam­
ples in EBL-type systems in distribution-independent
learning. This paper shows that EBL can gain from the
problem-space structure as well as examples. The exam­
ples play two roles: first, they provide distribution infor­
mation that determines which macros are worth learn­
ing, and second, they help the learner avoid expensive
search for macros.

Serial Parsing is given the order in which subgoals are
achieved. In systems like SOAR that successfully learn
macros using EBL, the goal ordering is implicit ly given
by defining the subgoals such that they include one an­
other [Laird et a/., 1986]. In [Tadepalli, 1991], a method
called Batch Parsing is described which learns the sub-
goal ordering along with macros for the subgoals. The
basic idea here is to learn the macro table column by col­
umn, using multiple examples to disambiguate the fea­
ture that corresponds to a given column. IChalasani et
a/., 1991] describes algorithms that detect serial and to-

Tadepalli 621

tal decomposability by experimentation.
One consequence of our formalization is that it blurs

the distinction between EBL and empirical learning. To
the extent that the output of an EBL method depends on
examples, EBL is also an empirical method. We showed
that EBL systems also have syntactic biases in that their
performance is based on some assumptions about the
structure of the target problem solver. The main dif­
ference between the "empirical" and the "explanation-
based" approaches seems to be that the EBL systems
also have a "semantic bias" in that their hypothesis space
is also constrained by consistency with their domain the­
ory.

7 Conc lus i ons

The main contribution of this paper is an integration of
EBL with formal machine learning. The most important
result of our analysis is an explication of the biases that
allow EBL methods to guarantee performance improve-
ment in the l imi t . Conditions which were thought neces­
sary for EBL to work, e.g., declarative representation of
operators, were found to be not so crucial from our anal­
ysis. On the other hand, the structure of the problem-
space and the distribution of problems were found to be
very important. Our paper also integrated Korf's work
on macro-operator learning with the EBL work.

Our work suggests that the best way to solve the ut i l ­
ity problem is to implement a bias that exploits the do­
main structure. In the future, it is worthwhile to inves­
tigate the kinds of biases that occur in natural domains
and implement them in new learning algorithms. As
in empirical learning, this means that the program is
then not suitable for domains which do not satisfy this
bias. We think that the best way to address this gener­
ality issue is to build a variety of learning systems which
are appropriate for domains with different problem-space
structures.

A c k n o w l e d g m e n t s

I am indebted to Balas Natarjan for his generous help
and advice throughout this work. I thank Prasad Char
lasani, Tom Dietterich, Oren Etzioni, Nick Flann, Srid-
har Mahadevan, Tom Mitchell, Balas Natarajan, and
Armand Prieditis for many fruit ful discussions. I also
thank them, Barney Pell, and the anonymous reviewers
of this paper for their comments. I thank Walter Rudd
for his generous support and encouragement.

References

[Angluin, 1988] D. Angluin. Queries and concept learn­
ing. Machine Learning, 2, 1988.

[Chalasani et ai, 1991] P. Chalasani, 0. Etzioni, and
J. Mount. Detecting and Exploiting Decomposabil­
i ty in Update Graphs. In 2nd Int'l Conference on
Principles of Knowledge Representation and Reason-
ing, KR'91.

[Cohen, 1989] W. Cohen. Solution path caching mecha-
nisms which provably improve performance. Technical
Report DCS-TR-254, Rutgers University, July 1989.

[Dejong and Mooney, 1986] G. Dejong and R. Mooney.
Explanation-based learning: A differentiating view.
Machine Learning, 2, 1986.

[Etzioni, 1990] O. Etzioni. Why prodigy/ebl works. In
Proceedings of AAAI-90, 1990.

[Greiner and Likuski, 1989] R. Greiner, and J. Likuski.
Incorporating Redundant Learned Rules: A Prelim­
inary Formal Analysis of EBL. In Proceedings of
IJCAI-89.

[Haussler, 1990] D. Haussler. Probably Approximately
Correct Learning. In Proceedings of AAAI-90, Boston,
MA, August, 1990.

[Korf, 1985] R. Korf. Macro-operators: A weak method
for learning. Artificial Intelligence, 26, 1985.

[Laird et ai, 1986] J. E. Laird, P.S. Rosenbloom, and
A. Newell. Chunking in Soar: The Anatomy of a Gen­
eral Learning Mechanism. Machine Learning, 1, 1986.

[Minton, 1990] S. Minton. Quantitative results concern­
ing the ut i l i ty of explanation-based learning. Artificial
Intelligence, 42, 1990.

[Mitchell et al, 1986] T. Mitchell, R. Keller, and
S. Kedar-Cabelli. Explanation based generalization:
A unifying view. Machine Learning, 1, 1986.

[Natarajan and Tadepalli, 1988] B. Natarajan and P.
Tadepalli. Two new frameworks for learning. In Pro­
ceedings of Machine Learning Conference, Ann Arbor,
M I , 1988.

[Natarajan, 1989] B. Natarajan. On learning sets and
functions. Machine Learning, 4, 1989.

[Ratner and Warmuth, 1986] D. Ratner, and M. War-
muth. Finding a shortest solution for the N X N exten­
sion of the 15-PUZZLE is intractable. In Proceedings
of AAAI-86, Philadelphia, PA, 1986.

[Subramanian and Feldman, 1990] D. Subramanian and
R. Feldman. The ut i l i ty of ebl in recursive domain
theories. In Proceedings of AAAI-90, Boston, MA,
August 1990.

[Tadepalli, 1990] P. Tadepalli. Tractable learning and
planning in games. Ph.D. Thesis, Department of Com­
puter Science, Rutgers University, 1990.

[Tadepalli, 1991] P. Tadepalli. Learning with In­
scrutable Theories. In Birnbaum, L. and Collins, G.,
(eds.) Machine Learning: Proceedings of International
Machine Learning Workshop, San Mateo, CA: Morgan
kaufmann.

[Valiant, 1984] L. G. Valiant. A theory of the learnable.
Communications of the ACM, 11(27), August 1984.

622 Learning and Knowledge Acquisition

