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A b s t r a c t 

In spite of the popularity of Explanation-Based 
Learning (EBL), its theoretical basis is not 
well-understood. Using a generalization of 
Probably Approximately Correct (PAC) learn­
ing to problem solving domains, this paper for­
malizes two forms of Explanation-Based Learn­
ing of macro-operators and proves the sufficient 
conditions for their success. These two forms of 
EBL, called "Macro Caching" and "Serial Pars­
ing," respectively exhibit two distinct sources 
of power or "bias": the sparseness of the so­
lution space and the decomposability of the 
problem-space. The analysis shows that expo-
nential speedup can be achieved when either 
of these biases is suitable for a domain. Some­
what surprisingly, it also shows that computing 
the preconditions of the macro-operators is not 
necessary to obtain these speedups. The the­
oretical results are confirmed by experiments 
in the domain of Eight Puzzle. Our work sug­
gests that the best way to address the ut i l i ty 
problem in EBL is to implement a bias which 
exploits the problem-space structure of the set 
of domains that one is interested in learning. 

1 I n t r o d u c t i o n 

Explanation-Based Learning (EBL) treats learning as 
improving the efficiency of a problem solver [Dejong and 
Mooney, 1986, Mitchell ei a/., 1986]. The standard EBL 
systems start with complete and correct, if inefficient, 
problem solvers. Learning involves taking a set of exam­
ples, i.e., problem-solution pairs, as input and produc­
ing an efficient problem solver as output. The examples 
provide information about the problem distribution and 
eliminate the need to search for solutions. 

While there are satisfactory formal models of empir­
ical learning based on variants of Probably Approxi­
mately Correct (PAC) learning [Valiant, 1984, Haus-
sler, 1990], EBL systems are not theoretically well-
understood. There are some practical problems in EBL 
which can be directly attributed to the lack of adequate 
theoretical understanding. Firstly, there is no clear defi­
nition of "success" for EBL systems. Because of this rea­

son there hasn't been a rational method to decide when 
to stop learning. Any satisfactory formalization of EBL 
should specify what it means to succeed and should pro­
vide an effective method to recognize success. Secondly, 
it is known that EBL systems do not always lead to per­
formance improvement with learning. After learning a 
large number of rules, they might face what is called 
the "ut i l i ty problem," i.e., the problem of complexity of 
using the learned knowledge [Minton, 1990]. Since the 
ut i l i ty problem can far outweigh the reduction in search 
due to learning, a successful formalization should take 
this into account and characterize the sufficient condi­
tions for a guaranteed performance improvement. 

This paper introduces a variation of the formal frame-
work for performance improvement learning of [Natara-
jan and Tadepalli, 1988]. We call this framework Proba­
bly Approximately Correct (PAC) Problem Solving. Us­
ing this framework, we analyze two forms of macro-
operator learning, namely, Macro Caching and Serial 
Parsing. One of the main results of this paper is an 
explication of the biases exhibited by these two forms of 
EBL. In particular, Macro Caching and Serial Parsing 
implement two distinct biases: (a) the sparse solution 
space bias and (b) the macro table bias. The sparse so-
lution space bias says that most problems in the domain 
can be solved by a small number of operator sequences. 
The macro table bias says that the solution to a prob­
lem can be constructed by serially composing a set of 
macro-operators that solve a series of subproblems. We 
show that when a domain and the hypothesis space of 
the learning system satisfy these biases, it leads to an 
exponential speedup in problem solving. Somewhat sur­
prisingly, the analysis also reveals that it is not necessary 
to compute the preconditions of macro-operators in or­
der to obtain this speedup. The theoretical predictions 
of our analysis are confirmed by an implementation of 
Serial Parsing in the domain of Eight Puzzle. 

The main contribution of this paper is a successful 
integration of EBL work with PAC learning. It also 
extends Korf's work on macro-operator learning [Korf, 
1985] to incremental learning by observation. Our work 
also suggests that the ut i l i ty problem in EBL can be 
solved by building learning programs that implement bi­
ases which exploit the domain structure. 

The rest of the paper is organized as follows: Section 
2 introduces PAC Problem Solving. Sections 3 and 4 
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describe Macro Caching and Serial Parsing, respectively. 
Section 5 presents experimental results in the Eight Puz­
zle domain. Section 6 discusses the related work, and the 
final section summarizes the contributions. 

2 Probab ly Approx ima te l y Correct 
P rob lem Solving 

In order to formally analyze EBL, we need to precisely 
define what it means for EBL, or any other speedup 
learning method, to succeed. The problem definition 
in [Mitchell et a/., 1986] is not sufficient for our pur­
poses, because it does not address the issue of learning 
from multiple examples. This section presents a defi­
nition which draws from the earlier formal frameworks 
presented in [Natarajan and Tadepalli, 1988]. 

The key difference between purely empirical learning 
and EBL is that an EBL system is also provided with a 
"domain theory," which, we assume, is in the form of a 
set of goals and operators. However, this domain theory 
is too inefficient to use directly to solve problems. The 
operationality constraint of EBL [Mitchell et a/., 1986] 
may be viewed as defining a hypothesis space of poten­
tial efficient problem solvers, one of which is the target 
problem solver. In this paper, we view the problem of 
performance improvement as learning an efficient, ap­
proximate problem solver from the domain theory and 
the example solutions of some target problem solver in 
the hypothesis space. 

Define a problem domain D to be the tuple (S,G,0), 
where 

This allows choosing the operator representation which is 
best suited to the domain rather than being constrained 
by the needs of the learning technique. 

Secondly, unlike the standard EBL approaches, our 
goals and operators are not parameterized. At first 
glance, this appears to seriously l imi t the power of EBL. 
Somewhat surprisingly, this is not the case. This is be­
cause, for most domains, the maximum number of pos­
sible instantiations of any parameterized operator (or 
macro-operator) must be bounded by a polynomial fac­
tor so that the cost of instantiating it is not exorbi­
tant. This means that every parameterized operator (or 
macro-operator) can be replaced with at most a poly­
nomial (in the length of the state description) num­
ber of non-parameterized operators. To take a domain 
like chess as an example, every parameterized opera­
tor (e.g., move pawn) can be replaced with n x n non-
parameterized operators (e.g., move pawn from e2 to 
e4), where n is the length of the state description, i.e., 
the number of squares on the chess board. Since, as our 
later definitions show, our formalization ignores all poly­
nomial factors in sample size, learning time, and prob­
lem solving time, our results do not change whether the 
operators are parameterized or not. A parameterized 
model was considered and similar results were proved in 
[Tadepalli, 1990]. For simplicity of exposition, this paper 
considers only non-parameterized operators. 

A problem solver f for D is a deterministic program 
that takes as input a problem, (s, g), and computes its 
solution sequence, if such exists. 

A hypothesis space H is a set of problem solvers. 
An example for a domain D is a pair (($, g), where 
is a solution sequence of (s, g).  
A meta-domain M is any set of domains. 
A learning algorithm for M is an algorithm that takes 

as input the specification of any domain D E M and 
some number of examples of problem solving wi th a tar­
get problem solver in H and computes as output an ap­
proximation for a problem solver for D. 

The learning protocol is as follows: First, the do­
main specification is given to the learner. The teacher 
then selects a problem distribution from a set of al­
lowed distributions and a target problem solver from 
the hypothesis space. The learning algorithm has ac­
cess to a routine called SOLVED-PROBLEM. At each 
call, SOLVED-PROBLEM randomly chooses a problem 
in the input domain, solves it using the target problem 
solver, and returns the example (the {problem solution) 
pair). The learning algorithm must output an approxi­
mate problem solver with a high probability after seeing 
a reasonable number of examples. The problem solver 
need only be approximately correct in the sense that it 
may fail to produce correct solutions with a small prob­
ability. 

De f i n i t i on 1 Formally, an algorithm A is a learning 
algorithm for a meta-domain M in a hypothesis space H 
with respect to a set of problem distributions T, if for any 
domain D M, any choice of a problem distribution P 
in T, and any target problem solver f H, 

1. A takes as input the specification of a domain D  
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Notice that our domain specification is not as "ex­
plicit" as typical EBL programs require them to be. The 
operators need not be described in the STRIPS formal­
ism, and goals need not be logical formulae. In fact, they 
need not be declaratively represented at all, but may be 
described by procedures whose run time is reasonably 
bounded. Thus, our learning framework requires the 
learning techniques to be more independent of the oper­
ator representation than the standard EBL techniques. 

1This can be extended to partial functions by assuming 
that any operator, when applied to a state in which it is not 
applicable, will lead to a "dead state." 



M, an error parameter E, and a confidence param­
eter 6, 

2. A may call SOLVED-PROBLEM, which returns ex-
amples (x, f(x)) forD, where x is chosen with prob­
ability P(x) from S xG. The number of oracle calls 
of A and its running time must be polynomial in the 
maximum problem s i z e a n d the length of its 
input.  

3. For all D M and distributions P T, with prob­
ability at least A outputs a program /' that 
approximates f in the sense that 
where fails on x while f succeeds}. 

4. There is a polynomial R such that, for a maxi­
mum problem size n, , maximum length I and 
maximum step length r of any solution output by 
SOLVED-PROBLEM, and an upper bound t on the 
running times of programs in D on inputs of size 
n, if A outputs f', the run time of f1 is bounded by 

This framework is very similar to that introduced in 
[Natarajan and Tadepalli, 1988]. The main difference is 
the idea of the hypothesis space which is not present in 
[Natarajan and Tadepalli, 1988]. Another difference is 
that it uses a less powerful SOLVED-PROBLEM oracle 
than the USEFUL oracle of [Natarajan and Tadepalli, 
1988] which is capable of generating optimal solutions for 
any problem. We also insist that SOLVED-PROBLEM 
must solve all problems using the same target problem 
solver chosen from the hypothesis space. 

The first two conditions in Definition 1 require that the 
learning algorithm must terminate and output the prob­
lem solver within reasonable computational time limits. 
The third condition requires that with probability at 
least 1 — 8, the learning algorithm should output an ap­
proximate problem solver for the domain. The problem 
solver is approximate in the sense that it is allowed to fail 
to find a solution with a probability less than e while the 
target problem solver succeeds when tested on problems 
chosen according to the same distribution that was used 
in training. Note that the problem solver might find any 
correct solution and not necessarily the same solution 
that the target problem solver would have found. This 
is one reason why this framework is not subsumed by 
that of PAC learning of functions described in [Natara-
jan, 1989]. The final condition is to ensure that the 
problem solver output by the learning algorithm scales 
reasonably well. 

We call this framework Probably Approximately Cor­
rect (PAC) Problem Solving. 

3 Macro Caching 

In this section we describe Macro Caching and charac­
terize the sufficient conditions for it to be a learning al­
gorithm for a meta-domain. 

We define a macro-operator (or a macro) to be any se­
quence of operators. Macro Caching consists of verifying 
that an operator sequence solves the problem by execut­
ing it (the "explanation" step of EBL) and storing the 
entire operator sequence from the start to the goal state 
in the example as a single macro. Unlike the standard 

Input domain specification D W, error parameter c, 
confidence parameter 

Test-counter := 0 
1 := 1 
While Test-counter __ do 

Let SOLVED-PROBLEM() return 
(problem (s,y), solution B) 

If (s, g) is solvable by the current problem solver 
Then 

Increment the Test-counter by 1. 
Else Begin 

Reset the Test-counter to 0. 
Update the problem solver by learning 

from 
i := i + 1 
End; 

End While; 
Output current problem solver; 

Table 1: Stochastic testing scheme. 

implementations of EBL, our algorithms do not rely on 
precondition computation. Thus, a macro may only be 
viewed as a potential solution sequence, which must be 
tested at the problem solving time. The problem solver 
works by applying each macro to the current state and 
testing whether it succeeds. If some macro succeeds in 
achieving the goal, it returns the macro; otherwise it 
fails. 

The idea is to pick enough examples so that after ex­
tracting the macros from these examples, one is reason­
ably certain that the learned problem solver is probably 
approximately correct. One difficulty remains, however. 
The number of examples necessary for successful learn­
ing depends on the the number of necessary macros, and 
we do not a priori know this number. Hence, a differ­
ent approach called "stochastic testing," used in [An-
gluin, 1988], is adapted to our problem. The idea is to 
stochastically determine whether learning is complete by 
testing the program on randomly selected examples. In 
this "on-line" model, the program is tested as it is be­
ing trained, and the learning is terminated as soon as it 
succeeds on enough number of consecutive random ex­
amples. The testing scheme, described in Table 1, has 
a slightly better bound on the number of test examples 
than that of [Angluin, 1988]. 

D e f i n i t i o n 2 A problem solver f for a domain D and a 
problem distribution P satisfies a sparse solution space 
bias if there is a set of operator sequences mf such that, 
on any problem  
and is bounded by a polynomial Q in the problem 
size n. 

Intuitively, the sparse solution space bias implies that 
there is a small number of operator sequences out of 
which solutions can be selected, so that the simple strat­
egy of remembering all of them and trying them one 
by one would work well. The small number of op-
erator sequences might be due to (a) the small num-
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ber of problems that have a non-zero probability in the 
given problem-distribution (sparseness of problem dis­
tribution) or (b) the large number of states that satisfy 
the goal (high density of goal states), or a combination 
of both. To give an example of the second case, if a goal 
in the blocks world is to achieve a state in which there 
is a clear block on the table, it can be achieved by one 
of three macros: a null macro, a macro which puts the 
block being held in hand on table, and another macro 
which picks up a block on the top of a tower and places 
it on the table. This works for an exponential number of 
(in fact, all) init ial states because an exponential number 
of states also satisfy the goal. 

T h e o r e m If H is defined by the set of problem solvers 
that satisfy the sparse solution space bias for all domains 
D in M and all distributions P in T, then stochastic 
testing with Macro Caching is a learning algorithm for 
M in H with respect to T. 

P r o o f (sketch): Notice that, at any stage i, the learner 
has to succeed on (2 ln( i -f 1) + In randomly chosen 
test problems for the learner to terminate. At any stage 
i, the probability that the learner succeeds on all its 
tests when its macros are not, in fact, adequate to solve 
a randomly chosen problem with a probability greater 
than i s less t h a n w h i c h turns 
out to be less t h a r . So, i f the program terminates 
at some stage j, tne proDability that we have a problem 
solver whose probability of failure is greater than c is less 
than or equal to di  

By the sparse solution space bias, the number of 
macros necessary to solve the domain is bounded by 
a polynomial Q{n,t). Since the lack of each such 
macro can cause at most one failure in our algorithm, 
the number of failures i satisfies . Hence, 
the total number of iterations of the while loop, and 
the total number of examples needed is bounded by 

which is a polynomial. It 
can be seen that the program runs in polynomial t ime.* 

Macro Caching's main l imitat ion is due to its assump­
tion that a small number of macros can solve most prob­
lems in the problem-space. For example, it does not 
work in domains like Rubik's Cube and Eight Puzzle, 
where each macro can solve at most one problem, and 
the problem distribution is not sparse. 

4 Serial Parsing 

This section describes how EBL can succeed for arbitrary 
problem distributions by exploiting a problem-space 
structure called serial decomposability [Korf, 1985]. 

Here we make the assumption that states are 
representable as vectors of discrete valued features, 
(v1,..., v n ) , where the maximum number of values a fea­
ture can take is bounded by a polynomial in n. 

In Rubik's Cube, the variables are cubie names, and 
their values are cubie positions. In Eight Puzzle, the 
variables are tiles, and their values are tile positions. 
Note that the above assumption makes it difficult to rep­
resent domains with relations, e.g., the blocks world. 

A domain is serially decomposable for a given total or­
dering on the set of features if the effect of any operator 
in the domain on a feature value is a function of the val­
ues of only that feature and all the features that precede 
it [Korf, 1985]. 

Rubik's Cube is serially decomposable for any ordering 
of features (also called "totally decomposable,,). In Eight 
Puzzle, the effect of an operator on any tile depends only 
on the positions of that tile and the blank in the original 
state. Hence Eight Puzzle is serially decomposable for 
any ordering that orders the blank as the first feature. 

Note that serial decomposability is a property of the 
domain as well as its representation. If Eight Puzzle is 
represented with positions as variables and tiles as their 
values, then it is not serially decomposable. 

We assume that there is a single, fixed goal state de-
scribed by (g 1 , . . . , g n ) . 2 

Korf defines a macro table as a set of macros Mj,i 
such that if Mj,i is used in a solvable state s where the 
features 1 thru i — 1 have their goal values, g1,.. .,gi-1 
and the feature i has a value j, then the resulting state 
is guaranteed to have goal values g1, . . . , gi, for features 
1 thru i. 

Korf showed that if a domain is serially decomposable 
and every state reachable from a solvable state is also 
solvable, then it has a macro table [Korf, 1985]. If a 
domain is serially decomposable for the feature ordering 
( l , . . . , n ) , then any move sequence that takes a state 

can be 
used as a macro Mj,i-, since the values of features 1 thru 
i in the goal state only depend on their values in the 
init ial state, and not on the values of other features. 

If a full macro table with appropriately ordered fea­
tures is given, then it can be used to construct solutions 
from any init ial state without any backtracking search 
[Korf, 1985]. 

De f i n i t i on 4 A problem solver f satisfies a macro table 
bias for a domain D in M if there is a feature ordering 
O = ( l , . . . , n ) such that, (a) D is serially decompos-
able for O, and (b) f constructs all its solutions using a 
macro table M as follows: for each feature i from 1 to 
n, macros Mj,i are successively applied, where j is the 
value of feature i in the state before applying the macro. 

Since each application of macro Mj,i guarantees that 
the features 1 thru i wil l have their goal values, any 
solvable problem is solved in n macro applications by 
such problem solver. Kor fs learning program builds a 
macro table by exhaustively searching for a correct en­
try for each cell in the table [Korf, 1985]. Thus, Kor fs 
work might be characterized as "learning by doing." Our 
method, called Serial Parsing, extends his work to incre­
mental learning of macro tables by observation. 

Instead of Macro Caching, the stochastic testing algo-
r i thm now calls Serial Parsing to extract the macros in 
a solution sequence. For a goal (g1 , . . .,gn), Serial Pars­
ing proceeds from the beginning, varying i from 1 thru 
n, applying the operators in the solution to the cur­
rent state ("explanation" step of EBL), and collecting 
each operator subsequence that occurs between a state 

2This can be generalized with parameterization. 
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, and and storing it 
as the macro Mj,i. If the domain is serially decompos­
able for the feature ordering 1 . . . n , this is guaranteed 
to yield correct macros. Note that the structure of the 
macro table eliminates the need to compute the precon­
ditions for macros. 

For example, in Eight Puzzle, let r, /, u, and d repre-
sent the primitive operators of moving a tile right, left, 
up, and down respectively. Macros are represented as 
strings made up of these letters. For notational ease, 
features (tiles) are labeled from 0 to 8, 0 standing for 
the blank and i for tile i. A macro . represents the 
sequence of moves needed to get the tile to the goal 
position from its current position j, while preserving the 
positions of all previous tiles including the blank. The 
positions are numbered by the tile numbers in the goal 
state, which is assumed to be fixed. The goal state and 
an example start state along with a solution are shown 
in Figure 1. 

Given the problem and the solution in Figure 1, 
Serial Parser breaks down the solution as  

amples the system constructs a table of macros. The 
problem solver works as described in Definition 4. It 
fails if the macro table is missing some necessary macro 
at any point. 

The result of this section can now be stated and 
proved. Unlike Theorem 3, the next theorem is 
distribution-independent. 

T h e o r e m 5 If (a) H is the set of all problem solvers 
defined by the macro table bias for domains in M, 

6 1 3 1 2 3 
8 4 7 8 4 
2 5 7 6 5 

Solution: drrdludruuldrdluuldrurdllurdurdl 

Figure 1: A training example in Eight Puzzle 

(b) the number of distinct feature values in D is bounded 
by a polynomial function of maximum problem size, and 
(c) the feature ordering of the target problem solver is 
input to the learner, 
then stochastic testing with Serial Parsing is a learning 
algorithm for M in H. 

P r o o f (sketch): We already saw that, if at some stage 
i, stochastic testing terminates, then, with a probability 
at least it outputs a problem solver which has a 
probability of success of at least We wil l now see 
that the number of examples and the running time of 
the algorithms are polynomially bounded. 

Conditions (a) and (b) imply the existence of a macro 
table, whose size (number of macros in the table) is 
bounded by a polynomial in the problem-size. Condi­
tions (a) and (c) guarantee that the Serial Parser would 
learn at least one missing macro from the example when­
ever the macro-based problem solver fails to solve a prob­
lem. Hence, by arguments similar to those of Theorem 
3, the examples are bounded by  
which is a polynomial. It also follows that the learner 
runs in polynomial time. Since the macro-based problem 
solver never needs to backtrack, it runs in time polyno­
mial in all the relevant parameters.• 

The above theorem shows that Serial Parsing exploits 
serial decomposability, a problem-space structure which 
allows it to compress the potentially exponential number 
of solutions into a polynomial size macro table. 

The macro table bias requires that the teacher's solu­
tions (provided by the SOLVED-PROBLEM) are com­
posed from a macro table. This assumption is needed in 
the proof because Serial Parser can only learn a macro if 
the solution contains that macro. This assumption may 
not be true in general because, every problem might have 
several solutions, some of which may not be obtained by 
composing macros from a macro table. In fact, this as­
sumption is most likely violated if the teacher gives only 
optimal solutions, because finding optimal solutions for 
the N x N generalization of Eight Puzzle is intractable 
[Ratner and Warmuth, 1986]. Hence the macros learned 
from optimal solutions do not fit into macro tables. How­
ever, if the learner is allowed to ask queries, i.e., ask the 
teacher to solve carefully designed problems, it is possi­
ble to learn macro tables in polynomial time irrespective 
of how the teacher solves the problems by designing a 
problem for each cell in the macro table and storing the 
solution as a macro. 
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Table 3: Experimental Results on Eight Puzzle. 

5 Exper imenta l Results 

Serial Parsing was implemented in the Eight Puzzle do-
main. The program SP (Serial Parser) was trained by 
randomly selecting a solvable problem (with uniform dis­
tr ibution), constructing a solution using a macro table, 
and giving them to the learner. SP was trained with 
stochastic testing for several values of and After 
each training session, it was also tested on 100 indepen­
dent random test examples to estimate the error rate. 
The results are shown in Table 3. Each row represents 
the averages after training the system 10 times with the 
same values of and  

The first column shows e which is set to be the same 
as 6. The second column shows the total number of 
examples used unti l after the last macro was learned. 
The third column shows the number of examples used 
for stochastic testing after the last macro was learned. 
The fourth column shows the total number of examples 
used. The fifth column shows the total number of macros 
learned. The sixth column shows the error rate after 
learning was complete, averaged over 100 independent 
test problems. The final column shows the CPU msecs 
for solving a single problem after learning was complete, 
averaged over 100 problems. (The measurements were 
taken on a sun SPARCstation 1 with 8MB of real mem­
ory.) 

The ful l macro table contains 35 macros. In most cases 
all 35 macros were learned even when E and S were set 
to high values. The number of examples increased with 
decreasing e and 6, as can be expected. The most im­
portant thing to notice is that the system was able to 
learn the ful l macro table wi th approximately 30 train­
ing examples. W i th Macro Caching , 91/2 macros and 
many more examples would have been required for per­
fect learning! 

It is clear from the last column that our program did 
not suffer from the ut i l i ty problem. The CPU time was 
fairly constant with decreasing and After learning 
was complete, SP was able to solve any randomly cho­
sen solvable problem in less than 8 msecs of CPU time. 
The two main reasons for the speed of SP are : (a) the 
macro-based problem solving is linear in the length of 
the solution, and (b) the operators and goals are repre­
sented efficiently and avoid the overhead of the logical 
representations. 

6 Discussion and Related W o r k 
Recently, there have been a few formal frameworks pro­
posed to capture performance improvement learning. 
For example, [Cohen, 1989] analyzes a "Solution Path 
Caching" mechanism and shows that organizing the so­
lution sequences of the examples in a tree and restricting 
the search of the problem solver to this tree improves the 
performance of the problem solver wi th a high probabil­
ity. Solution Path Caching is similar to Macro Caching 
in that they both can be shown to be polynomial-time 
learning algorithms for domains defined by sparse solu­
tion space bias. By defining learning as producing a 
polynomial-time problem solver as opposed to simply 
running faster than the original problem solver, we have 
more stringent conditions on successful learning in our 
framework. Hence, Solution Path Caching (like Macro 
Caching but unlike Serial Parsing) fails to learn (by our 
definition) in domains like Eight Puzzle. 

Greiner and Likuski formalize EBL as adding redun­
dant learned rules to a horn-clause knowledge base to 
hasten query-processing [Greiner and Likuski, 1989]. 
This model is extended to recursive domain theories in 
[Subramanian and Feldman, 1990]. They conclude that 
learning macro-rules in EBL in such domains is not prof­
itable in general unless strong assumptions are made 
about the problem distribution. While our result on 
Macro Caching is consistent with their conclusion, we 
also show that the structure of the problem-space can be 
exploited to make learning profitable in other domains. 

Serial decomposability is just one example of a 
problem-space structure. [Etzioni, 1990] describes an­
other kind of problem-space structure called "non-
recursive explanations" which explains the successful 
performance of PRODIGY in a number of domains. 
When this structure is present, the size of the explana­
tion of a control heuristic is independent of the solution 
length. Somewhat surprisingly, Etzioni also found that 
examples were not the key reason for PRODIGY'S suc­
cessful performance [Etzioni, 1990]. Etzioni's program 
STATIC matches PRODIGY'S performance by statically 
analyzing the problem-space without using any exam­
ples. Thus, even though [Etzioni, 1990] explains why 
PRODIGY works, it fails to explain the role of exam­
ples in EBL-type systems in distribution-independent 
learning. This paper shows that EBL can gain from the 
problem-space structure as well as examples. The exam­
ples play two roles: first, they provide distribution infor­
mation that determines which macros are worth learn­
ing, and second, they help the learner avoid expensive 
search for macros. 

Serial Parsing is given the order in which subgoals are 
achieved. In systems like SOAR that successfully learn 
macros using EBL, the goal ordering is implicit ly given 
by defining the subgoals such that they include one an­
other [Laird et a/., 1986]. In [Tadepalli, 1991], a method 
called Batch Parsing is described which learns the sub-
goal ordering along with macros for the subgoals. The 
basic idea here is to learn the macro table column by col­
umn, using multiple examples to disambiguate the fea­
ture that corresponds to a given column. IChalasani et 
a/., 1991] describes algorithms that detect serial and to-
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tal decomposability by experimentation. 
One consequence of our formalization is that it blurs 

the distinction between EBL and empirical learning. To 
the extent that the output of an EBL method depends on 
examples, EBL is also an empirical method. We showed 
that EBL systems also have syntactic biases in that their 
performance is based on some assumptions about the 
structure of the target problem solver. The main dif­
ference between the "empirical" and the "explanation-
based" approaches seems to be that the EBL systems 
also have a "semantic bias" in that their hypothesis space 
is also constrained by consistency with their domain the­
ory. 

7 Conc lus i ons 

The main contribution of this paper is an integration of 
EBL with formal machine learning. The most important 
result of our analysis is an explication of the biases that 
allow EBL methods to guarantee performance improve-
ment in the l imi t . Conditions which were thought neces­
sary for EBL to work, e.g., declarative representation of 
operators, were found to be not so crucial from our anal­
ysis. On the other hand, the structure of the problem-
space and the distribution of problems were found to be 
very important. Our paper also integrated Korf's work 
on macro-operator learning with the EBL work. 

Our work suggests that the best way to solve the ut i l ­
ity problem is to implement a bias that exploits the do­
main structure. In the future, it is worthwhile to inves­
tigate the kinds of biases that occur in natural domains 
and implement them in new learning algorithms. As 
in empirical learning, this means that the program is 
then not suitable for domains which do not satisfy this 
bias. We think that the best way to address this gener­
ality issue is to build a variety of learning systems which 
are appropriate for domains with different problem-space 
structures. 
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