
Effects o f Para l le l i sm on B lackboard Sys tem Schedu l ing

K e i t h Decker , A l a n Garvey, M a r t y H u m p h r e y and V i c t o r Lesser *
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

A b s t r a c t

This paper investigates the effects of paral­
lelism on blackboard system scheduling. A par­
allel blackboard system is described that allows
mult ip le knowledge source instantiations to ex­
ecute in parallel using a shared-memory black­
board approach. New classes of control knowl­
edge are defined that use information about the
relationships between system goals to schedule
tasks — this control knowledge is implemented
in the D V M T application on a Sequent mul­
tiprocessor using BBl -s ty le control heuristics.
The usefulness of the heuristics is examined by
comparing the effectiveness of problem-solving
w i t h and wi thout the heuristics (as a group and
indiv idual ly) . Problem solving wi th the new
control knowledge results in increased processor
ut i l izat ion and decreased tota l execution time.

1 I n t r o d u c t i o n

From the beginning the blackboard paradigm has been
developed w i th parallelism in mind [Lesser et al., 1975].
The idea of independent Knowledge Sources (KSs) that
communicate only through a shared blackboard is a
model that inherently encourages parallel execution.
Many researchers have looked at making blackboard
systems execute in parallel [Corki l l , 1989, Fennell and
Lesser, 1977, Rice et a/., 1989].

In part icular the execution of mult iple Knowledge
Source Instant iat ions (KSI) in parallel (known as knowl­
edge source parallelism) is discussed in several places
in the l i terature. The Advanced Architectures Project
at Stanford University [Rice, 1989, Rice et al., 1989]
has investigated blackboard parallelism at several lev­
els of granularity. Their Cage architecture takes the ex­
isting A G E blackboard architecture and extends i t to
execute concurrently at several granularities, including
knowledge source parallelism [Nii et al., 1989]. Another
project tha t investigated knowledge source parallelism is

*The authors are listed in alphabetical order. This work
was partly supported by the Office of Naval Research under
a University Research Initiative grant number N00014-86-K-
0764, NSF contract CDA 8922572, ONR contract N00014-
89-J-1877, and a gift from Texas Instruments.

the work by [Fennell and Lesser, 1977] to study the ef­
fects of parallelism on the Hearsay II speech understand­
ing system [Erman et al., 1980]. One major contr ibut ion
of that project is a detailed study of blackboard locking
mechanisms. An alternative method for enforcing data
consistency is the use of transactions as described by
[Ensor and Gabbe, 1985].

One distinguishing feature of these studies of paral­
lelism in blackboard systems is that they used simulated
parallelism. Concurrently executing processes and in­
terprocess communication were simulated using complex
models of parallel environments. This was the case pr i ­
mari ly because of the pr imit ive nature of existing parallel
hardware and the lack of sophisticated software develop­
ment environments. Only recently have hardware and
software capabilities come together to allow the actual
implementation of parallel blackboard systems [Bisiani
and Forin, 1989]. Useful parallel programming environ­
ments now exist, including implementations of Lisp. The
work described in this paper was done on a Sequent mul­
tiprocessor using Top Level Common Lisp1 (a version of
Lisp that supports concurrent processing) and a special
version of GBB 2.02 that was modif ied to allow parallel
read access to the blackboard and to allow locking only
part of the blackboard on wri te accesses.

Along wi th our actual use of parallel hardware, a ma­
jor difference between our work and previous research is
our focus on how control knowledge needs to change in a
parallel environment. Previous work was more interested
in investigating specific parallel models, while we are in­
terested in what new control knowledge is useful. As we
show, it is not enough to just add locks to a sequential
blackboard system and execute the top n KSIs as rated
by sequential control heuristics on n parallel processors.
New heuristics need to be added that are sensitive to
the requirements for effective parallel execution. Ear­
lier work on Partial Global Planning[Durfee and Lesser,
1987] showed that constructing schedules using a high-
level \ iew of the solution space (derived by distr ibuted
agents from goal relationships) improved the ut i l izat ion
of distributed processors. This leads to the in tu i t ion that
using goal relationships in scheduling may be helpful in

1Top Level Common Lisp is a trademark of Top Level,
Inc.

2GBB 2.0 is a trademark of Blackboard Technologies, Inc.

Decker, et al. 15

a single agent, parallel-processing situation.
The next section discusses the details of our parallel

architecture. Section 2.3 describes the new kinds of con­
t ro l knowledge that are useful in a parallel environment
and identifies the kinds of data that are required to im­
plement those new kinds of knowledge. Section 3 briefly
introduces the Distributed Vehicle Monitoring Testbed,
the application that motivates this work, and describes
the new heuristics that were added for parallelism. Sec­
tion 3.1 presents and discusses the results of the exper­
iments we performed on the system, including the per­
formance of the implementation and the effect of the
added control heuristics. The final section summarizes
the work and describes future research directions.

2 A rch i t ec tu re
The architecture is a straightforward extension to
the BB1-stvie uniprocessor blackboard architecture de­
scribed in [Decker et al., 1989, Decker et al., 1990]. In
that architecture the processor takes the currently top
rated KSI from the executable agenda. It executes the
KSI action, which creates and modifies blackboard hy­
potheses. These hypotheses in turn stimulate goals,
which trigger new KSs for execution. A scheduler or­
ders the executable agenda and the loop begins again.
This low-level control loop is highly parameterized; the
parameters are set by control knowledge sources.

In our parallel system, several processors execute the
low-level control loop concurrently. AD of the hypothe­
ses, goals, agendas, KSs, and control parameters are
posted on shared global domain and control blackboards
that are accessible to each processor. This basic architec­
ture is very similar to the Cage simulations with KS-level
parallelism and asynchronous control [Rice et a/., 1989].

Besides executing the low-level control loop in paral­
lel, three major modifications to the existing system are
made to allow effective use of parallelism. Locking mech­
anisms are provided to prevent conflicting blackboard
accesses; the control knowledge sources are run sequen­
tially, but the actions of many control KSs are broken up
and run in parallel; and new classes of control knowledge
are identified and implemented. The next three sections
describe each of these modifications in more detail.

2 .1 B l a c k b o a r d L o c k i n g
Various schemes for blackboard locking appear in the l i t­
erature. The most detailed is that described by Fennell
and Lesser, who describe a method for locking black­
boards that assures data integrity [Fennell and Lesser,
1977].

We have found that a much simpler locking mechanism
is sufficient for our system. The only locking mechanism
we provide is atomic read/write locks for blackboard
writes. This mechanism is invoked when a blackboard
write is done. It executes a read to see if the object to be
wri t ten already exists. If it does, then the new object is
merged wi th the existing object, otherwise the new ob­
ject is wr i t ten. Knowledge sources are designed so that
they create hypotheses one at a time. Since only one
lock is ever acquired at a time, deadlock is impossible.
The operating system scheduler prevents starvation.

16 Architectures and Languages

This simple mechanism is sufficient because the system
can build several, possibly conflicting, part ial solutions
to a problem [Lesser and Corki l l , 1981]. It does not re­
quire exactly one consistent working solution, so it does
not return to and delete objects that cause inconsisten­
cies. Because hypotheses are never deleted, the structure
of the hypotheses on the blackboard never changes; only
the beliefs in existing hypotheses may change. Changes
in belief can be recognized and propagated by a separate
knowledge source. If new hypotheses are created that
would produce different results, then their creation wil l
trigger new knowledge source instantiations that may be
scheduled. We believe that other systems that share this
characteristic wil l f ind that simple locking mechanisms
are adequate. For example, the AGORA system uses
"write-once" memory management where a blackboard
element cannot be updated in place, but rather a copy
is made [Bisiani and Forin, 1989].

Several types of locks were used in the implementa­
tion. Each blackboard level (space) is divided into a set
of buckets. A blackboard data unit is stored in a small
number of buckets based on its characteristics. Each
bucket is given its own lock. Thus two KSIs can always
write to different blackboard levels in parallel but one
might block if they both write to the same bucket. Locks
also control access to the KSI agenda and other inter­
nal data structures associated wi th the low-level control
loop.

2.2 E x e c u t i n g t h e C o n t r o l K n o w l e d g e Sources

Control knowledge sources change parameters that allow
control over mechanisms such as fi ltering hypotheses or
goals, merging hypotheses or goals, mapping from hy­
potheses to goals or goals to KSs, and the agenda rating
mechanism. Control knowledge triggers on events on
both the domain and control blackboards. In our cur­
rent system control knowledge sources are run sequen­
tially (meaning only one control KSI is executing at a
time), however the actions of many of the control KSIs
divide up the work and execute it in parallel on several
processors. In the future we would like to investigate
executing the control knowledge in parallel as well.

2.3 N e w Classes o f C o n t r o l K n o w l e d g e f o r
Pa ra l l e l i sm

Normal control knowledge (as used in a sequential en­
vironment) rates KSIs based on knowledge such as the
belief of their input data, the potential belief in the out­
put data, the significance of the output data given the
current system goals, and their efficiency or reliability.
In addition to these kinds of control knowledge there are
several general classes of control knowledge that can be
added to more effectively execute KSs in parallel. These
general classes of control knowledge include:

Access Co l l i s ions : To avoid excessive conflicts for
blackboard access, do not schedule two KSIs to work
in the same part of the search space at the same
time. For example, if KSI A and KSI B both write
to a particular level of the blackboard, then they
should not be scheduled for execution at the same

t ime, because one of them wi l l have to wait for the
other to relinquish blackboard locks.

Task O r d e r i n g : Tasks may have absolute, unchange­
able orderings (meaning they cannot be scheduled
to execute in parallel at al l), or there may be in­
terdependence among tasks that lead to ordering
preferences (one task provides data that wi l l signif­
icantly affect the speed or quality of the result of
another task.) For example, Task A may produce a
result that makes the performance of Task B much
faster. If so, Task A should be scheduled before
Task B.

Task B o t t l e n e c k i n g : Performing certain tasks earlier
in problem-solving may reduce future sequential
bottlenecks. In general it is preferable to execute
tasks that w i l l allow more parallel options later.
For example, there may be an absolute task order­
ing that requires that Task A be performed before
Tasks B, C, and D, which can then be performed
in parallel. Task A should be performed as soon
as possible, because it wi l l allow more parallelism
later.

Task I n v a l i d a t i o n : This is based on the "Competit ion
Principle" in Hearsay-II [Hayes-Roth and Lesser,
1977]: the results of some tasks may completely re­
move the need to execute other tasks. Thus, when
currently executing tasks are taken into account (as­
sumed to complete), some pending tasks wil l be ob­
viated. For example, Task A and Task B may per­
form the same operation, and produce the same re­
sult, in different ways. If Task A has been scheduled,
then Task B should not be immediately scheduled,
because it w i l l be obviated if Task A completes suc­
cessfully.

To take these general classes of control knowledge into
account the system requires particular kinds of knowl­
edge about the domain KSIs. In particular, avoid­
ing access collisions requires knowledge about the in­
pu t /ou tpu t characteristics of a KSI (i.e., what parts of
the blackboard it accesses and modifies.) Task ordering
requires knowledge about task interactions. Often this
knowledge is best captured through relationships among
the goals of part icular tasks. Avoiding task bottleneck­
ing requires knowledge about the probable outcomes of
tasks, again often expressed through goal relationships.
Task invalidation uses knowledge about supergoal and
subgoal relationships to understand the effect of KSI ex­
ecutions on other KSIs' goals.

There are four general categories of goal relationships
that can be used (via KS I rat ing heuristic functions) to
schedule domain KSs [Decker and Lesser, 1990]:

D o m a i n R e l a t i o n s : This set of relations is generic in
that they apply to mult iple domains and domain
dependent in that they can be evaluated only wi th
respect to a part icular domain, e.g., inhibits, can­
cels, constrains, predicts, causes, enables, and su-
pergoal/subgoal (f rom which many useful graph re­
lations can be computed, as shown below). These
relations provide task ordering constraints, repre-

Figure 1: An abstracted goal relation graph

sented by temporal relations on the goals (see be-
low).

G r a p h R e l a t i o n s : Some generic goal relations can be
derived from the supergoal/subgoal graphical struc­
ture of goals and subgoals, e.g., overlaps, necessary,
sufficient, extends, subsumes, competes. The com­
petes relation is used to produce task invalidation
constraints. These relations also produce task bot­
tlenecking in format ion.

T e m p o r a l R e l a t i o n s : From Allen [Allen, 1984], these
include before, equal, meets, overlaps, dur ing,
starts, finishes, and their inverses. They can arise
from domain relations, or depend on the scheduled
t iming of goals — their start and finish times, esti­
mates of these, and real and estimated durations.

N o n - c o m p u t a t i o n a l R e s o u r c e C o n s t r a i n t s : A
final type of relation is the use of physical, non-
computational resources. Two tasks that both use
a single exclusive resource cannot execute in paral­
lel. For example, if two tasks require that a single
sensor be aimed or tuned differently, they cannot
execute in parallel.

For example, examine the goal structure in Figure 1
(abstracted f rom an actual domain goal relation graph).
Assume that task TaskF is currently executing on a pro-
cessor. The arcs in the graph represent the goal/subgoal
domain relation on the goals3. From only this one do­
main relation, we can tell for example that F and G are
necessary for D, D is necessary for B and C, and B is
sufficient for A. F and G extend4 one another, as do D
and H. Goal B competes w i th C

Thus a task invalidation heuristic might avoid schedul­
ing a task that achieves goal B in parallel w i th one that
achieves goal C. In the given si tuat ion (w i th TaskF ex­
ecuting, and G and H available for processing), a task
bottleneck heuristic might prefer to schedule a task to
satisfy G, which wi l l allow work on goals D and H in
the future5 , over a task to satisfy H, which would allow

3 While it looks similar, this is different from a typical data
dependency diagram both in granularity and in the fact that
it would be constructed dynamically during problem solving.
At the present time we constructed one by hand to develop
possible parallel heuristics for our domain.

4 Goal 1 extends goal 2 if there exists a supergoal, goal 3,
such that goals 1 and 2 are in the same AND conjunct.

5Goal D would become open, since its necessary subgoals
F and G would be completed; goal H already was open.

Decker, et al. 17

only work on goal G in the future. Of course, tasks may
accomplish multiple goals, a fact that is simplified in this
example. A task ordering heuristic would not find any
temporal relations in this example; they are induced by
domain relations where goals constrain or predict others.

3 E x p e r i m e n t s

Experiments were run on the Distributed Vehicle Mon­
itoring Testbed (DVMT)[Lesser and Corkil l , 1983], a
knowledge-based signal interpretation system. The in­
put to the D V M T is acoustic signals generated by mov­
ing vehicles and detected by acoustic sensors. The goal
of the D V M T is to identify, locate and track patterns of
vehicles moving through a two-dimensional space. The
four main blackboard levels are: signal (for processing of
signal data), group (for collections of signals attr ibuted
to a single vehicle), vehicle (for collections of groups that
correspond to a single vehicle), and pattern (for collec­
tions of vehicles acting in a coordinated manner).

For our purposes, D V M T domain KSs can be divided
into two main classes: synthesis and track extension.
Synthesis KSs combine one or more related hypotheses
at one level of the blackboard into a new hypothesis at
the next higher level. Track extension KSs output track
hypotheses, where a track is a list of sequential pieces
of time-location data that identify the movements of a
vehicle. The control KSs of the system can also be di­
vided into two main classes: those that implement a goal-
directed strategy and those that extend that strategy for
parallel execution.

For these experiments, the D V M T processes the input
data in three distinct phases. In the first phase (find ini­
tial vehicles), an in i t ia l set of control KSs execute, con­
figuring the D V M T to perform a thorough analysis of all
data at t ime 1. The purpose of this phase is to roughly
identify the type and position of all vehicles that wil l be
tracked in the experiment6. The data file we used con­
tained 12 vehicles, and we defined four possible vehicle
types wi th some signals and groups of signals shared by
multiple vehicles. After these control KSs execute, and
the domain KSs process all t ime 1 data, more control
KSs are triggered and execute, configuring the D V M T
for the second phase of processing. In the second phase
(approximate short tracks), the D V M T performs quick,
approximate processing to determine the likely identity
and patterns of the vehicles being tracked. This phase
ends when control KSs recognize that the D V M T has es­
tablished a pattern (or explanation) for all the vehicles,
though the patterns may be uncertain. For these exper­
iments, we defined a short track to contain at least four
time-location data points-thus, this phase ended after
processing the time 4 data. Again, control KSs assign
new values to system parameters, and the third phase
(perform pattern-directed processing) commences. The
D V M T devotes most of its processing in this phase to
tracking vehicles involved in primary patterns, while per­
forming cursory processing on vehicles involved in sec-

6 We have restricted these experiments such that every ve­
hicle appears in the f irst set of acoustic samples, in order to
simplify processing.

18 Architectures and Languages

ondary patterns. This phase continues unt i l all data in
the input file has been processed. In these experiments,
we included data unt i l t ime 9.

3.1 E x a m i n i n g t h e Bas ic P a r a l l e l A r c h i t e c t u r e

The first set of experiments involved collecting statis­
tics on the basic parallel architecture without any added
heuristics to take advantage of the parallelism. These
experiments demonstrate that the locking system works,
that the basic architecture provides for a good utiliza­
t ion of processors, and that the domain and our problem-
solving method provide inherent parallelism.

Data for runs of the environment on 1 processor wi th
no special parallel heuristics are summarized in Table 1.
This table shows the time the single processor uses in
each phase (and between phases) and the percent of the
total time spent in each phase (and between phases).
This data is used in comparisons to the other experi­
ments described later. In this and all later experiments,
data was collected wi th the locking and metering mecha­
nisms enabled. The locking mechanism itself had almost
no overhead, and as much of the metering as possible is
done on a separate processor, completely outside of the
processors being used for the experiment. The data col­
lected by the metering processor did not involve locking
any of the target processors. A l l of the experiments were
conducted on a 16 processor Sequent Symmetry, and all
of the experiments used less than 16 available processors
(so no tasks were swapped off a processor).

Table 2 shows the speedup resulting f rom 5 processors
and no parallel heuristics. Phase 1 parallelism arises
mostly from being able to process all the data from the
sensors in parallel. The tasks in phases 1 and 2 all must
be executed, which also causes a high degree of inherent
parallelism.

Centralizing the meta-controller that is implemented
by control KSs proved not to be a bottleneck in pro-
cessing; when not changing phases the meta-controller
is almost dormant (simply checking for the end of a
phase), and most of the work involved in changing phases
(setting up new hypothesis and goal filters and running
the hypotheses through them) is done in parallel. By
running the low-level control loop (hyp to goal to KS
mapping) in parallel we avoided the control bottleneck
observed by Rice et al. in their first Cage experiment,
where a set of KSs was executed synchronously by the
controller [Rice et a/., 1989]. The only t ime that the
system ever has to synchronize is at the beginning of a
phase change, as the agenda from the last phase is empty
and that of the next phase is sti l l being generated. We
have already begun work to eliminate this bottleneck as
well, using a channelized architecture that gives us the
ability to have different pieces of data at different phases
of processing simultaneously.

3.2 E x a m i n i n g t h e P a r a l l e l H e u r i s t i c s

By simply allowing KSIs to run in parallel, we achieved
a significant improvement in the D V M T performance.
However, it is clear f rom the discussion in Section 2.3
that we should be able to do better than just taking
the top (single processor) rated KSI off of the agenda.

Four new heuristics were added to incorporate knowl­
edge about how parallelism affects scheduling. The
BBl -s ty le controller [Hayes-Roth, 1985] rates each KSI
against each heuristic of each active focus. The archi­
tecture supports two types of heuristics — numeric and
pass/fai l . Numeric heuristics are summed to produce a
rat ing; pass/fai l heuristics must pass a KSI or it wi l l
not be executed. Either type of heuristic can also de­
cide not to rate a KS I — the effect is of a rating of 0
or 'pass' bu t it is recorded differently. A l l the previous
non-parallel domain heuristics were numeric but some of
the new parallel heuristics are pass/fail.

1. Pass Non-obviated Outputs. Schedule KSIs that wi l l
not produce output that wi l l be obviated if the cur­
rently executing KSIs complete successfully. This
heuristic implements the task invalidation criteria
described in Section 2.3. The usefulness of this
heuristic is t ied to the success rate of the KSIs in
question — if the KSI currently executing is likely
to finish successfully, then the heuristic wi l l be likely
to avoid duplicate work. This is a pass/fail heuris­
tic — if there are no tasks available that wil l not
be obviated by existing tasks, then the processor
wi l l wai t . This heuristic is not needed in the single
processor case because when a KSI completes its ac­
t ion , al l KSIs that it obviates are removed from the
agenda before the next KS I is chosen.

2. Pass Primary Patterns. This heuristic, which was a
numeric rat ing heuristic in the single-processor sys­
tem, was changed to a pass/fail heuristic. It is an
example of a task ordering heuristic as described in
Section 2.3. An impl ic i t assumption of this heuristic
is tha t KSs are not interrupt ible; so, when low pr i ­
or i ty KSIs are started, later arr iving higher priori ty
KSIs may not get a processor. When running an
existing blackboard system in parallel, one should
carefully examine the existing control heuristics to
see if they wi l l have the desired effect w i th mul­
t iple processors. Whi le a high rat ing is sufficient
in a single processor system to indicate that the
KSs involved in a task are important to execute, in
the multiprocessor case a decision must be made as
to whether a processor should execute a KSI from
a useful, bu t less impor tant , task or wait idle for
known impor tan t future tasks.

3. Prefer Outputs on Different Regions. Schedule KSIs
that do not access the same blackboard regions as
the currently executing KSIs. This heuristic imple­
ments the general access collision control knowledge
described in Section 2.3. In our case, only black­
board write operations need to be locked. This
heuristic w i l l be more applicable in systems such as
those described by [Fennell and Lesser, 1977] that do
more elaborate locking. This is a numeric preference
heuristic. Obviously this heuristic is not needed in
the single processor case because only one KSI is
being executed, so there cannot be any blackboard
access collisions.

4. Prefer Many Output Hyps. Schedule KSIs that ex­
pect to produce many output hyps before those that
expect to produce fewer output hyps. This heuris­
tic implements the task bottleneck avoidance class of
heuristics described above. By preferring to produce
many outputs, more possible tasks may be enabled
in the future. This is a weak numeric preference
heuristic. This heuristic is not needed in the sin­
gle processor case (in the D V M T domain) because
the single processor wi l l st i l l have to execute all of
the (non-obviated) KSIs, no matter how long the
agenda is. The purpose of this heuristic is merely
to get the queue to a long length quickly, improving
multiple processor performance.

Table 3 is a comparison of the system w i th the four
heuristics and 5 processors w i t h the 1 processor system
and the 5 processor system. We did not get as much
speedup over the experiment wi thout parallel heuristics
as we had hoped. A pr imary reason for this is that the
parallel version wi thout heuristics was developed to run
as fast and as efficiently as possible w i th 1 or more pro-
cessors; we did not handicap it in any way. Our pa­
rameterized low-level control loop allows very few KSIs
through that should not be executed (i.e., very l i t t le
search). This hampers the heuristics especially in phases
1 and 2, which have very t ight and precise control plans.

For example, the task obviation heuristic finds very
few tasks to obviate. This is because we t ry to iden­
t i fy and filter out or merge hypotheses and goals that
might create redundant tasks as early as possible (be­
fore they trigger KSs to form KSIs). However, this may
not always be the best course to take — even our own
system is being expanded to include mult iple methods
of achieving the same result by t rading off some of the

Decker et al. 19

Table 4: Summary of results w i th and without the Task Obviat ion heuristic on 5 processors running a modified
system

characteristics (such as precision and certainty) for t ime
[Decker et a l . , 1990]. Th is may result in more potentially
obviatable tasks on the agenda. We test this hypothesis
in Section 3.2.1.

The access collision heuristic is also relatively weak.
This is because, as we have previously stated, KSIs sel­
dom block on wr i t i ng to the same area of a blackboard
level, and may read in parallel. Access collision avoid­
ance may be more impor tan t in systems that must lock
objects for a long t ime to modi fy them. We tested this
hypothesis in Section 3.2.2. Another problem stems from
the prefer many output hyps heuristic; the D V M T tends
to already work this way as a side effect of the domain
heuristics, therefore the heuristic wi l l not show an ap­
preciable improvement when present.

As stated previously, the agendas in phases 1 and
2 were t ight ly regulated — the execution of a KSI on
the agenda was necessary for overall problem solving
progress. KSIs were not likely to be obviated by other
KSIs, and most KSIs were involved in "good" work.
However, this was not the case in phase 3. KSIs were
created whose output would often be subsumed by the
output of another KS I i f this other KSI were given an
oppor tun i ty to run (the first KS I is a candidate for ob­
v iat ion) , and a fair number of secondary pattern KSIs
existed on the agenda at any point in t ime. Given these
characteristics of the agenda in phase 3, 21.3% speedup
over the 5 processor system to 4.8 times speedup over 1
processor was achieved. The parallel heuristics allowed
processors to make intell igent decisions regarding the
next KS I to execute. As a result of the parallel heuris­
tics, more KSIs were obviated, and processors often de­
layed executing the next KSI if none of the KSIs on the
agenda appeared part icular ly appealing. It is also im­
portant to note tha t ut i l izat ion was down somewhat in
phase 3 because of the parallel heuristics, but the overall
end-to-end processing t ime was reduced.

3 .2 .1 T e s t i n g t h e Task O b v i a t i o n H e u r i s t i c
In order to test the task obviation parallel heuristic, we

modif ied the basic parallel system by disabling the KSI-
merging feature. This results in many KSIs, triggered by

different data but intending to satisfy identical or simi­
lar goals, being placed on the agenda7. The scenario was
run once w i th five processors wi thout any parallel heuris­
tics, and then again w i th the addi t ion of the single task
obviation heuristic. The results are shown in Table 4.
Speedup was achieved part icular ly in phase two, when
the addit ion of the task obviat ion heuristic caused a suf­
ficient number of KSIs to be obviated, because KSIs were
executed in a data-directed manner and thus tended to
obviate others upon completion.

3.2.2 T e s t i n g t h e Access C o l l i s i o n H e u r i s t i c

In order to test the access collision parallel heuris­
t ic, we configured the D V M T to allow higher potential
contention for system locks, w i thout otherwise handi­
capping the system. Specifically, we modif ied the ba­
sic parallel system by disabling the KSI-merging feature
and by artif icial ly lengthening the t ime processors spend
in the blackboard bucket locks. The first modif icat ion
forces the creation of a separate K S I for each output
goal (rather than merging similar goals). Since KSIs
that perform essentially the same activit ies tend to get
rated approximately the same, a processor wi l l select a
KSI for execution that wi l l create results that one or
more other KSIs running at the same t ime might pro­
duce. The effect of not al lowing similar KSIs to merge
wi l l produce a high amount of contention for blackboard
regions, because similar KSIs w i l l be executing at the
same t ime. The second modif icat ion simulates a sys­
tem that requires a larger context for KS I execution —
one that keeps more of the blackboard locked for longer
times. The larger the context, the higher the probabi l i ty
of contention. The scenario was run once wi thout any
parallel heuristics, and then again w i t h the addit ion of
the single access collision heuristic. Bo th runs were w i th
five processors.

Adding the heuristic to avoid regions that other pro­
cessors are ut i l is ing resulted in a significantly decreased

7A similar effect might have been achieved by activating
multiple approximate processing methods, in addition to the
normal precise methods, for each goal.

20 Architectures and Languages

a m o u n t of t i m e spent in locks. A processor in the run
w i t h o u t t he access col l is ion heur ist ic spent an average
o f 18.4% of i t s t i m e in locks, whi le the add i t i on o f the
access col l is ion heur is t ic reduced th is t ime to 11.0%.

4 Conclus ions

We inves t iga ted the effects of paral le l ism on blackboard
schedul ing. We have shown t h a t we are able to get a
speed-up fo r the D V M T app l i ca t ion . We also showed
t h a t at least some of the speed-up was produced by our
new heur ist ics t h a t take para l le l knowledge in to account.
I t is our hypothes is t h a t as the amoun t of search and
i n te rac t i on a m o n g search pa ths increases the heuristics
w i l l become more i m p o r t a n t . We are work ing to test th is
hypothes is .

As men t i oned br ie f ly in Section 3 .1 , we are current ly
inves t iga t ing a channelized arch i tecture t h a t al lows dif­
ferent vehicles to be in di f ferent phases of problem-
so lv ing s imul taneous ly . T h a t is, da ta for different ve­
hicles can be processed us ing dif ferent f i l ters, rated us­
ing d i f ferent heur is t ics , and even use different approx­
ima te processing p rob lem-so lv ing methods al l concur­
rent ly . We believe th is has the po ten t ia l to signif icant ly
increase para l le l i sm, b o t h because i t removes the phase-
chang ing bo t t leneck and because i t clearly and s imply
d iv ides up the w o r k for para l le l execut ion.

Acknow ledgmen ts

T h e au tho rs w o u l d l ike to t h a n k K e v i n Q. Gal lagher for
his w o r k in c rea t ing a shared memory paral le l processing
version o f G B B 2.0.

References
[Al len, 1984] James F. Al len. Towards a general theory of

action and t ime. Artificial Intelligence, 23:123-154, 1984.

[Bisiani and Forin, 1989] Roberto Bisiani and A. Forin. Par-
allelisation of blackboard architectures and the Agora sys­
tem. In V. Jagannathan, Rajendra Dodhiawala, and
Lawrence S. Baum, editors, Blackboard Architectures and
Applications. Academic Press, 1989.

[Corki l l , 1989] Daniel D. Corki l l . Design alternatives for par­
allel and distr ibuted blackboard systems. In V. Jagan­
nathan, Rajendra Dodhiawala, and Lawrence S. Baum,
editors, Blackboard Architectures and Applications. Aca­
demic Press, 1989.

[Decker and Lesser, 1990] Ke i th Decker and Victor Lesser.
Extending the part ia l global planning framework for coop­
erative distr ibuted problem solving network control. In
Proceedings of the Workshop on Innovative Approaches
to Planning, Scheduling and Control, pages 396-408, San
Diego, November 1990. Morgan Kaufmann. Also COINS
TR-90-81 .

[Decker et a l . , 1989] Ke i th S. Decker, Mar ty A. Humphrey,
and Victor R. Lesser. Experimenting wi th control in the
D V M T . In Proceedings of the Third Annual AAAI Work­
shop on Blackboard Systems, Detro i t , August 1989. Also
COINS TR-89-85.

[Decker et al, 1990] Ke i th S. Decker, Victor R. Lesser, and
Robert C. Whi tehair . Extending a blackboard architec­
ture for approximate processing. The Journal of Real- Time
Systems, 2 (l / 2) :47 -79 , 1990. Also COINS TR-89-115.

[Durfee and Lesser, 1987] Edmund H. Durfee and Victor R.
Lesser. Using part ial global plans to coordinate distr ibuted
problem solvers. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, August 1987.

[Ensor and Gabbe, 1985] J. Robert Ensor and John D.
Gabbe. Transactional blackboards. In Proceedings of the
Ninth International Joint Conference on Artificial Intel­
ligence, pages 340-344, August 1985. Also published in
Readings in Distr ibuted Ar t i f ic ia l Intelligence, A lan H.
Bond and Les Gasser, editors, p. 557-561, Morgan Kauf­
man, 1988.

[Erman et al, 1980] L. D. Erman, F. Hayes-Roth, V. R.
Lesser, and D. R. Reddy. The Hearsay-I I speech-
understanding system: Integrat ing knowledge to resolve
uncertainty. Computing Surveys, 12(2):213-253, June
1980.

[Fennell and Lesser, 1977] R. D Fennell and V. R. Lesser.
Parallelism in AI problem solving: A case study of
Hearsay-II. IEEE Transactions on Computers, C-
26(2):198-111, February 1977.

[Hayes-Roth and Lesser, 1977] Frederick Hayes-Roth and
Victor R. Lesser. Focus of attention in the Hearsay-II
speech understanding system. In Proceedings of the Fifth
International Joint Conference on Artificial Intelligence,
pages 27-35, August 1977.

[Hayes-Roth, 1985] Barbara Hayes-Roth. A blackboard ar­
chitecture for control. Artificial Intelligence, 26:251-321,
1985.

[Lesser and Corki l l , 198l] Victor R. Lesser and Daniel D.
Corki l l . Functionally accurate, cooperative distr ibuted sys­
tems. IEEE Transactions on Systems, Man, and Cybernet­
ics, S M C - l l (l) : 8 1 - 9 6 , January 1981.

[Lesser and Corki l l , 1983] Victor R. Lesser and Daniel D.
Corki l l . The distr ibuted vehicle monitor ing testbed. Al
Magazine, 4(3):63-109, Fall 1983.

[Lesser et al, 1975] V. R. Lesser, R. D. Fennell, L. D. Er­
man, and D. R. Reddy. Organization of the Hearsay-
II speech understanding system. IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-23: l l -23 ,
February 1975.

[Nii et al., 1989] H. Penny N i i , Nelleke Aiel lo, and James
Rice. Experiments on Cage and Poligon: Measuring the
performance of parallel blackboard systems. In M. N.
Huhns and L. Gasser, editors, Distributed Artificial Intel­
ligence, Vol. II. Morgan Kaufman Publishers, Inc., 1989.

[Rice et al, 1989] James Rice, Nelleke Aiello, and H. Penny
Ni i . See how they run. . . the architecture and perfor­
mance of two concurrent blackboard systems. In V. Jagan­
nathan, Rajendra Dodhiawala, and Lawrence S. Baum, ed­
itors, Blackboard Architectures and Applications. Academic
Press, 1989.

[Rice, 1989] James Rice. The Advanced Architectures
Project. Technical report KSL-88-71, Knowledge Systems
Laboratory, Stanford University, 1989.

Decker, et al. 21

