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A b s t r a c t 

This paper investigates the effects of paral­
lelism on blackboard system scheduling. A par­
allel blackboard system is described that allows 
mult ip le knowledge source instantiations to ex­
ecute in parallel using a shared-memory black­
board approach. New classes of control knowl­
edge are defined that use information about the 
relationships between system goals to schedule 
tasks — this control knowledge is implemented 
in the D V M T application on a Sequent mul­
tiprocessor using BBl -s ty le control heuristics. 
The usefulness of the heuristics is examined by 
comparing the effectiveness of problem-solving 
w i t h and wi thout the heuristics (as a group and 
indiv idual ly) . Problem solving wi th the new 
control knowledge results in increased processor 
ut i l izat ion and decreased tota l execution time. 

1 I n t r o d u c t i o n 

From the beginning the blackboard paradigm has been 
developed w i th parallelism in mind [Lesser et al., 1975]. 
The idea of independent Knowledge Sources (KSs) that 
communicate only through a shared blackboard is a 
model that inherently encourages parallel execution. 
Many researchers have looked at making blackboard 
systems execute in parallel [Corki l l , 1989, Fennell and 
Lesser, 1977, Rice et a/., 1989]. 

In part icular the execution of mult iple Knowledge 
Source Instant iat ions (KSI) in parallel (known as knowl­
edge source parallelism) is discussed in several places 
in the l i terature. The Advanced Architectures Project 
at Stanford University [Rice, 1989, Rice et al., 1989] 
has investigated blackboard parallelism at several lev­
els of granularity. Their Cage architecture takes the ex­
isting A G E blackboard architecture and extends i t to 
execute concurrently at several granularities, including 
knowledge source parallelism [Nii et al., 1989]. Another 
project tha t investigated knowledge source parallelism is 
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the work by [Fennell and Lesser, 1977] to study the ef­
fects of parallelism on the Hearsay II speech understand­
ing system [Erman et al., 1980]. One major contr ibut ion 
of that project is a detailed study of blackboard locking 
mechanisms. An alternative method for enforcing data 
consistency is the use of transactions as described by 
[Ensor and Gabbe, 1985]. 

One distinguishing feature of these studies of paral­
lelism in blackboard systems is that they used simulated 
parallelism. Concurrently executing processes and in­
terprocess communication were simulated using complex 
models of parallel environments. This was the case pr i ­
mari ly because of the pr imit ive nature of existing parallel 
hardware and the lack of sophisticated software develop­
ment environments. Only recently have hardware and 
software capabilities come together to allow the actual 
implementation of parallel blackboard systems [Bisiani 
and Forin, 1989]. Useful parallel programming environ­
ments now exist, including implementations of Lisp. The 
work described in this paper was done on a Sequent mul­
tiprocessor using Top Level Common Lisp1 (a version of 
Lisp that supports concurrent processing) and a special 
version of GBB 2.02 that was modif ied to allow parallel 
read access to the blackboard and to allow locking only 
part of the blackboard on wri te accesses. 

Along wi th our actual use of parallel hardware, a ma­
jor difference between our work and previous research is 
our focus on how control knowledge needs to change in a 
parallel environment. Previous work was more interested 
in investigating specific parallel models, while we are in­
terested in what new control knowledge is useful. As we 
show, it is not enough to just add locks to a sequential 
blackboard system and execute the top n KSIs as rated 
by sequential control heuristics on n parallel processors. 
New heuristics need to be added that are sensitive to 
the requirements for effective parallel execution. Ear­
lier work on Partial Global Planning[Durfee and Lesser, 
1987] showed that constructing schedules using a high-
level \ iew of the solution space (derived by distr ibuted 
agents from goal relationships) improved the ut i l izat ion 
of distributed processors. This leads to the in tu i t ion that 
using goal relationships in scheduling may be helpful in 

1Top Level Common Lisp is a trademark of Top Level, 
Inc. 

2GBB 2.0 is a trademark of Blackboard Technologies, Inc. 
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a single agent, parallel-processing situation. 
The next section discusses the details of our parallel 

architecture. Section 2.3 describes the new kinds of con­
t ro l knowledge that are useful in a parallel environment 
and identifies the kinds of data that are required to im­
plement those new kinds of knowledge. Section 3 briefly 
introduces the Distributed Vehicle Monitoring Testbed, 
the application that motivates this work, and describes 
the new heuristics that were added for parallelism. Sec­
tion 3.1 presents and discusses the results of the exper­
iments we performed on the system, including the per­
formance of the implementation and the effect of the 
added control heuristics. The final section summarizes 
the work and describes future research directions. 

2 A rch i t ec tu re 
The architecture is a straightforward extension to 
the BB1-stvie uniprocessor blackboard architecture de­
scribed in [Decker et al., 1989, Decker et al., 1990]. In 
that architecture the processor takes the currently top 
rated KSI from the executable agenda. It executes the 
KSI action, which creates and modifies blackboard hy­
potheses. These hypotheses in turn stimulate goals, 
which trigger new KSs for execution. A scheduler or­
ders the executable agenda and the loop begins again. 
This low-level control loop is highly parameterized; the 
parameters are set by control knowledge sources. 

In our parallel system, several processors execute the 
low-level control loop concurrently. AD of the hypothe­
ses, goals, agendas, KSs, and control parameters are 
posted on shared global domain and control blackboards 
that are accessible to each processor. This basic architec­
ture is very similar to the Cage simulations with KS-level 
parallelism and asynchronous control [Rice et a/., 1989]. 

Besides executing the low-level control loop in paral­
lel, three major modifications to the existing system are 
made to allow effective use of parallelism. Locking mech­
anisms are provided to prevent conflicting blackboard 
accesses; the control knowledge sources are run sequen­
tially, but the actions of many control KSs are broken up 
and run in parallel; and new classes of control knowledge 
are identified and implemented. The next three sections 
describe each of these modifications in more detail. 

2 .1 B l a c k b o a r d L o c k i n g 
Various schemes for blackboard locking appear in the l i t­
erature. The most detailed is that described by Fennell 
and Lesser, who describe a method for locking black­
boards that assures data integrity [Fennell and Lesser, 
1977]. 

We have found that a much simpler locking mechanism 
is sufficient for our system. The only locking mechanism 
we provide is atomic read/write locks for blackboard 
writes. This mechanism is invoked when a blackboard 
write is done. It executes a read to see if the object to be 
wri t ten already exists. If it does, then the new object is 
merged wi th the existing object, otherwise the new ob­
ject is wr i t ten. Knowledge sources are designed so that 
they create hypotheses one at a time. Since only one 
lock is ever acquired at a time, deadlock is impossible. 
The operating system scheduler prevents starvation. 
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This simple mechanism is sufficient because the system 
can build several, possibly conflicting, part ial solutions 
to a problem [Lesser and Corki l l , 1981]. It does not re­
quire exactly one consistent working solution, so it does 
not return to and delete objects that cause inconsisten­
cies. Because hypotheses are never deleted, the structure 
of the hypotheses on the blackboard never changes; only 
the beliefs in existing hypotheses may change. Changes 
in belief can be recognized and propagated by a separate 
knowledge source. If new hypotheses are created that 
would produce different results, then their creation wil l 
trigger new knowledge source instantiations that may be 
scheduled. We believe that other systems that share this 
characteristic wil l f ind that simple locking mechanisms 
are adequate. For example, the AGORA system uses 
"write-once" memory management where a blackboard 
element cannot be updated in place, but rather a copy 
is made [Bisiani and Forin, 1989]. 

Several types of locks were used in the implementa­
tion. Each blackboard level (space) is divided into a set 
of buckets. A blackboard data unit is stored in a small 
number of buckets based on its characteristics. Each 
bucket is given its own lock. Thus two KSIs can always 
write to different blackboard levels in parallel but one 
might block if they both write to the same bucket. Locks 
also control access to the KSI agenda and other inter­
nal data structures associated wi th the low-level control 
loop. 

2.2 E x e c u t i n g t h e C o n t r o l K n o w l e d g e Sources 

Control knowledge sources change parameters that allow 
control over mechanisms such as fi ltering hypotheses or 
goals, merging hypotheses or goals, mapping from hy­
potheses to goals or goals to KSs, and the agenda rating 
mechanism. Control knowledge triggers on events on 
both the domain and control blackboards. In our cur­
rent system control knowledge sources are run sequen­
tially (meaning only one control KSI is executing at a 
time), however the actions of many of the control KSIs 
divide up the work and execute it in parallel on several 
processors. In the future we would like to investigate 
executing the control knowledge in parallel as well. 

2.3 N e w Classes o f C o n t r o l K n o w l e d g e f o r 
Pa ra l l e l i sm 

Normal control knowledge (as used in a sequential en­
vironment) rates KSIs based on knowledge such as the 
belief of their input data, the potential belief in the out­
put data, the significance of the output data given the 
current system goals, and their efficiency or reliability. 
In addition to these kinds of control knowledge there are 
several general classes of control knowledge that can be 
added to more effectively execute KSs in parallel. These 
general classes of control knowledge include: 

Access Co l l i s ions : To avoid excessive conflicts for 
blackboard access, do not schedule two KSIs to work 
in the same part of the search space at the same 
time. For example, if KSI A and KSI B both write 
to a particular level of the blackboard, then they 
should not be scheduled for execution at the same 



t ime, because one of them wi l l have to wait for the 
other to relinquish blackboard locks. 

Task O r d e r i n g : Tasks may have absolute, unchange­
able orderings (meaning they cannot be scheduled 
to execute in parallel at al l), or there may be in­
terdependence among tasks that lead to ordering 
preferences (one task provides data that wi l l signif­
icantly affect the speed or quality of the result of 
another task.) For example, Task A may produce a 
result that makes the performance of Task B much 
faster. If so, Task A should be scheduled before 
Task B. 

Task B o t t l e n e c k i n g : Performing certain tasks earlier 
in problem-solving may reduce future sequential 
bottlenecks. In general it is preferable to execute 
tasks that w i l l allow more parallel options later. 
For example, there may be an absolute task order­
ing that requires that Task A be performed before 
Tasks B, C, and D, which can then be performed 
in parallel. Task A should be performed as soon 
as possible, because it wi l l allow more parallelism 
later. 

Task I n v a l i d a t i o n : This is based on the "Competit ion 
Principle" in Hearsay-II [Hayes-Roth and Lesser, 
1977]: the results of some tasks may completely re­
move the need to execute other tasks. Thus, when 
currently executing tasks are taken into account (as­
sumed to complete), some pending tasks wil l be ob­
viated. For example, Task A and Task B may per­
form the same operation, and produce the same re­
sult, in different ways. If Task A has been scheduled, 
then Task B should not be immediately scheduled, 
because it w i l l be obviated if Task A completes suc­
cessfully. 

To take these general classes of control knowledge into 
account the system requires particular kinds of knowl­
edge about the domain KSIs. In particular, avoid­
ing access collisions requires knowledge about the in­
pu t /ou tpu t characteristics of a KSI (i.e., what parts of 
the blackboard it accesses and modifies.) Task ordering 
requires knowledge about task interactions. Often this 
knowledge is best captured through relationships among 
the goals of part icular tasks. Avoiding task bottleneck­
ing requires knowledge about the probable outcomes of 
tasks, again often expressed through goal relationships. 
Task invalidation uses knowledge about supergoal and 
subgoal relationships to understand the effect of KSI ex­
ecutions on other KSIs' goals. 

There are four general categories of goal relationships 
that can be used (via KS I rat ing heuristic functions) to 
schedule domain KSs [Decker and Lesser, 1990]: 

D o m a i n R e l a t i o n s : This set of relations is generic in 
that they apply to mult iple domains and domain 
dependent in that they can be evaluated only wi th 
respect to a part icular domain, e.g., inhibits, can­
cels, constrains, predicts, causes, enables, and su-
pergoal/subgoal ( f rom which many useful graph re­
lations can be computed, as shown below). These 
relations provide task ordering constraints, repre-

Figure 1: An abstracted goal relation graph 

sented by temporal relations on the goals (see be-
low). 

G r a p h R e l a t i o n s : Some generic goal relations can be 
derived from the supergoal/subgoal graphical struc­
ture of goals and subgoals, e.g., overlaps, necessary, 
sufficient, extends, subsumes, competes. The com­
petes relation is used to produce task invalidation 
constraints. These relations also produce task bot­
tlenecking in format ion. 

T e m p o r a l R e l a t i o n s : From Allen [Allen, 1984], these 
include before, equal, meets, overlaps, dur ing, 
starts, finishes, and their inverses. They can arise 
from domain relations, or depend on the scheduled 
t iming of goals — their start and finish times, esti­
mates of these, and real and estimated durations. 

N o n - c o m p u t a t i o n a l R e s o u r c e C o n s t r a i n t s : A 
final type of relation is the use of physical, non-
computational resources. Two tasks that both use 
a single exclusive resource cannot execute in paral­
lel. For example, if two tasks require that a single 
sensor be aimed or tuned differently, they cannot 
execute in parallel. 

For example, examine the goal structure in Figure 1 
(abstracted f rom an actual domain goal relation graph). 
Assume that task TaskF is currently executing on a pro-
cessor. The arcs in the graph represent the goal/subgoal 
domain relation on the goals3. From only this one do­
main relation, we can tell for example that F and G are 
necessary for D, D is necessary for B and C, and B is 
sufficient for A. F and G extend4 one another, as do D 
and H. Goal B competes w i th C 

Thus a task invalidation heuristic might avoid schedul­
ing a task that achieves goal B in parallel w i th one that 
achieves goal C. In the given si tuat ion (w i th TaskF ex­
ecuting, and G and H available for processing), a task 
bottleneck heuristic might prefer to schedule a task to 
satisfy G, which wi l l allow work on goals D and H in 
the future5 , over a task to satisfy H, which would allow 

3 While it looks similar, this is different from a typical data 
dependency diagram both in granularity and in the fact that 
it would be constructed dynamically during problem solving. 
At the present time we constructed one by hand to develop 
possible parallel heuristics for our domain. 

4 Goal 1 extends goal 2 if there exists a supergoal, goal 3, 
such that goals 1 and 2 are in the same AND conjunct. 

5Goal D would become open, since its necessary subgoals 
F and G would be completed; goal H already was open. 
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only work on goal G in the future. Of course, tasks may 
accomplish multiple goals, a fact that is simplified in this 
example. A task ordering heuristic would not find any 
temporal relations in this example; they are induced by 
domain relations where goals constrain or predict others. 

3 E x p e r i m e n t s 

Experiments were run on the Distributed Vehicle Mon­
itoring Testbed (DVMT)[Lesser and Corkil l , 1983], a 
knowledge-based signal interpretation system. The in­
put to the D V M T is acoustic signals generated by mov­
ing vehicles and detected by acoustic sensors. The goal 
of the D V M T is to identify, locate and track patterns of 
vehicles moving through a two-dimensional space. The 
four main blackboard levels are: signal (for processing of 
signal data), group (for collections of signals attr ibuted 
to a single vehicle), vehicle (for collections of groups that 
correspond to a single vehicle), and pattern (for collec­
tions of vehicles acting in a coordinated manner). 

For our purposes, D V M T domain KSs can be divided 
into two main classes: synthesis and track extension. 
Synthesis KSs combine one or more related hypotheses 
at one level of the blackboard into a new hypothesis at 
the next higher level. Track extension KSs output track 
hypotheses, where a track is a list of sequential pieces 
of time-location data that identify the movements of a 
vehicle. The control KSs of the system can also be di­
vided into two main classes: those that implement a goal-
directed strategy and those that extend that strategy for 
parallel execution. 

For these experiments, the D V M T processes the input 
data in three distinct phases. In the first phase (find ini­
tial vehicles), an in i t ia l set of control KSs execute, con­
figuring the D V M T to perform a thorough analysis of all 
data at t ime 1. The purpose of this phase is to roughly 
identify the type and position of all vehicles that wil l be 
tracked in the experiment6. The data file we used con­
tained 12 vehicles, and we defined four possible vehicle 
types wi th some signals and groups of signals shared by 
multiple vehicles. After these control KSs execute, and 
the domain KSs process all t ime 1 data, more control 
KSs are triggered and execute, configuring the D V M T 
for the second phase of processing. In the second phase 
(approximate short tracks), the D V M T performs quick, 
approximate processing to determine the likely identity 
and patterns of the vehicles being tracked. This phase 
ends when control KSs recognize that the D V M T has es­
tablished a pattern (or explanation) for all the vehicles, 
though the patterns may be uncertain. For these exper­
iments, we defined a short track to contain at least four 
time-location data points-thus, this phase ended after 
processing the time 4 data. Again, control KSs assign 
new values to system parameters, and the third phase 
(perform pattern-directed processing) commences. The 
D V M T devotes most of its processing in this phase to 
tracking vehicles involved in primary patterns, while per­
forming cursory processing on vehicles involved in sec-

6 We have restricted these experiments such that every ve­
hicle appears in the f irst set of acoustic samples, in order to 
simplify processing. 
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ondary patterns. This phase continues unt i l all data in 
the input file has been processed. In these experiments, 
we included data unt i l t ime 9. 

3.1 E x a m i n i n g t h e Bas ic P a r a l l e l A r c h i t e c t u r e 

The first set of experiments involved collecting statis­
tics on the basic parallel architecture without any added 
heuristics to take advantage of the parallelism. These 
experiments demonstrate that the locking system works, 
that the basic architecture provides for a good utiliza­
t ion of processors, and that the domain and our problem-
solving method provide inherent parallelism. 

Data for runs of the environment on 1 processor wi th 
no special parallel heuristics are summarized in Table 1. 
This table shows the time the single processor uses in 
each phase (and between phases) and the percent of the 
total time spent in each phase (and between phases). 
This data is used in comparisons to the other experi­
ments described later. In this and all later experiments, 
data was collected wi th the locking and metering mecha­
nisms enabled. The locking mechanism itself had almost 
no overhead, and as much of the metering as possible is 
done on a separate processor, completely outside of the 
processors being used for the experiment. The data col­
lected by the metering processor did not involve locking 
any of the target processors. A l l of the experiments were 
conducted on a 16 processor Sequent Symmetry, and all 
of the experiments used less than 16 available processors 
(so no tasks were swapped off a processor). 

Table 2 shows the speedup resulting f rom 5 processors 
and no parallel heuristics. Phase 1 parallelism arises 
mostly from being able to process all the data from the 
sensors in parallel. The tasks in phases 1 and 2 all must 
be executed, which also causes a high degree of inherent 
parallelism. 

Centralizing the meta-controller that is implemented 
by control KSs proved not to be a bottleneck in pro-
cessing; when not changing phases the meta-controller 
is almost dormant (simply checking for the end of a 
phase), and most of the work involved in changing phases 
(setting up new hypothesis and goal filters and running 
the hypotheses through them) is done in parallel. By 
running the low-level control loop (hyp to goal to KS 
mapping) in parallel we avoided the control bottleneck 
observed by Rice et al. in their first Cage experiment, 
where a set of KSs was executed synchronously by the 
controller [Rice et a/., 1989]. The only t ime that the 
system ever has to synchronize is at the beginning of a 
phase change, as the agenda from the last phase is empty 
and that of the next phase is sti l l being generated. We 
have already begun work to eliminate this bottleneck as 
well, using a channelized architecture that gives us the 
ability to have different pieces of data at different phases 
of processing simultaneously. 

3.2 E x a m i n i n g t h e P a r a l l e l H e u r i s t i c s 

By simply allowing KSIs to run in parallel, we achieved 
a significant improvement in the D V M T performance. 
However, it is clear f rom the discussion in Section 2.3 
that we should be able to do better than just taking 
the top (single processor) rated KSI off of the agenda. 



Four new heuristics were added to incorporate knowl­
edge about how parallelism affects scheduling. The 
BBl -s ty le controller [Hayes-Roth, 1985] rates each KSI 
against each heuristic of each active focus. The archi­
tecture supports two types of heuristics — numeric and 
pass/fai l . Numeric heuristics are summed to produce a 
rat ing; pass/fai l heuristics must pass a KSI or it wi l l 
not be executed. Either type of heuristic can also de­
cide not to rate a KS I — the effect is of a rating of 0 
or 'pass' bu t it is recorded differently. A l l the previous 
non-parallel domain heuristics were numeric but some of 
the new parallel heuristics are pass/fail. 

1. Pass Non-obviated Outputs. Schedule KSIs that wi l l 
not produce output that wi l l be obviated if the cur­
rently executing KSIs complete successfully. This 
heuristic implements the task invalidation criteria 
described in Section 2.3. The usefulness of this 
heuristic is t ied to the success rate of the KSIs in 
question — if the KSI currently executing is likely 
to finish successfully, then the heuristic wi l l be likely 
to avoid duplicate work. This is a pass/fail heuris­
tic — if there are no tasks available that wil l not 
be obviated by existing tasks, then the processor 
wi l l wai t . This heuristic is not needed in the single 
processor case because when a KSI completes its ac­
t ion , al l KSIs that it obviates are removed from the 
agenda before the next KS I is chosen. 

2. Pass Primary Patterns. This heuristic, which was a 
numeric rat ing heuristic in the single-processor sys­
tem, was changed to a pass/fail heuristic. It is an 
example of a task ordering heuristic as described in 
Section 2.3. An impl ic i t assumption of this heuristic 
is tha t KSs are not interrupt ible; so, when low pr i ­
or i ty KSIs are started, later arr iving higher priori ty 
KSIs may not get a processor. When running an 
existing blackboard system in parallel, one should 
carefully examine the existing control heuristics to 
see if they wi l l have the desired effect w i th mul­
t iple processors. Whi le a high rat ing is sufficient 
in a single processor system to indicate that the 
KSs involved in a task are important to execute, in 
the multiprocessor case a decision must be made as 
to whether a processor should execute a KSI from 
a useful, bu t less impor tant , task or wait idle for 
known impor tan t future tasks. 

3. Prefer Outputs on Different Regions. Schedule KSIs 
that do not access the same blackboard regions as 
the currently executing KSIs. This heuristic imple­
ments the general access collision control knowledge 
described in Section 2.3. In our case, only black­
board write operations need to be locked. This 
heuristic w i l l be more applicable in systems such as 
those described by [Fennell and Lesser, 1977] that do 
more elaborate locking. This is a numeric preference 
heuristic. Obviously this heuristic is not needed in 
the single processor case because only one KSI is 
being executed, so there cannot be any blackboard 
access collisions. 

4. Prefer Many Output Hyps. Schedule KSIs that ex­
pect to produce many output hyps before those that 
expect to produce fewer output hyps. This heuris­
tic implements the task bottleneck avoidance class of 
heuristics described above. By preferring to produce 
many outputs, more possible tasks may be enabled 
in the future. This is a weak numeric preference 
heuristic. This heuristic is not needed in the sin­
gle processor case ( in the D V M T domain) because 
the single processor wi l l st i l l have to execute all of 
the (non-obviated) KSIs, no matter how long the 
agenda is. The purpose of this heuristic is merely 
to get the queue to a long length quickly, improving 
multiple processor performance. 

Table 3 is a comparison of the system w i th the four 
heuristics and 5 processors w i t h the 1 processor system 
and the 5 processor system. We did not get as much 
speedup over the experiment wi thout parallel heuristics 
as we had hoped. A pr imary reason for this is that the 
parallel version wi thout heuristics was developed to run 
as fast and as efficiently as possible w i th 1 or more pro-
cessors; we did not handicap it in any way. Our pa­
rameterized low-level control loop allows very few KSIs 
through that should not be executed (i.e., very l i t t le 
search). This hampers the heuristics especially in phases 
1 and 2, which have very t ight and precise control plans. 

For example, the task obviation heuristic finds very 
few tasks to obviate. This is because we t ry to iden­
t i fy and filter out or merge hypotheses and goals that 
might create redundant tasks as early as possible (be­
fore they trigger KSs to form KSIs). However, this may 
not always be the best course to take — even our own 
system is being expanded to include mult iple methods 
of achieving the same result by t rading off some of the 
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Table 4: Summary of results w i th and without the Task Obviat ion heuristic on 5 processors running a modified 
system 

characteristics (such as precision and certainty) for t ime 
[Decker et a l . , 1990]. Th is may result in more potentially 
obviatable tasks on the agenda. We test this hypothesis 
in Section 3.2.1. 

The access collision heuristic is also relatively weak. 
This is because, as we have previously stated, KSIs sel­
dom block on wr i t i ng to the same area of a blackboard 
level, and may read in parallel. Access collision avoid­
ance may be more impor tan t in systems that must lock 
objects for a long t ime to modi fy them. We tested this 
hypothesis in Section 3.2.2. Another problem stems from 
the prefer many output hyps heuristic; the D V M T tends 
to already work this way as a side effect of the domain 
heuristics, therefore the heuristic wi l l not show an ap­
preciable improvement when present. 

As stated previously, the agendas in phases 1 and 
2 were t ight ly regulated — the execution of a KSI on 
the agenda was necessary for overall problem solving 
progress. KSIs were not likely to be obviated by other 
KSIs, and most KSIs were involved in "good" work. 
However, this was not the case in phase 3. KSIs were 
created whose output would often be subsumed by the 
output of another KS I i f this other KSI were given an 
oppor tun i ty to run (the first KS I is a candidate for ob­
v iat ion) , and a fair number of secondary pattern KSIs 
existed on the agenda at any point in t ime. Given these 
characteristics of the agenda in phase 3, 21.3% speedup 
over the 5 processor system to 4.8 times speedup over 1 
processor was achieved. The parallel heuristics allowed 
processors to make intell igent decisions regarding the 
next KS I to execute. As a result of the parallel heuris­
tics, more KSIs were obviated, and processors often de­
layed executing the next KSI if none of the KSIs on the 
agenda appeared part icular ly appealing. It is also im­
portant to note tha t ut i l izat ion was down somewhat in 
phase 3 because of the parallel heuristics, but the overall 
end-to-end processing t ime was reduced. 

3 .2 .1 T e s t i n g t h e Task O b v i a t i o n H e u r i s t i c 
In order to test the task obviation parallel heuristic, we 

modif ied the basic parallel system by disabling the KSI-
merging feature. This results in many KSIs, triggered by 

different data but intending to satisfy identical or simi­
lar goals, being placed on the agenda7. The scenario was 
run once w i th five processors wi thout any parallel heuris­
tics, and then again w i th the addi t ion of the single task 
obviation heuristic. The results are shown in Table 4. 
Speedup was achieved part icular ly in phase two, when 
the addit ion of the task obviat ion heuristic caused a suf­
ficient number of KSIs to be obviated, because KSIs were 
executed in a data-directed manner and thus tended to 
obviate others upon completion. 

3.2.2 T e s t i n g t h e Access C o l l i s i o n H e u r i s t i c 

In order to test the access collision parallel heuris­
t ic, we configured the D V M T to allow higher potential 
contention for system locks, w i thout otherwise handi­
capping the system. Specifically, we modif ied the ba­
sic parallel system by disabling the KSI-merging feature 
and by artif icial ly lengthening the t ime processors spend 
in the blackboard bucket locks. The first modif icat ion 
forces the creation of a separate K S I for each output 
goal (rather than merging similar goals). Since KSIs 
that perform essentially the same activit ies tend to get 
rated approximately the same, a processor wi l l select a 
KSI for execution that wi l l create results that one or 
more other KSIs running at the same t ime might pro­
duce. The effect of not al lowing similar KSIs to merge 
wi l l produce a high amount of contention for blackboard 
regions, because similar KSIs w i l l be executing at the 
same t ime. The second modif icat ion simulates a sys­
tem that requires a larger context for KS I execution — 
one that keeps more of the blackboard locked for longer 
times. The larger the context, the higher the probabi l i ty 
of contention. The scenario was run once wi thout any 
parallel heuristics, and then again w i t h the addit ion of 
the single access collision heuristic. Bo th runs were w i th 
five processors. 

Adding the heuristic to avoid regions that other pro­
cessors are ut i l is ing resulted in a significantly decreased 

7A similar effect might have been achieved by activating 
multiple approximate processing methods, in addition to the 
normal precise methods, for each goal. 
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a m o u n t of t i m e spent in locks. A processor in the run 
w i t h o u t t he access col l is ion heur ist ic spent an average 
o f 18.4% of i t s t i m e in locks, whi le the add i t i on o f the 
access col l is ion heur is t ic reduced th is t ime to 11.0%. 

4 Conclus ions 

We inves t iga ted the effects of paral le l ism on blackboard 
schedul ing. We have shown t h a t we are able to get a 
speed-up fo r the D V M T app l i ca t ion . We also showed 
t h a t at least some of the speed-up was produced by our 
new heur ist ics t h a t take para l le l knowledge in to account. 
I t is our hypothes is t h a t as the amoun t of search and 
i n te rac t i on a m o n g search pa ths increases the heuristics 
w i l l become more i m p o r t a n t . We are work ing to test th is 
hypothes is . 

As men t i oned br ie f ly in Section 3 .1 , we are current ly 
inves t iga t ing a channelized arch i tecture t h a t al lows dif­
ferent vehicles to be in di f ferent phases of problem-
so lv ing s imul taneous ly . T h a t is, da ta for different ve­
hicles can be processed us ing dif ferent f i l ters, rated us­
ing d i f ferent heur is t ics , and even use different approx­
ima te processing p rob lem-so lv ing methods al l concur­
rent ly . We believe th is has the po ten t ia l to signif icant ly 
increase para l le l i sm, b o t h because i t removes the phase-
chang ing bo t t leneck and because i t clearly and s imply 
d iv ides up the w o r k for para l le l execut ion. 
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