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Abst rac t 
A fundamental problem in Na tu ra l Language 
Processing is the in tegrat ion of syntact ic and 
semantic constraints. In this paper we describe 
a new approach for the in tegrat ion of syntact ic 
and semantic constraints which takes advan­
tage of a learned memory model . Our model 
combines localist representations for the inte­
grat ion of constraints and d is t r ibu ted represen­
tat ions for learning semantic constraints. We 
apply this model to the problem of s t ruc tura l 
d isambiguat ion of noun phrases and show that 
a learned connectionist model can scale up the 
under ly ing memory of a Natura l Language Pro­
cessing system. 

1 I n t r o d u c t i o n 
The s t ruc tura l and semantic understanding of noun 
phrases and preposit ional phrases is one of the most i m ­
por tan t tasks for na tu ra l language processing systems. 
Lately issues of preposit ional phrase at tachment have 
been addressed in different systems for sentence under­
standing (e.g. [Wi lks et a l . 85], [Schubert 86], [Dahlgren 
and McDowel l 86], [McClel land and Kawamoto 86], [St. 
John and McCle l land 88]). These systems focus on de­
cid ing whether a preposit ional phrase attaches to a verb 
phrase or a noun phrase, for instance [Wi lks et al . 85]: 

dict ive verbal knowledge. However, a t tachment deci­
sions for multiple preposit ional phrases have to rely on 
syntact ic and semantic knowledge associated w i t h nouns 
and preposit ions as wel l . The importance of this knowl­
edge about nouns and preposit ions is very obvious for 
the a t tachment decisions in isolated noun phrases, as for 
example in t i t les of scientific art icles. In this paper we 
restr ict our efforts to preposit ional a t tachment in noun 
phrases using a corpus of t i t les and scientific articles f rom 
the physical sciences, for instance: 

Forces on charged particles of a plasma in a cavi ty res­
onator. 
I rregular i t ies in the drag effects on sputniks. 

We describe a two-level archi tecture for in tegrat ing 
syntact ic and semantic constraints to disambiguate PP-
at tachment in noun phrases. The b o t t o m level consists 
of backpropagat ion networks using d is t r ibu ted represen­
tat ions for the semantic relationships between nouns and 
preposit ions. The backpropagat ion networks are trained 
w i t h examples of these preposit ional relationships for 
each preposi t ion, so that the backpropagat ion networks 
learn the under ly ing semantic constraints. The top level 
consists of a relaxation network using localist represen­
tat ions for the integrat ion of syntact ic constraints w i t h 
the learned semantic constraints. Th is approach allows 
the disambiguat ion of noun phrases which the system 
has not been trained on. 

2 N o u n Features fo r P r e p o s i t i o n a l 
Re la t i onsh ips 

Preposit ional relationships depend on domain-specific 
features of the involved nouns. The noun phrases for our 
experiments were taken f rom the N P L corpus [Sparck-
Jones 76] which contains art ic le t i t les for scientific and 
technical domains. Typ ica l examples in the corpus are: 

Pulse techniques for probe measurements in gas dis­
charges. 
The influence of the radiat ion intensi ty on discharges in 
the Van-Al len-bel t . 

For each of the 10 most frequent preposit ions in the 
corpus, 100 noun phrases were extracted which contained 
the specific preposi t ion. The typ ica l s t ructure of the 
considered noun phrases is a sequence of up to five noun 
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groups each separated by a preposition. The head noun 
in the noun group was characterised w i th semantic fea­
tures. We found the following 16 features useful as a 
basic representation for the noun groups in this domain 
(see Figure 1). 

Most nouns have a clear preference for one of the 16 
features, for example "June" for T I M E . Al though prepo-
sitional relationships could be defined w i th one feature 
class [Herskovits 86], nouns can have more than one fea­
ture, for example " rad ia t ion" can be a form of ENERGY, 
and a C H A N G I N G - E V E N T . To account for these mul ­
tiple features of single nouns each noun is represented as 
a binary vector of length 16. 

3 The S t r u c t u r a l D i samb igua t i on of 
N o u n Phrases 

The disambiguation of noun phrases relies on two types 
of knowledge: first, semantic, domain-dependent con­
straints for the plausibi l i ty of prepositional relationships 
and second, syntactic, domain-independent constraints 
for crossing dependencies and locality. 

3.1 T h e B o t t o m L e v e l : L e a r n i n g S e m a n t i c 
C o n s t r a i n t s w i t h B a c k p r o p a g a t i o n 
N e t w o r k s 

Semantic constraints based on the plausibil i ty of prepo­
sit ional relationships determine how different preposi­
t ional phrases in a noun phrase can attach to one an­
other. In many systems semantic constraints are for­
mulated as rules (e.g. [Wilks et al . 85] [Dahlgren and 
McDowell 86]). We describe a different approach for 
learning the semantic constraints in prepositional rela­
tionships. 

Learning prepositional relationships for different 
prepositions is defined as learning to differentiate be­
tween plausible prepositional relationships and implau­
sible prepositional relationships. P l a u s i b l e p r e p o s i ­
t i o n a l r e l a t i o n s h i p s are relationships which can be 
true. For instance, the prepositional relationship "radi­
ation in atmosphere" is plausible. I m p l a u s i b l e p r e p o ­
s i t i o n a l r e l a t i o n s h i p s are relationships which violate 

semantic restrictions. For instance, the prepositional re­
lationship "symposium in ionosphere" violates semantic 
restrictions because meetings are not supposed to take 
place in the upper atmosphere. 

Backpropagation networks are useful to learn the plau­
sibility of prepositional relationships between two nouns 
and to generalize the regularities for the plausibil ity of 
pairs of nouns w i th which the network has not been 
trained. We used the backpropagation algori thm as de­
scribed in [Rumelhart et. al 86]. One backpropagation 
network is used for representing the prepositional rela­
tionships for one preposition. Each network consists of 
32 input units, 12 hidden units and one output unit (see 
figure 2). The input units represent the binary features 
of the two nouns. The output uni t is a real value between 
0 and 1 representing the plausibil i ty of the prepositional 
relationship between two nouns. The hidden units rep­
resent the learned mapping between the noun features 
and the plausibil ity value. 

Figure 2: Bot tom Level: Backpropagation Network for 
Learning Prepositional Relationships for the Preposition 
" i n " (only some connections shown) 

The backpropagation networks were trained by pre­
senting about 200 training examples for each specific 
preposition. A training example consisted of the fea­
ture representations for the two nouns together wi th the 
plausibility value " 1 " for "plausible" or " 0 " for " implau­
sible". After the backpropagation networks were trained 
for 1600 epochs wi th the training set, each network was 
tested wi th the training set and a testing set. The test­
ing set consisted of 30 examples of prepositional rela­
tionships (each characterized by 32 features) which the 
network had not been trained on. A prepositional rela­
tionship was considered correct on a scale from 0 to 1 if 
the value of the output uni t was higher than 0.5 for a 
desired plausible relationship and smaller than 0.5 for a 
desired implausible relationship. The testing results for 
three examined prepositions [Wermter 89] showed that 
the backpropagation networks learned almost all prepo­
sitional relationships in the training set and most of the 
relationships in the testing set. For instance, the network 
for the preposition " i n " got 93% of the 248 training ex­
amples correct and 83% of 30 unknown testing examples. 

Wermter 1487 



3.2 T h e B o t t o m L e v e l : R e p r e s e n t i n g S y n t a c t i c 
C o n s t r a i n t s 

The first form of syntactic knowledge considered for noun 
phrase disambiguation is the locality constraint. The 
L o c a l i t y c o n s t r a i n t models the heuristic that a prepo­
sit ional phrase in a noun phrase is more likely to attach 
to a close preceding noun than to a distant preceding 
noun. For instance in a noun phrase like "techniques 
for measurements in discharges" the prepositional phrase 
"in discharges" tends to attach to "measurements", al­
though " in discharges" could attach to "techniques" as 
well. The locality constraint can be interpreted as a 
generalisation of Right Association [Kimbal l 73]. While 
Right Association for a noun phrase states that a prepo­
sitional phrase attaches to the directly preceding noun, 
the locality constraint claims that there is only a strong 
tendency for a local attachment to directly preceding 
nouns. This tendency decreases w i th the distance be­
tween noun and prepositional phrase. 

The second form of syntactic knowledge is the N o -
cross ing c o n s t r a i n t . The no-crossing constraint states 
that the prepositional phrase attachment in a noun 
phrase does not show crossing branches (see e.g. [Tait 
83]). The following constructed example il lustrates a v i ­
olated no-crossing constraint. Al though "influence on 
electrons" and "temperatures in Fahrenheit" are plausi­
ble prepositional relationships, this structural interpre­
tat ion is considered wrong due to the crossing attach­
ment. 

i l lust rated w i t h an example of a noun phrase w i t h three 
preposit ions: 

The influence of the radiat ion intensity on discharges in 
the Van-Al len-bel t . 

3 .3 .1 T h e I n t e r f a c e b e t w e e n t h e T o p a n d 
B o t t o m L e v e l s 

The interface between the two levels is represented 
w i t h three types of nodes: semantic nodes, local i ty 
nodes, and no-crossing nodes (see figure 3). In our exam­
ple there are six S e m a n t i c n o d e s representing the se­
mant ic constraints for the six possible preposit ional rela­
t ionships: influence of intensi ty, influence on discharges, 
influence in Van-A l l en-belt, intensi ty on discharges, in ­
tensity in Van-Al len-bel t , discharges in Van-Al len-bel t . 

3.3 T h e T o p L e v e l : I n t e g r a t i n g S y n t a c t i c a n d 
S e m a n t i c C o n s t r a i n t s i n a R e l a x a t i o n 
N e t w o r k 

The semantic constraints for the preposit ional relat ion­
ships and the syntactic constraints for no-crossing and lo­
cal i ty are integrated in a relaxat ion network to al low par­
allel interact ions between these different constraints. In 
the past, relaxat ion networks have been shown to be suc­
cessful for in tegrat ing different constraints in a variety of 
natura l language tasks l ike sentence processing [Waltz 
and Pollack 85], word sense disambiguat ion [Bookman 
87], a t tachment decisions [Lehnert 89] and lexical access 
[Cot t re l l 88). These approaches depend on the in i t ia l ­
isat ion of the i npu t nodes w i t h suitable values b u l this 
decision is not based on a memory model . In our new 
approach we demonstrate tha t (1) t rained back propaga­
t ion networks supply a more powerful under ly ing model 
for the i npu t of a relaxat ion network and (2) relaxat ion 
networks are extremely useful for integrat ing different 
constraints for s t ruc tura l noun phrase disambiguat ion. 

First we w i l l describe the interface between our two 
levels, then we wi l l out l ine the overall architecture of the 
relaxat ion network at the top level. Th is descript ion is 

The inpu t potent ia l for the six semantic nodes in the 
relaxat ion network is based on the ou tpu t units of the 
back propagat ion networks described in section 3.1. The 
semantic nodes representing "influence of in tens i ty " , " i n ­
f luence on discharges", "influence in Van-Al len-be l t " , 
" in tensi ty in Van-Al len-be l t " , and "discharges in Van-
Al len-be l t " get high inpu t potent ia l , because these rela­
t ionships are plausible. The semantic node for " intensi ty 
on discharges" gets a low inpu t potent ia l , because that 
relat ionship is implausible. 

In addi t ion to the semantic nodes there are seven syn­
tact ic nodes representing the syntact ic constraints for 
local i ty and crossing dependencies. The potent ia l of 
the six L o c a l i t y n o d e s reflects the distance between 
the nouns of a preposit ional relat ionship: the closer the 
nouns of a preposit ional relat ionship in the noun phrase, 
the higher the potent ia l of the node. For instance, " i n ­
fluence of in tensi ty" gets a higher value than "influence 
in Van-Al len-bel t " because the nouns in the first prepo­
si t ional relat ionship are closer. The one N o - c r o s s i n g 
n o d e prevents crossing at tachments, so tha t in noun 
phrases w i t h three prepositions the th i rd noun cannot 
a t tach to the first noun whi le the four th noun attaches 
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to the second. The connections of al l nodes are described 
in the next section. 

3.3.2 T h e T o p L e v e l : A r c h i t e c t u r e o f t h e 
R e l a x a t i o n N e t w o r k 

The relaxation network (see figure 4) consists of nodes 
connected via inh ib i tory and excitatory connections and 
can be generated for noun phrases w i th different lengths. 
For noun phrases w i th three prepositions there are 13 
input nodes and six output nodes. The input nodes 
for the semantic constraints and locality constraints are 
connnected via inhib i tory connections if the two prepo­
sitional relationships have the same noun in the second 
position of the prepositional relationship and a different 
noun in the first posit ion. For example "influence on 
discharges" and "intensity on discharges" are connected 
via inhib i tory connections, because "influence" competes 
wi th " intensity" for "discharges". 

The output nodes represent the six possible structural 
interpretations of the noun phrase. Therefore the out­
put nodes wi l l be referred to as S t r u c t u r e nodes . One 
structure node can be described as a tr iple of number 
pairs. Each number stands for the position of a noun 
in a noun phrase, for instance the tr iple "1-2,2-3,3-4" is 
the representation for "influences of intensity", " inten­
sity on discharges" and "discharges in Van-Allen-belt". 
A l l structure nodes are in competi t ion and connected via 
inhib i tory connections. 

The semantic nodes and the locality nodes are con­
nected wi th the structure nodes via excitatory connec­
tions if the prepositional relationship of the input node 
occurs in the structure node. The no-crossing node is in-
hibi tor i ly connected to the structure node "1-2,1-3,2-4" 
which represents crossing dependencies. 

3.3.3 P r o c e s s i n g i n t h e R e l a x a t i o n N e t w o r k 
The nodes in the relaxation network are init ialized 

wi th a potential between 0 and 10. The semantic nodes 
receive input based on the output of the backpropaga-
tion networks. They obtain a high start potential of 
10 for a plausible prepositional relationship and a low 
start potential of 2 for an implausible prepositional rela­
tionship. The ini t ia l isat ion values of the locality nodes 
depend on the distance between nouns in a noun phrase. 
For instance, if the attachment is over 1 preposition we 
init ial ise w i th 3, for attachment over 2 prepositions wi th 
2, and for attachment over 3 prepostions wi th 1. This 
ensures that local attachment gets more reinforcement 
than distant at tachment. The rest of the nodes, the 
no-crossing node and the structure nodes, are init ialized 
wi th low values of 2. 

Once the relaxation algor i thm [Feldman and Ballard 
82] is started, nodes update their potential . Incoming 
excitatory connections increase the potential of a node, 
incoming inh ib i tory connections decrease the potential. 
One cycle consists of updat ing every node once. A l ­
though our implementat ion of this process is sequential, 
the actions wi th in one cycle could be processed in par­
allel. After about 30 cycles the network converges to a 

stable state in which the potentials do not change any 
more. The structure node w i th the highest potential 
represents the preferred structural interpretat ion of the 
noun phrase. 

In our example "The influence of the radiation inten­
sity on discharges in the Van-Allen-belt" the following 
structure node had the highest potential of 8.9 at the 
end of the relaxation (the other structure nodes had val­
ues around 0.9): 

Influence of intensity 
Influence on discharges 
Discharges in Van-Allen-belt 

The network integrated the syntactic and semantic 
constraints: the semantic constraint "intensity on dis­
charges" is implausible and therefore the semantic con­
straint "influence on discharges" is found as the preferred 
attachment for "discharges", although the syntactic lo­
cality constraint prefers the local attachment "intensity 
on discharges" compared to "infuence on discharges". 
This example shows how semantic constraints can over­
rule locality constraints. 

Looking at the noun "Van-Al len-belt" we notice the 
syntactic influence. "Van-Al len-belt" could attach to all 
three preceding nouns, because all these prepositional re­
lationships are plausible. At the same time the locality 
constraint imposes a preference for a local attachment, 
so that "discharges in Van-Allen-belt" is preferred to " in­
fluence in Van-Allen-belt" and "intensity in Van-Allen-
belt". 

4 D iscuss ion 

We use two different mechanisms at two levels for the 
task of structural noun phrase disambiguation. At 
the domain-dependent bot tom level we use distr ibuted 
representations and backpropagation networks for each 
preposition to learn the semantic relationships. At the 
domain-independent top level we use localist represen­
tations and a relaxation network to integrate syntactic 
and semantic constraints. Al though work on related re­
laxation networks has to rely on some in i t ia l setting of 
the start activation (e.g. [Waltz and Pollack 85], [Book-
man 87], [Lehnert 87], [Cottrel l 88]), our model bases its 
init ial ization on learned memory. Whi le other work on 
PP-attachment has mostly concentrated on the attach­
ment of single prepositional phrases in sentences ([Wilks 
et al. 85], [Schubert 86], [Dahlgren and McDowell 86], 
[McClelland and Kawamoto 86], [St. John and McClel­
land 88]) we have concentrated on the attachment of 
mult iple prepositional phrases in noun phrases. 

Our approach demonstrates progress over related con-
nectionist work [Cosic and Munro 88] by using dis­
t r ibuted representations for nouns, by integrating se­
mantic and syntactic constraints and by allowing for 
noun phrases wi th arbi t rary length. We must also point 
out that our underlying memory model of prepositional 
relationships can be used as part of a full sentence ana-
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Noun phrase: Influence of intensity on discharges in Van-Al len-Bel t 

12: influence of intensity 
23: intensity on discharges 
13: influence on discharges 

34: discharges in Van-Al len-Belt 
24: intensity in Van-Al len-Bel t 
14: influence in Van-Al len-Belt 

Connections: Only the excitatory connections for the semantic node S I3 . for the syntactic 

node L12 and for the structure node 12.13.34 are shown completely 

Only the inhibitory connections for structure node 12.13.34 are shown completely 

Figure 4: Top Level: Relaxation Network for the Integration of Semantic and Syntactic Constraints (only some 
connections shown) 

lyser as well. For example, the sentence analyser CIR­
CUS [Lehnert 89] can combine our semantic memory 
model w i th predictive knowledge during sentence pro­
cessing. 

5 Conc lus ions 

We have described an approach for learning and inte­
grating semantic and syntactic constraints. Backpropa-
gation networks and distr ibuted representations are used 
to learn the plausibil i ty of semantic relationships and 
to generalise the learned regularities to semantic con­
straints. Relaxation networks and local is t representa­
tions are used to integrate these semantic constraints 
w i th syntactic constraints. We have demonstrated that 
a connectionist model supplies a powerful memory model 
for the learning and integration of constraints for struc­
tural noun phrase disambiguation. Since the problem 
of learning and integrating constraints occurs in many 
other language tasks like word sense disambiguation or 
compound noun interpretat ion, our memory model is of 
importance for many Natural Language Processing prob­
lems. 
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