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A b s t r a c t 

Goal relationships resulting from the init ial 
data and subsequent processing can he used 
to dynamically construct a partial topology of 
the solution space based on what appear to be 
feasible solutions. This structure can be used 
to make control decisions that significantly re­
duce the amount of search required to solve 
a problem in a complex domain. We exam-
ine the ut i l i ty of this approach in the context 
of a multi- level, cooperative knowledge source 
model of problem solving. We present a tax­
onomy of goal relationships for constructing 
part ial topologies of the solution space and 
show that mechanisms using this information 
can be built as natural extensions of an inte­
grated data-directed and goal directed archi 
tecture. Examples and performance results 
demonstrating how these additions improve the 
system's abil i ty to evaluate potential activities 
are provided. 

1 Introduction 

Making appropriate control decisions in a complex, 
multi-dimensional search space is a difficult task. This 
difficulty arises because relationships among partial re­
sults and potential activities are not readily observable. 
For example, in a blackboard architecture the same 
partial results can be used in many contexts. There­
fore, producing a specific result may affect many al­
ternative solutions. In addit ion, the problem space is 
represented at mult iple abstraction levels on the black­
board, and mult iple solution paths for the same result 
may be available. This provides the problem solver 
wi th flexibil ity in choosing problem-solving activities 
but also allows results to be rederived using alterna­
tive paths without recognizing the redundancy until the 
last step. Furthermore, the asynchronous, opportunis 
tic style of problem solving leads to situations where 
it is unclear whether a solution is missing due to a 
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lack of data, in which case the solution wil l never be 
generated, or due to a lack of processing, in which 
case additional work will eventually produce the solu­
tion. Thus, employing complex problem-solving capa­
bilities while at the same time making intelligent con­
trol decisions is a formidable task (Hayes-Roth, 1985, 
Hayes-Roth and Lesser, 1977, Lesser and Erman, 1977, 
Ni i , 1986b, Nii , 1986a]. 

Several years ago, the cooperating knowledge source 
architecture of Hearsay-II [Erman et a/., 1980] was ex­
tended to unify data-directed and goal-directed control 
[Corkill et a/., 1982].1 This was a first step toward devel­
oping the needed interrelationships among actions and 
results necessary for making intelligent control decisions. 
In the interim, we have gained considerable experience 
with this control architecture. In particular, we have 
identified the need for new types of goals and for addi­
tional relationships among goals. These extensions allow 
us to more accurately relate the predicted results of fu­
ture activities to existing results in order to make more 
informed control decisions. 

In the next section we briefly review the unified data-
directed and goal-directed control architecture. Section 
3 describes the new goal relationships from a general 
perspective and presents specific examples from two do­
mains. Section 4 outlines how these new mechanisms 
work in a blackboard based problem solver. Section 5 is 
a brief presentation and discussion of our experimental 
results. 

2 A Rev iew of Goal-based C o n t r o l 

Figure 1 presents a high level schematic for the inte­
grated data directed and goal-directed control architec­
ture as implemented in the D V M T [Lesser et a/., 1987, 
Lesser and Corkil l , 1983]. The basic Hearsav-II archi­
tecture is modified to include a goal b l a c k b o a r d and a 
goal processor. The goal blackboard, which mirrors 
the data blackboard in dimensionality, contains goals 
representing i n ten t i ons to create particular results on 
the data blackboard. Goals provide an abstraction over 
the potential actions for achieving a particular type of 

1 Through a .slightly different approach, Johnson and 
Hayes-Roth [Johnson and Hayes-Roth, 1987] have also ex­
tended the data-directed process of the classic blackboard 
problem solver to include goal-directed control. 
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Figure 1: Integrated Data and Goal-Directed Control 

result and allow the system to reason about its inten­
tions independently of the particular knowledge source 
(KS) actions at its disposal. 

The two general classes of goals are d a t a - d i r e c t e d 
and goa l -d i r ec ted . The blackboard monitor uses do­
main knowledge to create data-directed goals in response 
to the addition or modification of part ial results on the 
data blackboard. Each data-directed goal specifies the 
range of potential solutions resulting from the use of the 
triggering data. 

Since the creation of a goal does not guarantee suf­
ficient information on the data blackboard to execute a 
KS to satisfy the goal, the goal processor runs a p recon ­
d i t i o n p r o c e d u r e for the applicable KSs to make a de­
tailed examination. When results indicate that a KS has 
sufficient information to satisfy the goal, the goal t r i g ­
gers a KS instantiation (KSI) . The scheduler assigns the 
KSI a priority rating and places it on the schedu l ing 
queue. The scheduler assigns priori ty by first deter­
mining the set of goals that may be satisfied by a KSI's 
predicted output. It then computes the KSI's rating 
as a function of the ratings of the potentially satisfied 
goals and the credibility of the predicted results. If suffi­
cient information is not available to run a KSI, the goal 
processor can create goa l -d i rec ted goals (subgoals) to 
generate the needed data.2 The decision to create sub-
goals is dependent on the importance of achieving the 
goals potentially satisfied by the KSI and on the cost of 
creating the subgoals. Subgoal ratings are based on the 
rating of the goal that triggered the KSI. If the parent 
goal has a high rating, its subgoals might increase the 

2Goal-directed goals are also generated by the goal pro­
cessor for other purposes. 

rat ing of KSIs that generate data needed to satisfy the 
preconditions of the KSI triggered by the parent goal. 

Goal-based control does not require that control de­
cisions be made in a top-down, g o a l - d i r e c t e d man­
ner. Goals are used to make both data-directed and 
goal-directed control decisions, and the classic data-
directed/goal-directed dichotomy is represented in our 
approach by the relative ratings among goals. By ad­
just ing its KSI rat ing computations, the scheduler can 
bias the system towards goal-directed or data-directed 
control. Goal-based control attempts to incorporate do­
main data to build an appropriate control abstraction 
that wil l predict the type of results that can possibly 
be generated. This permits the system to develop non-
local focus-of-control strategies that take into account 
the interactions of work on data in different parts of the 
problem-solving space. 

3 Goa l Re la t ionsh ips 

In addit ion to the goal/subgoal relationship, other rela­
tionships among goals can be exploited to improve the 
effectiveness of goal-based control. These new goal rela­
tionships resulting from the initial data and subsequent 
processing can be used to dynamically construct a partial 
topology of the solution space based on what appear to be 
feasible solutions. This structure can be used to make 
control decisions that significantly reduce the amount of 
search required to solve a problem in a complex domain. 
Specifically, three important questions necessary for ef­
fective control can be answered by relating goals to each 
other: 

• Can the same results be obtained by working on 
different goals? 

• Wi l l working on two distinct goals generate equiva­
lent partial solutions? 

• Wi l l work on a goal differentiate between mutual ly 
exclusive solutions? 

In order to formally define the goal relationships nec­
essary to answer these questions, we first define the fol­
lowing concepts: the potential solution set of a goal and 
the component set of a potential solution. 
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least one side of the parallelogram, and no line intersects 
either the top or bot tom of the parallelogram. 

4 Exper iments 
The following two examples demonstrate the usefulness 
of goal relationships. The first helps prevent redundant 
processing through the use of inhib i t ing goals, and the 
second enables a knowledge source to be rated more ac­
curately based on its local context. 

4 .1 I n h i b i t i n g Goals 

A new goal type, an inhibi t ing goal, has been added to 
control redundant processing. Wi thout inhibi t ing goals, 
the only way to minimize redundant activi ty was to de­
crease the ratings of the goal and subgoals that led to 
a strongly believed result. This method prevents addi­
t ional work only on the original solution path used to 
derive the high-level result. It does not l imi t act ivi ty 
on any of the alternative paths that might lead to the 
same result. In order to effectively control redundant 
processing, a separate mechanism is needed to eliminate 
derivation of any intermediate result that would eventu­
ally produce the high-level result. Thus, when a satisfac­
tory, high-level result is produced, this new mechanism 
insures that the system only works on data it determines 
to be independent, competing, or cooperating in relation 
to the high-level result. 

An inhibi t ing goal and its associated inhibi t ing sub-
goals are generated when the system determines that 
sufficient work has been done on refining a high-level 
result. A l l KSs are then inhibited from producing re­
sults that are subsumed by the inhibi t ing goal or inhibi t­
ing subgoals. The specification of the inhibi t ing goal is 
taken from the characteristics of the high-level result. 
By specifying a tolerance around the inhibi t ing goal, its 
characteristics can be generalized to extend the range of 
inhibi t ion. This can eliminate solutions that are simi 
lar, though not identical. This is appropriate in envi­
ronments where answers that have characteristics close 
to the correct answer are acceptable. The algorithm is 
given in Figure 4. 

In general, inhib i t ing goals do not preclude the for­
mation of competing solutions that overlap inhibited re­
gions. These solutions wil l st i l l be formed by extending 
data outside the inhibited area. Figure 5 illustrates such 
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a situation in the previously described distributed ve­
hicle monitor ing system. In this scenario, four potential 
solutions can be formed by merging the segments labeled 
a, 6, c and d into the potential solutions ad, ac, be and bd. 
If the system were to form ad first and create an inhibit­
ing goal to restrict further processing on ad, ac could 
st i l l be formed by extending c to ac since the goal to 
extend c is neither subsumed nor assisted by the inhibit­
ing goal corresponding to ad. It might sti l l be possible 
for some competing solutions to be precluded in anoma­
lous situations where mult iple inhibited regions interact. 
However, this depends almost entirely on how the inter­
mediate potential solutions are formed. 

4.2 L o c a l C o n t e x t 

Along wi th inhibi t ing activity based on high-level re­
sults, there is also a need to inhibi t activity based on a 
more local context. For example, if any goal that tr ig­
gered a KS is satisfied before the KS runs, and if the KS 
can not improve on the results that satisfied the goal, 
the KS should have its rat ing decreased. Consequently, 
which KS satisfies a goal is an important issue. If the 
scheduler gave prior i ty to the KS1 with the most com­
prehensive triggering goal, its results might satisfy other 
goals and eliminate the need to execute their triggered 
KSIs. The following situation demonstrates this point. 

Consider the pending activities K S I 1 and KS I 2 , gen­
erated from work on two different derivation paths. If 
executed, K S I 1 would produce result R l that would sub­
sume R2, the result of executing KS!2. Executing K S I 1 

first would make KSI2's results redundant, so the sched­

uler should give KSI: priority. However, from a local, 
data-directed perspective, KSI2 might be given higher 
priority, even though K S I 1 is the more promising of the 
two. This can occur if the scheduler incorporates an av­
erage of input data credibility in its KSI rating function 
and if KSI1 uses lower rated data in addition to highly 
rated data used by KSI2. For example, K S I 1 may gen­
erate R1 by extending highly credible data into areas of 
weak data, and KSI2 may use only the highly credible 
data to produce the highest rated component of R1. 

Our ear "er approach to rating KSIs tried to balance 
the quality of the predicted result wi th its scope. How­
ever, we found that the appropriate balance was situa­
tion dependent. Assigning too much priority to scope 
had the undesirable consequence of making the search 
too depth-first, while assigning too much priority to 
quality led to redundant activity as il lustrated in the 
above example. Instead, to choose among the pending 
KSIs, we need to explicitly take into account the rela­
tionships among their predicted outputs. 

Using the goal relationships specified in the previous 
section, the system can form a local understanding of 
why a KSI is scheduled to be invoked and may instead 
invoke a different KSI that produces the same results 
more efficiently. This procedure, called the Local Con­
text Mechanism, can be added to the system as an addi-
tion to the scheduler. In general, before executing a KSI, 
the Local Context Mechanism examines the KSI's tr ig­
gering goals and searches for a more comprehensive KSI 
that would also satisfy these goals. If this more compre­
hensive KSI produces an actual result that is as good in 
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the subsuming area as that expected from the less com­
prehensive KSI , the subsumed results are removed from 
the output set of the less comprehensive KSI . The Local 
Context Mechanism is implemented as a combination of 
the two algorithms shown in Figure 6. 

5 Exper imenta l Results 

The goal relationship algorithms were implemented in 
the Distr ibuted Vehicle Moni tor ing Testbed ( D V M T ) . 
The D V M T simulates a network of vehicle monitoring 
nodes, where each node applies simplified signal process­
ing knowledge to acoustically sensed data in an attempt 
to identify, locate and track patterns of vehicles moving 
through a two-dimensional space. A node is responsible 
for a specific area and attempts to recognize and elimi­
nate errorful sensor data as it integrates the correct data 
into an answer map. Each node has a blackboard archi­
tecture w i th knowledge sources and blackboard levels of 
abstraction appropriate for vehicle monitor ing. Knowl­
edge sources perform the basic problem solving tasks of 
extending and refining hypotheses (part ia l solutions). As 
described earlier, data-directed and goal-directed goals 
are used to control problem solving activities. 

Experimental results are summarized in Table 1. 
Three environments were used for testing; a simple envi­
ronment wi th a single vehicle track and no sensor noise, 
an environment wi th the same vehicle track but wi th 
random noise added, and a complex environment wi th 
two crossing vehicle tracks and a significant amount of 
noise. Features used for comparison were the number 
of knowledge source executions required to produce the 
solution(s), the number of hypotheses created, and the 
number of goals created. The system performed more ef­
ficiently wi th the new goal relationship algorithms. For 
the environment wi th a single track, 3G% fewer hypothe­
ses and 9% fewer goals were produced and the system 
required 65% fewer KS executions to compute the an­
swer. In the second environment, 1 1 % fewer hypotheses 
and 8% more goals were produced and the solution was 
found wi th 37% fewer KS executions. Finally, in the 

complex environment, 22% fewer hypotheses and 10% 
fewer goals were produced and the solutions were found 
wi th 46% fewer KS executions. 

In each of the environments, the new algorithms were 
effective in preventing redundant processing in areas 
where strongly believed, high-level results were found. 
This enabled the system to allocate resources for work 
in noisy areas and areas where the sensed signels were 
weak. Although the new algorithms caused the system 
to generate addit ional goals, most noticeably in the sec­
ond environment, the resulting improvement in focus­
ing capabilities resulted in a considerable reduction in 
the number of knowledge sources executed. Finally, the 
cost of processing goal relationships was significantly less 
than the cost of processing KSs. The savings were suf­
ficient to result in dramatic decreases in execution time 
required when the system used goal relationship mecha­
nisms. 

6 Conclusion 
We have presented a taxonomy of goal relationships that 
include inhib i t ing goals. In addit ion, we have shown that 
mechanisms for accurately controll ing the flexibility pro­
vided by the multi- level, cooperative knowledge source 
model of problem solving can be bui l t as natural exten­
sions to the integrated data-directed and goal-directed 
architecture. 

Goal relationships provide important information for 
making intelligent control decisions, and they are a useful 
tool for representing the current state of problem solv­
ing in a complex search space. Their use is applicable to 
tasks in which combined data-directed and goal-directed 
control is appropriate. In order to exploit goal relation­
ship mechanisms, it is necessary that the quality and 
characteristics of a KSPs output be roughly predictable 
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and that data-directed goals be constructed so as to con­
tain all the possible outputs that a KS can produce based 
on the triggering data. Addit ionally, the computation of 
goal relationships, data-directed goals, and KS output 
set approximations must be inexpensive compared to the 
cost of executing a KS. Finally, it is also important that a 
data-directed goal's solution set not include a large num­
ber of potential solutions that can not be generated by 
a KS working on the triggering data. Otherwise, many 
goal relationships wi l l be overlooked. 

We are incorporating these concepts into mechanisms 
for real t ime control and investigating the use of cooper­
at ing, independent, and competing goal relationships for 
use in complex focusing heuristics and in problem solving 
terminat ion. We are also examining the potential ben­
efits of adding addit ional goal attributes indicating the 
expected amount of resources needed to satisfy a goal, 
the amount of work already invested in satisfying a goal, 
the expected number of solutions to a goal, and the like­
l ihood of satisfying a goal. Finally, we intend to expand 
the notion of cooperation and attempt to reproduce the 
high-level planning results of Durfee and Lesser [Durfee 
and Lesser, 1986] through the use of goal relationships. 
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