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Abstract 

We discuss the problem of implementing an expert, 
knowledge-based system. In particular, we consider 
which predicates in an expert, knowledge-based 
system should be actually stored and which should 
be derived on demand. We present two solutions 
for unconstrained applications. When realistic 
constraints are present it is shown that the problem 
is NP-complete. A sub-optimal algorithm is given 
which operates in polynomial time when the 
application is not heavily constrained. 

1. Introduction 

Many early expert systems have proved to be difficult to 
maintain [Steels, 1987], as a result there is a growing 
interest in rigorous design techniques for expert systems 
[Addis, 1985], [Martin, 1988], [Debenham, 1989]. The use 
of rigorous design techniques should mean that large expert 
systems can be constructed and maintained effectively. Our 
interest in the design of large, expert, knowledge-based 
systems was first reported in [Debenham and McGrath, 
19821; a substantial development of that early work is 
reported in [Debenham, 1985a]. The effective construction 
and maintenance of large expert systems entails the solution 
to design problems which arc not significant when dealing 
with smaller systems. One such design problem is 
considered here. 

For the purpose of this discussion, we think of the 
knowledge in an expert, knowledge-based system as 
consisting of a collection of "rules", where a rule states how 
to deduce all that there is to know about one "predicate" 
from the information in other predicates. For example, the 
rule "customers with steady income and regular expenditure 
are good credit risks otherwise they are poor credit risks" 
could be represented as a group of Horn clauses [Hogger, 
19841: 

A dependency diagram for a rule shows that all the 
information in one predicate can be derived, using the rule, 
from the information in other predicates. The dependency 
diagram shown in Figure 1 is for a rule expressed in Horn 
clauses. It should be clear that a dependency diagram can be 
constructed for rules expressed in any "if...then" formalism; 
thus the relevance of what follows is not restricted to 
systems expressed in logic. Note that a dependency diagram 
consists of one "thick arc" and one or more "thin arcs". The 
"thick arc" is connected to the head node which represents 
the predicate for which the information may be derived by 
the rule. The "thin arcs" are connected to the body nodes 
which represent the remaining predicates in the rule. 

An expert, knowledge-based system will contain a 
collection of rules which enables the information in the 
"query predicates" to be deduced from the information in the 
"update predicates"; where the update predicates arc the 
predicates which are directly associated with the "input" 
information, and the query predicates are the predicates which 
are directly associated with the identified query types of the 
expert system. 

We assume that the collection of rules in an expert 
system is minimal in the sense that none of the rules can be 
disposed of. See [Debenham, 1985b] for a discussion on the 
selection of an optimal, minimal set of rules. Thus the 
rules in an expert system can be represented using a 
combined diagram which shows, on one diagram, the 
dependency diagrams for all of the rules. For example, 
Figure 2 shows a combined diagram for an expert system 
with eight rules, three query predicates which are shown on 

Debenham 221 



in a combined diagram, node A IS said 10 depend on 
node Y if there is a path from Y to X in that diagram; 
where the direction of f low is that of logical implication, 
i.e. from the body nodes to the head nodes. In the example 
shown in Figure 3, D depends on E, B depends on E and C, 
and A depends on all the other nodes in the diagram. 

It is important to appreciate that the update predicates 
need not necessarily be stored in the high speed memory. 
The values of updates may be retained in auxiliary storage; 
these values may be required during subsequent update 
operations and may be required to regenerate the system in 
the event of a disaster. A l l that matters is: 
• that all the values in all the stored predicates can be 

deduced from the values in the update predicates, and 
• that all the values in al l the query predicates can be 

deduced from the values in the stored predicates. 
Thus we see that the set of stored predicates w i l l , in a 

sense, divide the combined diagram into two portions. 
Thus, informally, we may think of a storage allocation as a 
subset of the set of nodes such that if the storage allocation 
were removed from the diagram then the resulting diagram 
wou ld consist of two connected, possibly empty, 
components with one component containing no query nodes 
and the other component containing no update nodes. The 
idea is that the storage allocation represents those predicates 
which are actually stored; in other words, those nodes which 
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are not in the storage allocation represent predicates which 
will be calculated when required. In the example shown in 
Figure 3, four different storage allocations show that the 
query predicate A may be deduced from any of the sets 
{B ,C ,D } , {D ,E ,C} , {E,B,C} and {C,E}. 

An irredundant storage allocation is a storage allocation 
with the property that if a node is removed from the storage 
allocation then the resulting set ceases to be a storage 
allocation. An irredundant storage allocation can be 
visualized as a minimal set of nodes which divides the graph 
into two portions. If a storage allocation is not irredundant, 
it is called a redundant storage allocation. In the example 
shown in Figure 3, two of the storage allocations quoted 
above are irredundant storage allocations; they are 
{B, C, D) and {C, E). Note that for the storage allocation 
{B, C, D) the values of the update relation E cannot be 
recovered from {B, C, D) unless suitable, additional rules 
are available. In this case, if the values of E might be 
subsequently required then they would have to be retained in 
auxiliary storage. 

A storage allocation is a division if it contains no two 
nodes which depend on each other. As we assume that the 
collection of rules in an expert system is minimal, if a 
selection of nodes from a combined diagram is a "division" 
then that selection will cease to be a storage allocation if 
any node is removed from the storage allocation; in other 
words, all divisions are irredundant storage allocations. 

It is important to understand the difference between an 
irredundant storage allocation and a division. In the 
combined diagram shown in Figure 4 the storage allocation 
{ C, D, F } is an irredundant storage allocation because if 
any one of these three nodes were removed it would cease to 
be a storage allocation; but, { C, D, F } is not a division 
because D depends on C. On the other hand, the storage 
allocation { B, D, F } is a division. 

Figure 4 

Non-division storage allocations are often desirable. 
However, divisions are of great practical significance because 
if a storage allocation contains one node that depends on 
another then the updates to the second node will also have to 
be reflected in the first. 

We now mark costs on the combined diagram. These 
costs are intended to represent the cost of storing each 
predicate, and are written beside the node which represents 
the predicate to which the costs apply. For example, if the 
cost of storing predicate B was 5 and the cost of storing 
predicate C was 6, and B and C were in a dependency 
diagram with head predicate A then this would be denoted as 
shown on the diagram in Figure 5. 

A storage allocation is called a minimal storage 
allocation if its cost is no greater than any other storage 
allocation. It is easy to show that minimal storage 
allocations are irredundant storage allocations but are not 

necessarily divisions. For example, consider the combined 
diagram as shown in Figure 6, the minimal storage 
allocation is the set { C, D, F ) which is irredundant but 
is not a division. We will now consider the calculation of 
both the division with least cost and the minimal storage 
allocation. 

This problem can be solved by applying the 
(polynomial time) minimum cut algorithm to a modified 
version of the combined diagram. This modification is 
performed in two steps. First, all of the "thick" arcs in the 
combined diagram are "collapsed" to a point. Second, 
replace each node with a "pseudo-arc" marked with the node 
cost, and replace each " th in" arc with a "pseudo-node". The 
resulting diagram is called the division-dual diagram. The 
solution to Problem 1 may be found by applying the 
minimum cut algorithm to the division dual diagram. When 
the minimum cut has been calculated, the pseudo-arcs which 
lie on the minimum cut w i l l correspond to the nodes in the 
division with least cost. See [Even, 1979], or any good 
book on algorithmic graph theory, for a description of the 
minimum cut algorithm. 

For example consider the combined diagram shown in 
Figure 6; its division-dual diagram is as shown in Figure 7. 
From which we readily see that the division of least cost is 
{ C, E, F } or { B, D, F } with a total cost of 10. Note 
that an arc in the division-dual diagram corresponds to a node 
in the original diagram, and vice versa. 
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We now consider the calculation of the minimal storage 
allocation. 

Problem 2. 
To calculate the irredundant storage allocation with least 
cost; this is the minimal storage allocation. 

This problem can be solved by applying the 
(polynomial time) minimum cut algorithm to a modified 
version of the combined diagram which is similar to that 
considered in the solution to Problem 1. This modification 
is performed in two steps. First, all of the "thick" arcs in 
the combined diagram are "collapsed" to a point. Second, 
replace each remaining "thin" arc with a "pseudo-node" and 
replace each node with a "pseudo-polygon" as follows: 
• a node which is directly connected to one or two other 

nodes is represented by a pseudo-arc as in the solution 
to problem 1. This pseudo-arc is marked with the node 
cost 

• a node which is directly connected to n other nodes, 
where n > 2 , is represented by an n-sided pseudo-
polygon with one corner of the polygon connected to 
the arc which is connected to each of the n nodes; the 
sides of the polygon are marked with the original node 
cost divided by two. 

The resulting diagram is called the dual diagram. The 
solution to Problem 2 may be found by applying the 
minimum cut algorithm to this dual diagram. When the 
minimum cut has been calculated, the pseudo-polygons 
which lie on the cut will correspond to the nodes in the 
minimal storage allocation. 

For example, the combined diagram shown in Figure 8 
will generate the dual diagram shown in Figure 9. From 
which we see that the minimal storage allocation is 
{ B,C,E } with a cost of 21. 

Also for example, consider the combined diagram 
shown in Figure 6; its dual diagram is as shown in Figure 
10. From which we readily see that the minimum cut is 
{ C, D, F } with a total cost of 3. 

Figure 10 

4. Complexity of the Expert 
Implementation Problem 

Systems 

The operational constraints and optimality criterion 
noted in the definition of the expert systems implementation 
problem together comprise a complex set of conflicting 
constraints. 

THEOREM. 
The expert systems implementation problem is NP-
complete. 
Proof. 
We wi l l restrict and transform the expert systems 
implementation problem, and will show that this restriction 
and transformation is equivalent to the "Minimum Cut Into 
Bounded Sets" problem which is known to be NP-complete 
[Garey et a/., 1976]. 

First assume that there is only one query type, q, and 
one update type, u. Then the expert systems 
implementation problem now reads:- Given a combined 
diagram, given constants T(q), T(u) and C, to choose a set of 
predicates R to be the storage allocation such that: 

t(q) < T(q) 
T(u) < T(u) 

∑r(r)<C 
r€R 

are satisfied and 
(T(q)*f(q)) + (t(u)xf(u)) 

is minimized. 
Second, adopt the following trivial measure for T, this 

measure defines T(q) to be the number of rules involved in 
servicing the query type q, and T(u) is just the number of 
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rules involved in servicing the update type u. In other 
words, T(q) is the number of rules required to deduce the 
values of q from the values stored in R, T(u) is the number 
of rules required to deduce the values in R from the values in 
u. In addition we further restrict the problem to the special 
case when T(q) = T(u) = T. Then the expert systems 
implementation problem may be stated as:- Given a 
combined diagram, given constants T and C, to choose a set 
of predicates R to be the storage allocation such that:-

the number of rules needed to deduce the values of q 
from the values in R is less than or equal to T 

the number of rules needed to deduce the values of R 
from the values in u is less than or equal to T 

We now transform the representation of this restriction 
of the expert systems implementation problem into the 
division dual diagram representation as discussed in the 
previous section. We will ignore the expression to be 
minimized, that is, we wil l just state the operational 
constraints. Recall that on the division dual diagram, 
predicates are denoted by arcs and rules are denoted by nodes. 
The expert systems implementation problem as restricted so 
far now reads:- Given a division dual diagram, constants T 
and C, to choose a partition of the set of nodes in the 
diagram, V, into two disjoint sets V1 and V2 such that the 
single query type q is directly connected to a node in V1 and 
the single update type u is directly connected to a node in V2 

such that: 

where IVI means "the number of elements in the set V", and 
R is the set of arcs with one node in V1 and the other in V2. 

This final restriction and transformation of the expert 
systems implementation problem is precisely the 
"Minimum Cut into Bounded Sets" problem. This 
completes the proof. 

We note from the proof of the theorem that what has 
actually been demonstrated is that the problem of finding a 
solution to the expert systems implementation problem is 
NP-complete, never mind the problem of finding an optimal 
solution. Thus we have: 

Corollary. 
Given a combined diagram, the problem of finding a 
solution which satisfies the operational constraints, but 
which is not necessarily optimal, to the expert systems 
implementation problem is NP-complcte. 

The "Minimum Cut into Bounded Sets" problem 
remains NP-complete even if , and if 

Thus we note that the following restriction 

of the expert systems implementation problem is also NP-
complete. Given a dual diagram and constant C, to choose a 
partition of the nodes of the diagram into two disjoint sets 
V1 and V2 such that the single query node q is connected to a 
node in V1 and the single update node u is connected to a 
node in V2 such that: 

In the special case when T = IVI it is clear that the 
problem of finding an admissible, but not necessarily 
optimal, solution to the expert systems implementation 
problem reduces to satisfying the single constraint 

which can be solved in polynomial time by the minimum 
cut algorithm. 

5- Sub-Optimal Storage Allocation 

In the previous section we have seen that the expert 
systems implementation problem is NP-complete. However 
this does not imply that identifiable classes of sub-problems 
encountered in practice need necessarily be NP-complete. 
For example, the costs on the arcs in the combined diagram 
are often related to each other. Perhaps investigation of this 
observation, and others like it, might lead to some 
simplification. 

We conclude our discussion with a sub-optimal 
algorithm for calculating the (hopefully) minimal storage 
allocation which satisfies query and update response 
constraints. This algorithm yields acceptable results in 
practice when the application is not heavily constrained. If 
the application has heavy query and update constraints then 
the algorithm may not find a solution. 

The algorithm begins with the unconstrained minimal 
storage allocation as calculated in Problem 2. This minimal 
storage allocation is then "modified" to form other storage 
allocations which are all constrained to be irredundant. 

In the statement of the following algorithm we will use 
the following notation. If, in a combined diagram, S is an 
irredundant storage allocation and n is a node not in S, then 
S t {n} denotes the set of nodes obtained by adding n to S 
and removing from S any other nodes which, as a result of n 
being added, prevent S u ( n ) from being irredundant. 

Algorithm. 
Find the minimal storage allocation. This may be done by 
employing our method given in Problem 2 on the dual 
diagram. If there is more than one such storage allocation 
then choose the storage allocation which violates fewest 
operational (i.e. query or update) constraints. (Recall that a 
storage allocation consists of a set of predicates; on the dual 
diagram this set will be represented by a set of polygons.) 
Represent this minimal storage allocation as a "cut" on the 
combined diagram. Then :-
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6. Summary 

We have discussed several factors which will influence 
the choice of a storage allocation for an expert system. Two 
solutions have been proposed for un-constrained 
applications. It has been argued that when realistic 
constraints are present, the determination of the optimal 
storage allocation is NP-complete. A sub-optimal 
algorithm has been given which operates in polynomial 
time when the application is not heavily constrained. 
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