
The Implementation of Expert, Knowledge-Based Systems

John Debenham

The University of Technology, Sydney
PO Box 123, Broadway,

Australia, 2007.

Abstract

We discuss the problem of implementing an expert,
knowledge-based system. In particular, we consider
which predicates in an expert, knowledge-based
system should be actually stored and which should
be derived on demand. We present two solutions
for unconstrained applications. When realistic
constraints are present it is shown that the problem
is NP-complete. A sub-optimal algorithm is given
which operates in polynomial time when the
application is not heavily constrained.

1. Introduction

Many early expert systems have proved to be difficult to
maintain [Steels, 1987], as a result there is a growing
interest in rigorous design techniques for expert systems
[Addis, 1985], [Martin, 1988], [Debenham, 1989]. The use
of rigorous design techniques should mean that large expert
systems can be constructed and maintained effectively. Our
interest in the design of large, expert, knowledge-based
systems was first reported in [Debenham and McGrath,
19821; a substantial development of that early work is
reported in [Debenham, 1985a]. The effective construction
and maintenance of large expert systems entails the solution
to design problems which arc not significant when dealing
with smaller systems. One such design problem is
considered here.

For the purpose of this discussion, we think of the
knowledge in an expert, knowledge-based system as
consisting of a collection of "rules", where a rule states how
to deduce all that there is to know about one "predicate"
from the information in other predicates. For example, the
rule "customers with steady income and regular expenditure
are good credit risks otherwise they are poor credit risks"
could be represented as a group of Horn clauses [Hogger,
19841:

A dependency diagram for a rule shows that all the
information in one predicate can be derived, using the rule,
from the information in other predicates. The dependency
diagram shown in Figure 1 is for a rule expressed in Horn
clauses. It should be clear that a dependency diagram can be
constructed for rules expressed in any "if...then" formalism;
thus the relevance of what follows is not restricted to
systems expressed in logic. Note that a dependency diagram
consists of one "thick arc" and one or more "thin arcs". The
"thick arc" is connected to the head node which represents
the predicate for which the information may be derived by
the rule. The "thin arcs" are connected to the body nodes
which represent the remaining predicates in the rule.

An expert, knowledge-based system will contain a
collection of rules which enables the information in the
"query predicates" to be deduced from the information in the
"update predicates"; where the update predicates arc the
predicates which are directly associated with the "input"
information, and the query predicates are the predicates which
are directly associated with the identified query types of the
expert system.

We assume that the collection of rules in an expert
system is minimal in the sense that none of the rules can be
disposed of. See [Debenham, 1985b] for a discussion on the
selection of an optimal, minimal set of rules. Thus the
rules in an expert system can be represented using a
combined diagram which shows, on one diagram, the
dependency diagrams for all of the rules. For example,
Figure 2 shows a combined diagram for an expert system
with eight rules, three query predicates which are shown on

Debenham 221

in a combined diagram, node A IS said 10 depend on
node Y if there is a path from Y to X in that diagram;
where the direction of f low is that of logical implication,
i.e. from the body nodes to the head nodes. In the example
shown in Figure 3, D depends on E, B depends on E and C,
and A depends on all the other nodes in the diagram.

It is important to appreciate that the update predicates
need not necessarily be stored in the high speed memory.
The values of updates may be retained in auxiliary storage;
these values may be required during subsequent update
operations and may be required to regenerate the system in
the event of a disaster. A l l that matters is:
• that all the values in all the stored predicates can be

deduced from the values in the update predicates, and
• that all the values in al l the query predicates can be

deduced from the values in the stored predicates.
Thus we see that the set of stored predicates w i l l , in a

sense, divide the combined diagram into two portions.
Thus, informally, we may think of a storage allocation as a
subset of the set of nodes such that if the storage allocation
were removed from the diagram then the resulting diagram
wou ld consist of two connected, possibly empty,
components with one component containing no query nodes
and the other component containing no update nodes. The
idea is that the storage allocation represents those predicates
which are actually stored; in other words, those nodes which

222 Real-Time and High Performance

are not in the storage allocation represent predicates which
will be calculated when required. In the example shown in
Figure 3, four different storage allocations show that the
query predicate A may be deduced from any of the sets
{B ,C ,D } , {D ,E ,C} , {E,B,C} and {C,E}.

An irredundant storage allocation is a storage allocation
with the property that if a node is removed from the storage
allocation then the resulting set ceases to be a storage
allocation. An irredundant storage allocation can be
visualized as a minimal set of nodes which divides the graph
into two portions. If a storage allocation is not irredundant,
it is called a redundant storage allocation. In the example
shown in Figure 3, two of the storage allocations quoted
above are irredundant storage allocations; they are
{B, C, D) and {C, E). Note that for the storage allocation
{B, C, D) the values of the update relation E cannot be
recovered from {B, C, D) unless suitable, additional rules
are available. In this case, if the values of E might be
subsequently required then they would have to be retained in
auxiliary storage.

A storage allocation is a division if it contains no two
nodes which depend on each other. As we assume that the
collection of rules in an expert system is minimal, if a
selection of nodes from a combined diagram is a "division"
then that selection will cease to be a storage allocation if
any node is removed from the storage allocation; in other
words, all divisions are irredundant storage allocations.

It is important to understand the difference between an
irredundant storage allocation and a division. In the
combined diagram shown in Figure 4 the storage allocation
{ C, D, F } is an irredundant storage allocation because if
any one of these three nodes were removed it would cease to
be a storage allocation; but, { C, D, F } is not a division
because D depends on C. On the other hand, the storage
allocation { B, D, F } is a division.

Figure 4

Non-division storage allocations are often desirable.
However, divisions are of great practical significance because
if a storage allocation contains one node that depends on
another then the updates to the second node will also have to
be reflected in the first.

We now mark costs on the combined diagram. These
costs are intended to represent the cost of storing each
predicate, and are written beside the node which represents
the predicate to which the costs apply. For example, if the
cost of storing predicate B was 5 and the cost of storing
predicate C was 6, and B and C were in a dependency
diagram with head predicate A then this would be denoted as
shown on the diagram in Figure 5.

A storage allocation is called a minimal storage
allocation if its cost is no greater than any other storage
allocation. It is easy to show that minimal storage
allocations are irredundant storage allocations but are not

necessarily divisions. For example, consider the combined
diagram as shown in Figure 6, the minimal storage
allocation is the set { C, D, F) which is irredundant but
is not a division. We will now consider the calculation of
both the division with least cost and the minimal storage
allocation.

This problem can be solved by applying the
(polynomial time) minimum cut algorithm to a modified
version of the combined diagram. This modification is
performed in two steps. First, all of the "thick" arcs in the
combined diagram are "collapsed" to a point. Second,
replace each node with a "pseudo-arc" marked with the node
cost, and replace each " th in" arc with a "pseudo-node". The
resulting diagram is called the division-dual diagram. The
solution to Problem 1 may be found by applying the
minimum cut algorithm to the division dual diagram. When
the minimum cut has been calculated, the pseudo-arcs which
lie on the minimum cut w i l l correspond to the nodes in the
division with least cost. See [Even, 1979], or any good
book on algorithmic graph theory, for a description of the
minimum cut algorithm.

For example consider the combined diagram shown in
Figure 6; its division-dual diagram is as shown in Figure 7.
From which we readily see that the division of least cost is
{ C, E, F } or { B, D, F } with a total cost of 10. Note
that an arc in the division-dual diagram corresponds to a node
in the original diagram, and vice versa.

Debenham 223

We now consider the calculation of the minimal storage
allocation.

Problem 2.
To calculate the irredundant storage allocation with least
cost; this is the minimal storage allocation.

This problem can be solved by applying the
(polynomial time) minimum cut algorithm to a modified
version of the combined diagram which is similar to that
considered in the solution to Problem 1. This modification
is performed in two steps. First, all of the "thick" arcs in
the combined diagram are "collapsed" to a point. Second,
replace each remaining "thin" arc with a "pseudo-node" and
replace each node with a "pseudo-polygon" as follows:
• a node which is directly connected to one or two other

nodes is represented by a pseudo-arc as in the solution
to problem 1. This pseudo-arc is marked with the node
cost

• a node which is directly connected to n other nodes,
where n > 2 , is represented by an n-sided pseudo-
polygon with one corner of the polygon connected to
the arc which is connected to each of the n nodes; the
sides of the polygon are marked with the original node
cost divided by two.

The resulting diagram is called the dual diagram. The
solution to Problem 2 may be found by applying the
minimum cut algorithm to this dual diagram. When the
minimum cut has been calculated, the pseudo-polygons
which lie on the cut will correspond to the nodes in the
minimal storage allocation.

For example, the combined diagram shown in Figure 8
will generate the dual diagram shown in Figure 9. From
which we see that the minimal storage allocation is
{ B,C,E } with a cost of 21.

Also for example, consider the combined diagram
shown in Figure 6; its dual diagram is as shown in Figure
10. From which we readily see that the minimum cut is
{ C, D, F } with a total cost of 3.

Figure 10

4. Complexity of the Expert
Implementation Problem

Systems

The operational constraints and optimality criterion
noted in the definition of the expert systems implementation
problem together comprise a complex set of conflicting
constraints.

THEOREM.
The expert systems implementation problem is NP-
complete.
Proof.
We wi l l restrict and transform the expert systems
implementation problem, and will show that this restriction
and transformation is equivalent to the "Minimum Cut Into
Bounded Sets" problem which is known to be NP-complete
[Garey et a/., 1976].

First assume that there is only one query type, q, and
one update type, u. Then the expert systems
implementation problem now reads:- Given a combined
diagram, given constants T(q), T(u) and C, to choose a set of
predicates R to be the storage allocation such that:

t(q) < T(q)
T(u) < T(u)

∑r(r)<C
r€R

are satisfied and
(T(q)*f(q)) + (t(u)xf(u))

is minimized.
Second, adopt the following trivial measure for T, this

measure defines T(q) to be the number of rules involved in
servicing the query type q, and T(u) is just the number of

224 Real-Time and High Performance

rules involved in servicing the update type u. In other
words, T(q) is the number of rules required to deduce the
values of q from the values stored in R, T(u) is the number
of rules required to deduce the values in R from the values in
u. In addition we further restrict the problem to the special
case when T(q) = T(u) = T. Then the expert systems
implementation problem may be stated as:- Given a
combined diagram, given constants T and C, to choose a set
of predicates R to be the storage allocation such that:-

the number of rules needed to deduce the values of q
from the values in R is less than or equal to T

the number of rules needed to deduce the values of R
from the values in u is less than or equal to T

We now transform the representation of this restriction
of the expert systems implementation problem into the
division dual diagram representation as discussed in the
previous section. We will ignore the expression to be
minimized, that is, we wil l just state the operational
constraints. Recall that on the division dual diagram,
predicates are denoted by arcs and rules are denoted by nodes.
The expert systems implementation problem as restricted so
far now reads:- Given a division dual diagram, constants T
and C, to choose a partition of the set of nodes in the
diagram, V, into two disjoint sets V1 and V2 such that the
single query type q is directly connected to a node in V1 and
the single update type u is directly connected to a node in V2

such that:

where IVI means "the number of elements in the set V", and
R is the set of arcs with one node in V1 and the other in V2.

This final restriction and transformation of the expert
systems implementation problem is precisely the
"Minimum Cut into Bounded Sets" problem. This
completes the proof.

We note from the proof of the theorem that what has
actually been demonstrated is that the problem of finding a
solution to the expert systems implementation problem is
NP-complete, never mind the problem of finding an optimal
solution. Thus we have:

Corollary.
Given a combined diagram, the problem of finding a
solution which satisfies the operational constraints, but
which is not necessarily optimal, to the expert systems
implementation problem is NP-complcte.

The "Minimum Cut into Bounded Sets" problem
remains NP-complete even if , and if

Thus we note that the following restriction

of the expert systems implementation problem is also NP-
complete. Given a dual diagram and constant C, to choose a
partition of the nodes of the diagram into two disjoint sets
V1 and V2 such that the single query node q is connected to a
node in V1 and the single update node u is connected to a
node in V2 such that:

In the special case when T = IVI it is clear that the
problem of finding an admissible, but not necessarily
optimal, solution to the expert systems implementation
problem reduces to satisfying the single constraint

which can be solved in polynomial time by the minimum
cut algorithm.

5- Sub-Optimal Storage Allocation

In the previous section we have seen that the expert
systems implementation problem is NP-complete. However
this does not imply that identifiable classes of sub-problems
encountered in practice need necessarily be NP-complete.
For example, the costs on the arcs in the combined diagram
are often related to each other. Perhaps investigation of this
observation, and others like it, might lead to some
simplification.

We conclude our discussion with a sub-optimal
algorithm for calculating the (hopefully) minimal storage
allocation which satisfies query and update response
constraints. This algorithm yields acceptable results in
practice when the application is not heavily constrained. If
the application has heavy query and update constraints then
the algorithm may not find a solution.

The algorithm begins with the unconstrained minimal
storage allocation as calculated in Problem 2. This minimal
storage allocation is then "modified" to form other storage
allocations which are all constrained to be irredundant.

In the statement of the following algorithm we will use
the following notation. If, in a combined diagram, S is an
irredundant storage allocation and n is a node not in S, then
S t {n} denotes the set of nodes obtained by adding n to S
and removing from S any other nodes which, as a result of n
being added, prevent S u (n) from being irredundant.

Algorithm.
Find the minimal storage allocation. This may be done by
employing our method given in Problem 2 on the dual
diagram. If there is more than one such storage allocation
then choose the storage allocation which violates fewest
operational (i.e. query or update) constraints. (Recall that a
storage allocation consists of a set of predicates; on the dual
diagram this set will be represented by a set of polygons.)
Represent this minimal storage allocation as a "cut" on the
combined diagram. Then :-

Debenham 225

6. Summary

We have discussed several factors which will influence
the choice of a storage allocation for an expert system. Two
solutions have been proposed for un-constrained
applications. It has been argued that when realistic
constraints are present, the determination of the optimal
storage allocation is NP-complete. A sub-optimal
algorithm has been given which operates in polynomial
time when the application is not heavily constrained.

References

[Addis, 1985] T.R. Addis "Designing Knowledge-Based
Systems", Kogan-Page, 1985.

[Debenham, 1985a] J.K. Debenham "Knowledge Base
Design", Australian Computer Journal, 1985, Vol 17,
No l ,pp 187-196.

[Debenham, 1985b] J.K. Debenham "Knowledge Base
Engineering", in proceedings of the Eighth Australian
Computer Science Conference, Melbourne, 1985.

[Debenham, 1987] J.K. Debenham "Expert Systems: an
Information Processing Perspective", in "Applications
of Expert Systems" (J.R. Quinlan, Ed),
Addison-Wesley, 1987, pp 200-216.

[Debenham, 1989] J.K. Debenham "Knowledge Systems
Design", Prentice Hall, 1989.

[Debenham and McGrath, 1982] J.K. Debenham and G.M.
McGrath "The Description in Logic of Large
Commercial Data Bases: A Methodology put to the
test", in Proceedings of the Fifth Australian Computer
Science Conference, pp. 12-21.

[Even, 1979] S. Even "Graph Algorithms", Computer
Science Press, 1979.

[Gaines, 1987] B.R. Gaines "Foundations of knowledge
engineering", in (M.A. Bramer, Ed.) "Research and
Development in Expert Systems III", Cambridge
University Press, 1987.

[Garey et al, 1976] M.R. Garey, D.S. Johnson and L.
Stockmeyer "Some simplified NP-complete graph
problems.", Theoretical Computer Science, Vol 1, No
3, pp 237-267.

[Martin, 1988] N. Martin "Software Engineering of Expert
Systems", Addison Wesley, 1988.

[Steels, 1987] L. Steels "Second Generation Expert
Systems", in (M.A. Bramer, Ed.) "Research and
Development in Expert Systems III", Cambridge
University Press, 1987.

226 Real-Time and High Performance

