
Towards a Functional Architecture for Intelligence 
Based on Generic Information Processing Tasks 

B. Chandrasekaran 

Labora to ry for A r t i f i c i a l Intel l igence Research 
T h e O h i o State Un ivers i t y 
C o l u m b u s , OH 43210 USA 

Abstract 
T h e level o f abs t rac t ion of m u c h of the w o r k in 

know ledge-based systems ( the ru le , f rame, logic level) 
is too low to prov ide a r ich enough vocabu la ry for 
knowledge and con t ro l . I prov ide an overv iew of a 
f r amework cal led the Generic Task approach that 
proposes t h a t knowledge systems shou ld be b u i l t out 
of b u i l d i n g blocks, each of wh ich is app rop r i a te for a 
basic t ype of p rob lem so lv ing. Each generic task uses 
forms of knowledge and cont ro l strategies that are 
character is t ic to i t , and are general ly conceptua l ly 
closer to doma in knowledge. Th i s fac i l i ta tes 
knowledge acqu is i t i on , and can produce a more 
perspicuous exp lana t ion of p rob lem so lv ing . The 
re la t ionsh ip of the const ructs at the generic task level 
to the ru le - f rame level is analogous to t h a t between 
h igh level p r o g r a m m i n g languages and assembly 
languages. 1 describe a set of generic tasks t ha t have 
been found pa r t i cu la r l y useful in cons t ruc t i ng 
d iagnost ic , design and p lann ing systems; d iagnost ic 
reasoning is used to i l lus t ra te the approach . 1 
describe the Generic Task Toolset for cons t ruc t i ng 
knowledge systems, w h i c h embodies the Generic Task 
app roach . I conclude w i t h the imp l i ca t i ons of this 
approach for the func t iona l a rch i tec ture of in te l l igence. 

1. Overview of the Paper 
T h e f i rst pa r t of the paper is a c r i t i que of the 

level o f abs t rac t ion in much of the cu r ren t discussion 
on knowledge-based systems. I t w i l l be argued t ha t 
the level of ru les- log ic- f rames-networks is i napp rop r i a te 
for d iscussing m a n y issues of knowledge o rgan iza t ion 
and c o n t r o l . We advocate instead the level of 

abs t rac t ion associated w i t h the language of generic 
tasks, types of knowledge, and types of con t ro l 
strategies. 

F o l l o w i n g th is I w i l l ou t l i ne the elements of a 
f ramework for the design of knowledge-based systems 
t ha t we have been deve lop ing in our labora to ry over 
the last several years. Complex knowledge-based 
reasoning tasks can often be decomposed i n t o a 
number of generic tasks, each associated with certain 
types of knowledge and a family of control strategies. 
At each stage in the reasoning, the system w i l l engage 
in one of the generic tasks, depend ing upon the 
knowledge ava i lab le and the state o f p rob lem so lv ing . 

Diagnost ic reasoning w i l l be used to i l l us t ra te the 
app l ica t ion of these ideas. I w i l l discuss the 
advantages of th is approach for knowledge acqu is i t i on , 
knowledge representa t ion , con t ro l o f p rob lem so lv ing , 
and exp lana t i on . These advantages are made possible 
by the r icher vocabulary in terms of w h i c h knowledge 
and con t ro l are represented for each task. 

I then describe how the above approach leads 
na tu ra l l y to a new technology: a toolset w h i c h helps 
one to bu i l d expert systems by using higher level 
bu i l d i ng blocks. 1 w i l l review the toolset, and discuss 
the advantages tha t accrue f r om its use. F i n a l l y , I 
discuss wha t th is approach entai ls for the a rch i tec tu re 
of in te l l igence, and discuss a number of re lated 
theoret ica l issues. 

These ideas have evolved over the years as a result 
of work in diagnost ic and design p rob lem so lv ing . A 
number of earl ier pub l ica t ions (Chandrasekaran 1983, 
1984, 1986) trace the development of the ideas. 

2. Cr i t ique of Uniform Architectures 
Knowledge representat ion has been a major concern 

o f A l , in pa r t i cu la r and qui te na tu ra l l y , for 
knowledge-based prob lem so lv ing (or " e x p e r t 
systems11). The general assumpt ion , and consequent ly 
the methodo logy , has been tha t there is someth ing 
cal led doma in knowledge tha t needs to be acquired— 
qui te independent o f the prob lems one m i g h t w ish to 
solve—and t h a t the role of the knowledge 
representat ion f o rma l i sm is to help encode i t . Logics 
of var ious k inds , ru le-based languages and f rame 
representat ions have been three popu la r k inds of 
proposals for knowledge representa t ion . Each of these 
representat ions has a na tu ra l f am i l y of inference 
mechanisms t h a t can operate on i t . Each of the 
knowledge representa t ions, a long w i t h an inference 
scheme t h a t is app rop r ia te for i t , defines an 
architecture. W h e n the inference scheme is f ixed, the 
representa t ion f o r m a l i s m is also said to p rov ide a shell 
for inser t ing knowledge. 

These arch i tec tures ( w i t h re lat ive ly smal l add i t i ons , 
i f needed) are c o m p u t a t i o n a l l y un iversa l . T h u s the 
i m p o r t a n t po in t abou t bu i l d i ng knowledge systems 
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with them is not whether a task can be performed, 
but whether they offer knowledge and control 
constructs that are natural to the task. Al l of these 
(and other similar) languages fall short when one 
considers tasks of some complexity such as planning or 
diagnosis. 

2.1. Lack of Expressiveness for Higher Level Tasks 
The level of abstraction of these languages obscures 

the essential nature of the information processing that 
is needed for the performance of higher level tasks. 
They are like knowledge system assembly languages, 
rather than programming languages with constructs for 
capturing the essence of the information processing 
phenomena. 

Intuit ively one thinks that there are types of 
knowledge and control strategies that are common to 
diagnostic reasoning in different domains, and similarly 
that there are common structures and strategies for, 
say, design as a cognitive activity; but that the 
structures and control strategies for diagnostic 
reasoning and design problem solving wil l generally be 
different. However, when one looks at the formalisms 
(or equivalently the languages) that are commonly 
used in expert system design, the knowledge 
representation and control strategies do not typically 
capture these distinctions. For example in diagnostic 
reasoning one might generically wish to speak in terms 
of malfunction hierarchies, rule-out strategies, setting 
up a differential, etc., while for design the generic 
terms might be device/component hierarchies, design 
plans, ordering of subtasks, etc. Ideally one would 
like to represent diagnostic knowledge in a domain by 
using the vocabulary that is appropriate for the task, 
but the languages in which the expert systems have 
been implemented have sought uniformity across tasks, 
and thus have had to lose perspicuity of 
representation at the task level. 

In addition, the control strategies that these 
languages come with (such as forward or backward 
chaining for rule systems) do not explicitly indicate 
the real control structure of a task that a problem 
solver is performing. For example, the fact that Rl 
(McDermott 1982) performs a linear sequence of 
subtasks as a way of performing its design task is not 
explicitly encoded. This task-specific control structure 
is "encrypted" and hence invisible at the level of the 
pattern-matching control of OPS5. The knowledge 
base of a system that is built in one of these 
architectures ends up accumulating a large number of 
programming devices as if they were part of domain 
knowledge. This detracts from the modularity of 
domain knowledge, since debugging a piece of 
knowledge involves studying the interaction between 
domain knowledge and the task as mediated by the 
implicit programming knowledge in the knowledge 
base. 

2.2. Artifactual versus Real Issues 
Because of the mismatch between architecture and 

information processing task, control issues arise that 
are artifacts of the architecture, but are often 
misinterpreted as issues having to do with control at 
the task level. For example rule-based approaches 
often concern themselves with conflict resolution 
strategies. Yet if the knowledge were viewed at a 
different level, one can often abstract organizations of 
knowledge that only a small, highly relevant body of 
knowledge is brought up, without any need for conflict 
resolution at all. In many rule-based systems, these 
organizational constructs can be "programmed" in the 
rule language by the use of context setting rules and 
metarules, but because the rules and metarules, per se, 
have been considered to be knowledge-level phenomena 
(as opposed to the implementation-level phenomena, 
which they often are), knowledge acquisition has often 
been directed towards strategies for conflict resolution, 
when they ought to be directed to issues of knowledge 
organization. 

In sum, these architectures, by encouraging 
knowledge acquisition and representation at a level far 
removed from the organization and control of a task, 
create barriers in building understandable, modifiable 
knowledge systems. 

3. Generic Tasks 
Our work is based an alternative view, viz., that 

knowledge representation and use cannot be separated 
(Gomez and Chandrasekaran 1981). That is, 
knowledge should be in different forms, depending 
upon the type of function for which it is used. By 
"use" I do not mean a highly domain-specific thing 
such as, "This piece of knowledge wil l be useful in the 
treatment of cancer," but a more generic problem 
solving use that can be applied to a variety of 
domains. The following information specifies the 
generic task abstractly. 

• The function of the task. What type of problem 
does it solve? What is the nature of the 
information that it takes as input, and produces 
as output? 

• The representation and organization of knowledge. 
What are the primitive terms in which the forms 
of knowledge needed for the task can be 
represented? How should knowledge be 
organized and structured for that task? 

• The control strategy. What control strategy 
(inference strategy) can be applied to the 
knowledge to accomplish the function of the 
generic task? 

3.1. Generic Tasks and Generic Task Problem Solvers 
In order to understand how problem solvers are 

built using generic tasks, we can think of a task 
specification in accordance with the above as a vir tual 
specification of a shell. When domain knowledge is 
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encoded using the primitive terms, organization and 
structure that are specified for the task, and then 
combined with the inference strategy that comes with 
the task, we have a generic task problem solver. The 
totality of domain knowledge is distributed among a 
number of such problem solving modules, representing 
a variety of generic tasks. Thus a Generic Task 
problem solver is not merely an information processing 
strategy: it is a inference strategy that uses knowledge 
to solve parts of the problem. The interaction 
between modules is based on their information needs 
and functions: a module which needs information of a 
certain type gets it from a module whose function 
matches it. 

4. Generic Tasks in Diagnostic Reasoning 
The motivation in our work on diagnosis is to 

make a connection between diagnostic problem solving, 
and the general properties of intelligence as 
information processing strategies. I wil l now describe 
a functional architecture approach to performing 
diagnosis, which uses and integrates information 
provided by a number of generic problem solvers. 
This approach originated with the MDX system 
(Chandrasekaran and Mit tal 1983), and has been 
refined in the construction of the RED system (Smith 
et al. 1985, Josephson et al. 1987]. 

Let us view diagnostic problem solving as a task in 
which the goal is to explain a set of observations of a 
system. The explanation is to be in terms of 
malfunctions that may have caused the observations. 
Since the malfunctions can interact in a number of 
ways, the problem solver has to produce a set of 
malfunction hypotheses that explain all the data 
without including unnecessary hypotheses and also 
taking into account the possible interactions between 
hypotheses. 

Let us consider domains satisfying the following 
properties: 

1. Knowledge is available in the form of 
malfunction hierarchies mirroring the 
class/subclass relationship among the 
malfunctions. 

2. Given a typical observation, only a relatively 
small subset of these malfunctions could be 
implicated. Also interactions between 
malfunctions with respect to an observation are 
limited. 

Property 2 requires that sufficient variety of 
observations are available from several parts of the 
system to substantially disambiguate the diagnostic 
situation. This property holds true in medicine and 
in a number of mechanical domains. De Kleer's work 
on diagnosing multiple malfunctions (de Kleer and 
Williams 1986) involves a situation where the 
worst-case assumptions about interactions apply. In 
those domains, such as digital circuits, Property 2 
does not hold. 

The knowledge available in domains satisfying these 
properties makes possible a decomposition of problem 
solving into two submodules: a hierarchical classifier 
which uses the hierarchy to select a small set of 
plausible malfunctions, and an abductive assembler that 
uses a subset of these hypotheses to make a composite 
that provides a coherent and parsimonious explanation 
of data. The malfunction hierarchy has more general 
classes of malfunctions in its higher level nodes and 
more specialized ones as their successors, e.g, "L i ve r " 
has as a successor, "hepatit is." The forms of 
knowledge for the former module use terms in which 
hierarchies are described, while the forms of knowledge 
for the latter module deal with interactions among the 
hypotheses. I wil l describe the problem solving 
behavior of these and other modules in a rather 
oversimplified manner. References are given where 
details can be found. 

Gomez (Gomez and Chandrsekaran 1981) proposed 
hierarchical classification as a core process in medical 
diagnosis, and investigated the inference methods 
useful for that task. The inference mechanism for 
hierarchical classification can be thought of as 
variations on the strategy of establish-refine, i.e., the 
hypothesis space is explored top down, by attempting 
to establish the top level hypotheses first. When a 
hypothesis is ruled out, all its more specialized 
successors can also be ruled out, while if it is 
established, the conclusion can be refined by 
considering its successors. This process can be 
repeated until a number of terminal nodes of the 
hierarchy are established. This process can be 
expected to produce a small number of highly 
plausible hypotheses, each of which explains a portion 
of the data. 

Josephson et a/., (Josephson et al. 1987) have 
investigated the inference method needed for abductive 
assembly. It can be thought of as a means-ends 
process, driven by the need to explain the most 
significant unexplained observation at any stage of 
problem solving. As hypotheses are accumulated to 
explain the significant observations, the composites are 
critiqued for redundancy, logical compatibil ity and so 
on. Driven by these criteria, a coherent collection of 
hypotheses that best explain the data is made. 

Returning to the classification process, domain 
knowledge is required to establish or reject each of the 
hypotheses in the hierarchy. What is needed is a way 
to decide how well a hypothesis fits a set of 
observations. This function can be accomplished in a 
number of ways in different domains depending upon 
what kind of domain knowledge is available. 

A generic strategy called hypothesis matching 
(Chandrasekaran et al. 1982, Chandrasekaran 1983) or 
structured matching (Bylander and Johnson 1987) is 
useful in a number of domains for performing this 
function. We can build up a hierarchy of abstractions 
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from the data to the hypothesis. For example, given 
the hypothesis, "Liver disease," one way to decide on 
the degree of fit between the data and the hypothesis 
is first to see how the data match the intermediate 
abstractions, "Chemical test evidence," "physical 
evidence," and "historical evidence." Each of the 
abstractions wil l normally involve a subset of the data 
applicable to Liver as a whole. Each step in the 
abstractions can be computed by pattern matching, 
and the values passed up for further matching. This 
pattern matching is actually implemented in our work 
as tables analogous to Samuel's Signature Tables 
(Samuel 1967), but the details are not important for 
the current discussion. For each of the hypotheses in 
the hierarchy, a structured matcher can be buil t using 
the scheme. 

The matcher requires values for specific data items. 
In the above example, data relevant to a decision 
about "historical evidence" might be "evidence of 
exposure to anesthetics?", or "fever responds to 
drugs?". In the first example, the associated database 
might have the information that the patient had 
undergone major surgery a few days earlier, and in 
the latter, the data base may have the complete 
information about the patients prescriptions and 
temperatures. In either case, the needed information 
can be obtained by making appropriate inferences from 
domain knowledge: about the relationship between 
anesthetics and surgery in the first example, and some 
complex processing of raw data to make the 
abstraction about fever response in the latter. Thus 
there is need for an inferencing database to make the 
necessary data abstractions. I wil l not go into the 
details of the representation and inference control here, 
save to note that they are different from the 
representation and inference for the other problem 
solvers: hierarchical classification, abductive assembly 
and structured matching. Mi t ta l (Mi t ta l tt al. 1984) 
recognized the inferencing database as an important 
component generic activity in the design of MDX. 

The overall problem solving for diagnosis can now 
be traced as follows. The hierarchical classifier's 
problem solving activity proceeds top down, and for 
each hypothesis that is considered, the structured 
matcher for that hypothesis is invoked for information 
about the degree of fit wi th the data. The structured 
matcher turns to the inferencing database for 
information about the data items that it is interested 
in. The database completes its reasoning and passes 
on the needed information to the structured matcher. 
After acquiring all the needed data from the database 
in a similar fashion, the structured matcher completes 
its matching activity for that hypothesis and returns 
that value of the match to the classifier, along wi th 
the data that the hypothesis can explain. The 
classifier's activity now proceeds along the lines of its 
control strategy: i.e., it either rules out the hypothesis, 
or establishes it and pursues the successors. This 

process of each problem solver invoking other problem 
solvers who can provide the information needed for 
the performance of its own task is repeated unti l the 
classifier concludes wi th a number of high plausibility 
hypotheses, and information about what each of them 
can explain. At this point, the abductive assembler 
takes over and proceeds to construct the composite 
explanatory hypothesis for the problem. 

These are not the only problem solvers that could 
be useful for diagnosis, of course. Addit ional problem 
solvers wi th their own types of knowledge and control 
can be helpful. If the classificatory structure or the 
structured matcher is incomplete in its knowledge, 
case-based reasoners (Kolodner and Simpson 1986), or 
deeper domain models such as qualitative reasoners 
and functional reasoners (Sembugamoorthy and 
Chandrasekaran 1986) can be invoked. MDX2 
(Sticklen 1987) is an example of a diagnostic system 
whose classifier interacts with a cognitive deep model 
of parts of its domain for obtaining information about 
the relationship between observations and hypotheses. 

The four generic tasks that we have just described 
(hierarchical classification, abductive assembly, 
structured matching, and database inference) are all 
distinct: the knowledge representation and inference 
method for each is distinctly different. They are also 
generic in the sense that each could be used by any 
other problem solver needing its functionality in that 
domain. 

The description that I just gave of problem solving 
omits many of the subtleties in the inference strategies 
of each of the problem solvers, since my aim was to 
introduce the methodology rather than present the 
complete theory of diagnosis. However, the following 
additional points are relevant since they refer to the 
important role played by the generic task architecture. 

1. The interaction between the abductive assembler 
and the classifier may be much more dynamic, 
where the refinement of medium confidence 
hypotheses in the classificatory structure can be 
done at the command of the assembler, which is 
looking for hypotheses to explain some 
unexplained data. 

2. The control of classificatory behavior in the 
presence of additive and subtractive observations 
can be complicated. For these and other 
complexities in control of classification problem 
solving, see (Sticklen tt al. 1985). 

3. Mult iple and tangled hierarchies can be 
incorporated as is being done in MDX2 (Sticklen 
1987). Since a particular hypothesis can occur 
in more than one hierarchy, that is, it can be 
classified according to more than one perspective, 
the restriction of the hierarchies to tree 
structures is not burdensome or unnatural. 

1186 PANELS AND INVITED TALK8 



4. Because of the property that for each 
observation, only a small number of malfunctions 
at each level of the hierarchy can be implicated, 
multiple malfunctions are a natural for this 
architecture. Interactions are allowed as long as 
they can be reasoned about during classification 
(Gomez and Chandrasekaran 1981) and assembly 
within the general assumption of 
near-independence. 

5. Test ordering and data validation: In the 
description of the approach I have assumed that 
all the data are available. However, the 
architecture makes it easy to focus the test 
ordering decisions in a natural way. For each 
hypothesis knowledge is available about what 
tests are useful for it to be established or 
rejected, and as mentioned in 2 above the 
assembler can propose that hypotheses which 
were not strongly enough established for 
refinement be refined further in the interests of 
explaining remaining observations. This may 
actually call for additional tests to establish or 
reject the successors. Also, the assembler wi l l 
often be able to identify equally plausible, but 
alternative, hypotheses. In order to resolve 
them, additional tests may be necessary. This 
architecture makes possible test ordering that can 
be driven by the goals of each of the tasks. 

The localization of goals and knowledge that is 
helpful in test ordering can also be employed to 
provide a form of know ledge-based sensor 
validation, since sensors that conflict in their 
contribution to a hypothesis can be located and 
critiqued. See (Chandrasekaran and Punch 1987) 
for further details. 

4.1. The Fallacy of Surface Phenominalism 
If one were to look at the behavior of the 

diagnostic system described above, without any 
awareness of its internal architecture of generic tasks, 
almost all of the standard architectures could be 
ascribed to i t , depending upon the level of abstraction 
at which the behavior is observed. As the hypothesis 
matcher is working through the hierarchical 
abstraction, it would appear to be a rule processor 
using evidences on the antecedent side to reach a 
conclusion about the intermediate abstractions or the 
hypothesis. At this level it would also appear to be a 
data-directed activity. At the classifier level, the 
system may seem to be a frame system moving from 
hypothesis concept to hypothesis concept. At this 
level it would appear to be a hypothesis-directed 
activity. The term u the fallacy of surface 
phenominalism" refers to the pitfalls that are possible 
in going from external problem solving behavior, such 
as protocols of human experts, directly to an 
architecture. 

5. Conceptualization and Design of the 
Generic Task Toolset 
Each of the generic tasks can be used as a 

programming technique within a more general 
programming language like LISP, PROLOG, or OPS5. 
However, this does not prevent an knowledge engineer 
from going outside the boundaries of a generic task. 
These bounds are important to specify because they 
ensure that the advantages of generic tasks wil l be 
maintained. One natural way to do this is to 
implement a software tool for each generic task to be 
used in a general programming environment. Such 
tools also provide an empirical means for testing the 
clarity of these ideas and the usefulness of the 
approach in actual systems. 

We have been motivated by the problems of 
diagnosis, design and planning in developing our 
toolset. In addition to the generic tasks that were 
described in connection with the diagnosis, we have 
found two other generic tasks very useful for our 
purposes: object synthesis using plan selection and 
refinement (Brown and Chandrasekaran 1986) for 
certain classes of design problems, and state 
abstraction (Chandrasekaran 1983) for certain types of 
prediction of system-level consequences as a result of 
state changes to subsystems. Due to space limitations, 
I do not describe them here. 

For each generic task, we have developed a tool 
that can encode the problem solving and knowledge 
that is appropriate for the task. Below is a list of 
the tools that correspond to the generic tasks that we 
have studied: CSRL (Conceptual Structures 
Representation Language) is the tool for hierarchical 
classification (Bylander and Mi t ta l 1986); DSPL 
(Design Specialists and Plans Language) is the tool for 
object synthesis using plan selection and refinement 
(Brown and Chandrasekaran 1986); ID ABLE 
(Intelligent DAta Base LanguagE) is the tool for 
knowledge-directed information passing (Sticklen 1983); 
HYPER (HYPothesis matchER) is the tool for 
hypothesis matching (Johnson and Josephson 1986); 
PEIRCE (named after the philosopher C. S. Peirce) is 
the tool for abductive assembly of hypotheses (Punch 
et al. 1986); and WW HI (What Wi l l Happen If) is the 
tool for state abstraction. 

The tools are intended to ensure the following 
advantages of the generic tasks: 

• Multiformity. The more tradit ional architectures 
for the construction of knowledge based systems 
emphasize the advantages of uniformity of 
representation and inference. However, in spite 
of the advantage of simplicity, we argued earlier 
that uniformity results in a level of abstraction 
problem. A uniform representation cannot 
capture important distinctions between different 
kinds of knowledge-use needs. A uniform 
inference engine does not provide different control 
structures for different kinds of problems. 
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T h e generic task approach provides m u l t i f o r m i t y . 
Each generic task provides a d i f ferent way to 
organize and use knowledge. T h e knowledge 
engineer can choose wh ich generic task is the 
best for pe r fo rm ing a pa r t i cu la r f u n c t i o n , or can 
use d i f ferent generic tasks for pe r fo rm ing the 
same f u n c t i o n . Di f ferent prob lems can use 
d i f ferent generic tasks and d i f ferent comb ina t ions 
of generic tasks. 

• Modularity. A know ledge-based system can be 
designed by mak ing a func t iona l decompos i t ion of 
i ts in tended p rob lem so lv ing in to several 
coopera t ing generic tasks, as i l l us t ra ted in our 
discussion on diagnosis. Each generic task 
provides a way to decompose a pa r t i cu la r 
func t ion i n to its conceptual par ts , e.g., the 
categories for h ierarchica l c lass i f icat ion, and 
al lows d o m a i n knowledge of o ther forms to be 
inserted i n to a generic task, e.g., evidence 
c o m b i n a t i o n knowledge in h ierarch ica l 
c lassi f icat ion (St ick len 1987). Each generic task 
localizes the knowledge tha t is used to satisfy 
local goals. 

• Knowledge Acquisition. Each generic task is 
associated w i t h its own knowledge acqu is i t ion 
s t ra tegy for bu i l d i ng an eff ic ient p rob lem solver 
(By lander and Chandrasekaran 1987). For 
example in h ierarchica l c lass i f icat ion, the 
knowledge engineer needs to f i nd ou t wha t 
specific categories should be con ta ined in the 
classi f icat ion h ierarchy and wha t general 
categories p rov ide the most leverage for the 
establ ish-ref ine s t ra tegy. 

• Explanation. Th i s approach d i rec t ly helps in 
p r o v i d i n g exp lanat ions o f p rob lem so lv ing in 
exper t systems in two i m p o r t a n t ways: how the 
da ta ma tch local goals and how the con t ro l 
s t ra tegy operates (Chandrasekaran et al. 1987). 
A lso , the con t ro l s t rategy of each generic task is 
specific enough for generat ing exp lanat ions of 
w h y the p rob lem solver chose to eva luate or not 
to eva luate a piece of knowledge. Th i s is 
because of the higher level of abs t rac t ion in 
w h i c h con t ro l is specif ied for generic tasks. 

• Exploiting Interaction between Knowledge and 
Inference. Ra ther t h a n t r y i n g to separate 
knowledge f r o m its use, each generic task 
speci f ical ly integrates a pa r t i cu la r way of 
represent ing knowledge w i t h a pa r t i cu la r way of 
us ing knowledge. Th i s al lows the a t t en t i on o f 
the knowledge engineer to be focused on 
represent ing and organ iz ing knowledge for 
pe r f o rm ing p rob lem so lv ing. 

• Tractability. Under reasonable assumpt ions , each 
generic task general ly provides t rac tab le p r o b l e m 
so lv ing (A l l emang et al. 1987, Goel et al. 1987). 
(One ma jo r except ion is abduc t i ve assembly, 

1188 PANELS AND INVITED TALKS 

wh ich can become in t rac tab le under cer ta in 
cond i t ions , m a k i n g i t ha rd then for humans and 
machines to pe r fo rm the task.) T h e ma in 
reasons why they are t rac tab le are t h a t a 
p rob lem can be decomposed in to sma l l , ef f ic ient 
un i ts , and knowledge can be organized to take 
care of comb ina to r i a l in teract ions in advance. 

I t should be noted t ha t these advantages are 
a t ta ined at the cost of genera l i ty . Each generic task 
is purposely const ra ined to pe r fo rm a l im i ted type of 
p rob lem solv ing and requires the ava i lab i l i t y of 
appropr ia te doma in knowledge. 

T h e Generic Task toolset is imp lemented as a 
co l lect ion of special ists wh i ch in teract by passing 
messages for con t ro l and i n fo rma t i on exchange. T h i s 
is a na tu ra l i m p l e m e n t a t i o n at the level of generic 
tasks. As is tu rns o u t , the p rob lem so lv ing act iv i t ies 
within a generic task p rob lem solver are also 
imp lemented in our toolset as a co l lect ion of 
special ists; e.g., w i t h i n the h ierarchical classif ier, each 
of the classi f icatory hypotheses is a p rob lem so lv ing 
modu le in i ts own r i gh t . 

How the di f ferent generic p rob lem solvers in te rac t 
is an act ive research issue. T h e cur ren t theory and 
the toolset are based on each of the p rob lem solvers 
exp l i c i t l y i nvok ing another p rob lem solver for needed 
i n f o rma t i on . I believe t ha t a more a t t r ac t i ve 
long- te rm approach w o u l d be one where the p r o b l e m 
solver broadcasts the need for some i n f o r m a t i o n , and 
other p rob lem solvers wh ich can del iver the 
i n fo rma t i on respond to the request. T h i s reduces the 
degree of expl ic i tness needed at system design t ime . 
Th i s also increases the poss ib i l i ty t ha t a piece of 
knowledge or a modu le added somewhere in the 
system w i l l be able to con t r i bu te its p rob lem so lv ing 
power w i t h o u t the designer needing to foresee th is 
poss ib i l i ty . 

5 .1 . Abs t rac t Representat ion o f C o n t r o l : 
I t is of ten s ta ted tha t us ing rule-based approaches 

makes i t possible to have con t ro l knowledge exp l i c i t l y 
represented as col lect ions of rules. T h i s dec larat ive 
f o r m of representa t ion of con t ro l is said to help in 
reasoning abou t , m o d i f y i n g or exp la in ing the con t ro l 
behavior of the sys tem. 

The GT p rob lem solvers are act ive agents. T h u s 
i t m i g h t appear t ha t the advantages of expl ic i tness of 
con t ro l may be lost in the approach. As i t t u rns o u t , 
the con t ro l strategies associated w i t h each of the 
generic task arch i tectures are imp lemen ted as a fami l y 
of message types. T h e user can mod i fy t h e m w i t h i n 
l im i t s permiss ib le for each generic task and the 
exp lana t ion generat ion system uses the con ten t of the 
messages d i rec t ly in i ts descr ip t ion of the con t ro l 
behav ior . T h e fac t t h a t the messages have b o t h a 
p rocedura l con ten t to t h e m as wel l as a dec lara t ive 
representa t ion gives t h e m a l l the advantages of 
abst ract representa t ion of con t r o l . 



6. Generic Tasks and Other Use-Specific 
Architectures 
In the late 70's, when we embarked on this line of 

research — characterised by an attempt to identify 
generic tasks and the forms knowledge and control 
required to perform them — the dominant paradigms 
in knowledge-based systems were rule and frame type 
architectures. While our work on use-specific 
architectures was evolving, dissatisfaction at the 
limited vocabulary of tasks that these architectures 
were offering was growing at other research centers. 
Clancey in particular noted the need for specifying the 
information processing involved by using a vocabulary 
of higher level tasks. Task-level architectures have 
been gathering momentum lately: McDermott and his 
coworkers (Marcus and McDermott 1987) have built 
SALT, a shell for a class of design problems, where 
critiquing proposed designs by checking for 
constraint-violations is applicable. Clancey (Clancey 
1985) has proposed a shell called Heracles which 
incorporates a strategy for diagnosis: he calls it 
heuristic classification. Bennett (Bennett 1986) 
presents COAST, a shell for the design of 
configuration problem solving systems. Gruber and 
Cohen (Gruber and Cohen 1987) offer a system called 
M U M for managing uncertainty and so on. All these 
approaches share the basic thesis of our own work, 
viz., the need for task-specific analyses and 
architecture support for the task. However, there are 
some differences in assumptions and methodology in 
some cases that needs further discussion. Further, 
once we identify task-level architectures as the issue 
for highest leverage, then the immediate question is: 
what is the criterion by which a task is deemed to be 
not only generic but is appropriate for modularization 
as an architecture? How about an architecture for the 
generic task of "investment decisions"? Diagnosis? 
Diagnosis of process control systems? Is uncertainty 
management a task for which it wil l be useful to have 
an architecture? Are we going to proliferate a chaos 
of architectures without any real hope of reuse? 
What are the possible relationship between these 
architectures? Which of these architectures can be 
built out of other architectures? I do not propose to 
answer all these questions here, but they seem to be 
the appropriate kinds of questions to ask when one 
moves away from the comfort of universal 
architectures and begins to work wi th different 
architectures for different problems. 

At this stage in the development of these ideas, 
empirical investigation of different proposals from the 
viewpoint of usefulness, tractability and composability 
is the best strategy. From a practical viewpoint, any 
architecture that has a useful function and for which 
one can identify knowledge primitives and an inference 
method ought to be considered a valid candidate for 
experimentation. As the tools evolve, one may find 
that some of the architectures are further 
decomposable into equally useful, but more primit ive, 

architectures; or that some of them do not represent 
particularly useful functionalities, and so on. 
Nevertheless, the following distinctions can be made on 
conceptual grounds, and can be used to drive the 
empirical investigations. 

• "Building blocks" out of which more complex 
problem solvers can be composed, such as the 
tasks in the theory presented earlier in the 
paper. 

• Explicit high level strategies which we want a 
system to follow, where the strategies are 
expressed in terms of some set of tasks. 
Heuristic Classification is an example. 

• Compound tasks, such as the form of diagnosis 
described in earlier in the paper. An 
architecture for this compound task wil l bring 
with it its constituent generic tasks and also 
show how to integrate them from the viewpoint 
of the overall task. 

• Tasks which do not necessarily correspond to 
those human experts do well, but nevertheless 
can be captured as appropriate combinations of 
knowledge and inference and a clear function can 
be associated with them, e.g., constraint 
satisfaction schemes. 

I want to examine how the tasks in these different 
senses relate to the generic task theory. 

Heuristic classification (Clancey 1985) is a strategy 
in the sense of its being an appropriate behavior for 
diagnosis, i.e., it is a collection of tasks to be 
performed to accomplish the goal. Heraeles, the 
architecture that supports heuristic classification, uses 
metarules as a way of programming this strategy in a 
rule system: the metarules represent abstractly the 
control behavior that would be required for each of 
the tasks in the strategy. Heracles as a shell wil l 
enable the designer to build diagnostic systems using 
all or portions of the above strategy. In our work, we 
wish to get as much of the strategy as possible to 
emerge from the interaction of more elementary 
problem solvers. It is not clear that each of the tasks 
in a higher level strategy such as heuristic 
classification necessarily corresponds to one of the 
problem solvers in our sense. For example, as I have 
mentioned, the data abstraction part of his strategy 
actually emerges in our architecture for diagnosis from 
the abstraction step in the hypothesis matcher and 
data-to-data reasoning processes in the 
knowledge-directed data base. From a theoretical 
viewpoint this is not an irrelevant distinction: Our 
theoretical goal is an "atomic" theory of knowledge 
use, so that more complex problem solving behaviors 
can be seen to emerge from the interaction of such 
atoms. From a practical viewpoint, while our 
architecture produces many of the needed behaviors in 
an emergent manner, the constituent parts still may 
need to be integrated to make the overall system 
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produce the needed behavior. Thus, direct study of 
such "compound" problem solving behaviors such as 
heuristic classification is il luminating and technically 
useful. Eventually, however, if the atomic theory is 
right, it wi l l be able to show how the subtasks in 
heuristic classification arise from the form in which 
domain knowledge is available, and also provide a 
more principled vocabulary of subtasks in behaviors: 
e.g., what's ugroup and differentiate" and where does 
it come from? 

Regarding compound tasks, 1 need to point out 
that some of the generic tasks in our repertoire, such 
as object synthesis by plan selection and refinement, 
seem to me to be more complex than others and 
represent several generic tasks organized and integrated 
for a certain purpose. The DSPL planner, e.g., has 
plan selectors which use structured matching. The 
current set in our laboratory has evolved empirically. 
As we experimentally discover decomposability, we wil l 
proceed to separate compound tasks into simpler 
constituent tasks. We are also building even higher 
level architectures for practically important 
applications. For example, we are currently building a 
diagnostic shell which wil l integrate the problem 
solvers as outlined in our discussion. The shell can 
then be directly used for the design and 
implementation of diagnostic systems of this particular 
type. 

There may be significant technological value in 
generic tasks whose function is to solve problems 
which human experts find it difficult to do without 
pencil and paper or computers, if they are integrated 
appropriately with other generic tasks. Constraint 
satisfaction problems are of this type. Design by 
constraint satisfaction is a useful method, but humans 
are not in general very good at solving problems in 
this way. The only caution in using this form of 
reasoning for design is that such architectures may 
encourage formulating design problems which have 
interesting and useful decompositions other than as 
constraint satisfaction problems, causing difficulties in 
debugging and explanation, i.e., they may preclude a 
study of domain knowledge that helps a human 
designer in producing explainable und maintainable, if 
only satisficing, designs. 

7. What Makes a Bui ld ing Block 
Clearly, highly domain specific tasks, such as a 

shell for designing drug-therapy administration 
systems, are not generic in an interesting AI sense, 
though they may be generic within the domain (e.g., 
the drug-therapy shell can be instantiated for different 
drugs). 

The work of Cohen and his coworkers (Gruber and 
Cohen 1987) in regard to the M U M system (and its 
successor MU for uncertainty management) raises 
interesting issues related to this. It incorporates a 
strategy for explicitly reasoning about balancing 

uncertainty reduction with costs of tests to reduce 
uncertainty. They regard diagnostic reasoning as an 
instance of the uncertainty management problem. On 
the other hand, it can also be argued that uncertainty 
management is a component of diagnostic problem 
solving. Clearly all problem solving, whether design 
or diagnosis, can be thought of as instances of 
uncertainty reduction. 

It seems to me that there are clearly situations in 
which managing uncertainty requires explicit and 
conscious strategies, and MU can be useful in those 
cases. However, it seems unlikely that uncertainty 
management is a generic building block activity in the 
sense of this paper, since the forms and strategies for 
handling uncertainty seem to be conditioned by the 
demands of the problem being solved and the form in 
which knowledge is available. The structured matcher 
handles uncertainty in one fashion, while the classifier 
deals with it in another. In (Chandrasekaran and 
Tanner 1986), 1 have discussed this view that 
uncertainty handling is not a unitary activity. I can 
see MU serving as a local advisor for uncertainty 
decisions within each of the generic tasks, when it is 
felt necessary to make some decisions, say test 
ordering, requiring explicit uncertainty manipulation. 

8. Towards a Functional Architecture of 
Intelligence 
The generic tasks that are represented in our 

toolset were specifically chosen to be useful as 
technology for building diagnosis, planning and design 
systems with compiled expertise. For capturing 
intelligent problem solving in general, we will 
undoubtedly require many more such elementary 
strategies and ways of integrating thern. For example, 
the problem solving activities in qualitative reasoning 
and device understanding, e.g., qualitative simulation, 
consolidation, and functional representation, qualify as 
generic problem solving activities, as do weak methods 
such as means-ends analysis. The work of Schank and 
his associates has also generated a body of such 
representations and inference processes that have a 
generic character to them. All these tasks have 
well-defined information processing functions, specific 
knowledge representation primitives and inference 
methods. Thus candidates for generic information 
processing modules in our sense are indeed many. 
What does all this mean for an architecture of 
intelligence? 

I am led to a view of intelligence as an interacting 
collection of functional units, each of which solves an 
information processing problem by using knowledge in 
a certain form and corresponding inference methods 
that are appropriate. Each of these units defines an 
information processing faculty. I discuss elsewhere 
(Chandrasekaran 1987) the view that these functional 
units share a computational property: they provide the 
agent with the means of transforming essentially 
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intractable problems into versions which can be solved 
efficiently by using knowledge and inference in certain 
forms. For example, Goel et a/., (Goel et al. 1987) 
show how classification problem solving solves 
applicable cases of diagnosis with low complexity, 
while diagnosis in general is of high complexity. 
Knowledge is indeed power, but how it acquires its 
power is a far subtler story than the first generation 
knowledge based systems made it appear. 

This view generates its own research agenda: As a 
theory, the generic tasks idea has quite a bit of work 
ahead of it to tell a coherent story about how the 
tasks come together and are integrated, and how more 
complex tasks such as planning come about from more 
elementary ones. How complex inference methods 
develop from simpler ones and how learning shapes 
these functional modules, are issues to be investigated. 

The theory does not take a position on the 
information processing architecture over which these 
functional units may be defined, i.e., this is not an 
argument for or against the architecture of the 
substratum being realized as a rule processor or as a 
frame system. In fact, a continuing issue in AI is 
how the rule/frame viewpoints may be integrated 
within a principled framework. 

The generic tasks idea has strong implications to 
knowledge representation and suggests a view of what 
mentalese, the language of thought, might be. What 
ultimately characterizes the generic task approach is 
not the proposals for specific generic tasks, which wil l 
undoubtedly evolve empirically, but a commitment to 
the following view: Knowledge and its use need to be 
specified together in knowledge representation. 
Because how knowledge is used depends upon the form 
in which knowledge appears, the enterprise of 
knowledge representation is one of developing 
vocabularies simultaneously for the expression and use 
of knowledge. The languages in which each of the 
generic information processing units encode their 
knowledge and communicate their information needs 
and solutions collectively defines the language of 
thought. 
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