
LOCATING POLYHEDRAL OBJECTS FROM EDGE POINT DATA

Gary Silverman
IBM Scientific Center, Los Angeles, CA 90025

Roger Tsai and Mark Lavin
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

ABSTRACT

A method is presented to locate a general polyhedron
in space with six degrees of freedom. A light stripe sensor
is assumed to be capable of providing three-dimensional
data points on known edges of the polyhedron to within
a known accuracy. A representation is found for all the
ways three line segments of fixed length can fall between
the edges of a polyhedron. This representation, called an
edge interval, is used in a tree search to find the location
of each data point to within an interval on the edge. The
final location of the object is determined by a one-
dimensional line search. The method is illustrated with
simulated data from a unit tetrahedron and results from
a computer implementation are presented. The tree
search takes a negligible amount of time and the one-
dimensional line search takes a small additional incre­
ment.

I INTRODUCTION

The general problem is to determine the identity and
location of a part in 3-D space to within a known error
in real time. Gordon and Seering '87 describe a method
which uses light stripes between known edges of a
polyhedral object. When three light stripes intersect a
right corner, they are able to locate the object in negligi­
ble time. Bolles and Horaud '86 "concentrate on edges
because they contain more information than surface
patches and are relatively easy to detect in range data,"
page 8. Grimson and Lozano-Perez '84 use points on a
known face and an estimate of the surface normal at each
point to locate the object. On page 9, they suggest that
if a point is on an edge of an object, "the recognition
process is greatly simplified."

The problem treated in this paper is to locate a gen­
eral polyhedral object with six degrees of freedom using
data from a light stripe sensor. We assume that the light
stripes locate 3-D data points on edges of the object to
within a known error. Call each of these data points an
edge point. Research is currently underway to develop
effective sensors for this kind of application, see Tsai '85,
Gordon and Seering '87 and Bolles and Horaud '86.
There is a further assumption that each edge point is on
a known edge of the object. This may occur in an appli­
cation such as in Gordon and Seering '87, where the ge­
ometric relation between the sensor and the object has
been specified in advance or as in Arbab '87, where the
edge points are identified with an edge via an interpreta­
tion method.

In the next section the main results are provided on
how the ends of a line segment of fixed length may inter­
sect two edges of an object in 3-D space. The Edge In­
terval Tree section shows how the edge intervals may be
propagated as constraints in a tree search to find the lo­
cation of each edge point to within an interval on the
edge. The section on Locating The Object shows how to
locate the object within error by a one-dimensional line
search.

II EDGE INTERVALS

Consider a line segment of fixed length, d, whose end
points are known to intersect each of two edges, e0 and
e1, see Figure 1. Now add an orientation to each line,
so that a minus (-) and a plus (+) direction is defined
along the line. Edge intervals are defined as a pair of in­
tervals, one interval on each line, with the following
property. As the point of intersection on the first line
moves in a monotonic direction from beginning to end
of the first interval, the point of intersection on the sec­
ond line moves in a monotonic direction on the second
interval. These intervals are mutually exclusive and in­
clude all possible intersections of the line segment with
the two edges.

Figure 1. Monotonic edge intervals on two edges.

To describe the edge intervals introduce vertices
"00' 01which define a finite edge €Q in Figure 1 and a
positive direction on e0. Define a parameterization of a
point along the edge using a convex combination of the
vertices,

(1)

so that,

Silverman, Tsai, and Lavin 1149

(2)

(3)

Similar vertices and parameterization are defined for edge

Consider the line segment of length d. This
line segment is constructed to be perpendicular to edge
e0. As one end of the line segment moves from poo to
PQI on edge e0 the other end moves from to on
eage e\. One end of the line segment is moving along e§
in the negative direction and the other end is moving
along ej in the negative direction. a sense
of direction must change. This is because at P11 the line
segment is perpendicular to edge q. It is impossible to
continue moving in the negative direction on both edges
and still maintain contact Therefore, as the line segment
moves from to the sense of direction

must change from - to Similarly, from
to the senses are +, +. Finally, from
returning to PQQ, PJQ the senses are - , +. To

convince yourself, cut out the line and re-trace this path
on Figure 1.

To calculate values of OLQ and aj that correspond to
edge intervals, the orthogonality condition

(4)

and the distance condition

(5)

must be satisfied.

Equations (4) and (5) may be reduced to a standard
quadratic equation in a$. The solution is the following
equations for aQ and a1, where and g3 are
dependent only on the edge vertices and the distance.
These equations are too long to include here, but are in­
cluded in Silverman et. a l87.

Cases where equations (6) and (7) are degenerate are
classified as follows. If the distance, d, is shorter than the
minimum distance between the edges, then the
discriminant term in (6) is negative. If the edges are
orthogonal, the discriminant in (6) is equal to zero. If the
edges are parallel, the term a1 in (6) equals zero and the
edge intervals are illustrated in Figure 2. In all of these
cases, degenerate or non-degenerate, it is possible to
compute the edge intervals by solving simple quadratic
equations.

This is a complete representation of edge intervals
along edges e0 and e1, and although Figure 1 and
Figure 2 are planar, this representation extends imme­
diately to arbitrary edges in 3-D space. Errors in the edge

point data will cause error in the final location of the
object. For the parallel case shown in Figure 2 if the
distance, d, is within sensor error of the distance between
the edges, edge interval calculation may fail.

I l l THE EDGE INTERVAL TREE

The edge interval tree has three levels: Oth level, 1st
level and 2nd level, one for each edge point. A node at
the ith level represents an interval on e:. There is an arc
emanating to the next level for each edge interval. The
monotonic character of the edge intervals enables an edge
interval tree search for a set of three valid intervals, one
on each edge. The valid intervals are subsets of the re-

1150 ROBOTICS

spective edge intervals.* A*set of valid intervals contains
all sets of values such that; if each edge point
is located at the value of a, on its respective edge, then
the three mutual distances are consistent with the sensor
data to within error. This is a location where the edge
point data fit the object.

Valid intervals are determined by propagating the
edge intervals from and back to e0. The
monotonic property oT the edge intervals implies there is
a continuous, monotonic mapping from any point ai
within the edge interval on e^ which with <£,, maps to a
unique point a.- on e:. Let this mapping and its inverse be
denoted by the transfer functions,

(8)

and

(9)

The transfer function Tij is the location of a point on an
edge at a given distance from a point on another edge,
where both points are expressed parametrically as in (1).

The equation for T can be derived by solving

(10)

for (8) or (9). This leads to a quadratic equation

(11)

where a% ^2* °2 a r e functions of a/, see Silverman et. al/87
for details. This quadratic equation is non-degenerate for
any a{- in the edge interval on <?,-. The function Tiji indi­
cates there are two points on ej; at a given distance from
a,-, one each for the plus and minus root in (11). At any
node in the edge interval tree search the correct sign in

(11) is determined by the edge interval on e,-. In the dis­
cussion below, let T denote a specific transfer function
where the sign is determined by the edge interval being
propagated.

Searching the Edge Interval Tree

A unit tetrahedron is illustrated in Figure 5. Three
edges, and e2, are cut by a simulated light stripe.
Three edge points, are known to within a
given sensor error. The three mutual distances between
edge points may be computed, do1' d12 a n d d20- A m o d e l
of the object provides the vertices for each edge in some
canonical location. The edge intervals for the the first
two unit tetrahedron edge pairs are displayed in
Figure 3 and Figure 4. This example will be used to il­
lustrate the tree search.

The tree is propagated by intersecting intervals on
common edges and transferring the resulting intervals to
the next edge with (11). Pruning occurs when the inter­
sected interval is empty. The propagation and pruning
steps for the tree differ at each level. Figure 6 shows the
edge interval constraint propagation from edge interval

in Figure 3 to in Figure 4. In Figure 6 the unit
tetrahedron has been "unfolded" along ej to make a
planar figure illustrating the edge interval tree search.

The Oth level: This level propagates intervals on eo to in­
tervals on e using the edge intervals. Let this interval
be noted by J] In Figure 6, 1] is actually the
edge interval

The 1st level: This level propagates intervals on e1 to in­
tervals on e2 using d12- For the edge intervals from e1 to
e2, intersect the interval on e1 with l1, the interval passed
in from the Oth level. Let this intersected interval be
noted by If H1 is empty, then the tree is
pruned at this point. In Figure 6, this results in I\, being
intersected with Here because

If H] is equal to E1 2 then propagate to e2 by using
the respective edge interval. If not, propagate H1 to e^
using the transfer function T. That is "~ where

(12)

(13)

This is illustrated in Figure 6, where |.

The 2nd level: This level propagates intervals on e2 back
to intervals on eo using d20- The propagation and pruning
steps at level 1 are repeated at level 2 using the edge in­
tervals from e2 to e0 and the distance, . The result is
an interval,

Now propagate . a n d back t o e o t o ob­
tain another interval That is,

(14)

and

(15)

Silverman, Tsal, and Lavln 1151

Errors in the sensor data may cause localizations to be
missed unless both intervals are increased. Let VQ be the
intersection of the increased intervals, Ho and /Q. If Vo is
empty the tree may be pruned at this point. Any non-
empty interval, VO, is a valid interval. This final pruning
step is possible because the line segments d20 and d01
must intersect eo at the same point, PO, to within error.

IV LOCATING THE OBJECT

If the solution is known to lie in a
one-dimensional line search for a fixed point to witnin
error, of the function,

(16)

will find all solutions within the valid interval. The line
search is required because while all three distances are
maintained by (16), both starting and ending points of
intersection on eo must be the same to within error.

The object localization problem is solved by locating
the edge point,
Once a particular triple , is known a transfor­
mation to within error from model space to image space
may be computed to fit the object.

A program has been written implementing the ideas
presented here and it has been tested on the unit
tetrahedron data. The edge interval calculation involves
only a few quadratic equations to solve and takes negli­
gible time. The edge interval tree search requires a few
comparisons and some evaluations of (11) per node. This
too takes only a very small amount of time. Any edge
interval tree with three levels has a maximum of 84 nodes,
because the maximum number of branches at any node
is four. The edge interval tree search for the unit
tetrahedron has to examine only 15 out of the possible
84 nodes. The rest are pruned from the tree. Experience
with the current program indicates a few seconds of exe­
cution time on the IBM RT PC programmed in C. This
includes line search of two valid intervals. It should be
possible to substantially improve upon this.

V ACKNOWLEDGMENTS

We would like to thank Bob Cypher of the University
of Washington and our colleagues, Bijan Arbab,
Fernando Vicuna and Jim Moore for many helpful dis­
cussions. The authors are also grateful to the referee
whose comments resulted in a number of important clar­
ifications.

REFERENCES

1. Arbab. B. "Object Identification by Parallel Light
Stripes/ In Proc. IJCAI-87. Milano, Italy, August
1987.

2 Bolles R.C. and P. Horaud, "3DPO: A Three-
Dimensional Part Orientation System." The Interna­
tional Journal of Robotics Research, 5:3 (1986) 3-26.

3. Gordon, S.J. and W.P. Seering, "Locating Polyhedral
Features from Sparse Light Stripe Data." In Proc.
IEEE International Conference on Robotics and Au­
tomation, Raleigh, NC, April, 1987, pp. 801-806.

4. Grimson, W.E.L. and T. Lozano-Perez, "Model-
Based Recognition and Localization from Sparse
Range or Tactile Data." The International Journal
of Robotics Research, 3:3 (1984) 3-35.

5. Silverman, G. J., R. Tsai and M. Lavin, "Locating
Polyhedral Objects from Edge Point Data," LASC
Report, IBM Scientific Center, 11601 Wilshire Blvd.,
Los Angeles, CA, 90025 August 1987.

6. Tsai, R.Y. 1985 "A Versatile Camera Calibration
Technique for High Accuracy 3-D Machine Vision
Metrology using off-the-shelf TV Cameras and
Lenses," IBM T.J. Watson Research Report RC
11413, Yorktown Heights, NY, September 1985.

1152 ROBOTICS

