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ABSTRACT 

A method is presented to locate a general polyhedron 
in space with six degrees of freedom. A light stripe sensor 
is assumed to be capable of providing three-dimensional 
data points on known edges of the polyhedron to within 
a known accuracy. A representation is found for all the 
ways three line segments of fixed length can fall between 
the edges of a polyhedron. This representation, called an 
edge interval, is used in a tree search to find the location 
of each data point to within an interval on the edge. The 
final location of the object is determined by a one-
dimensional line search. The method is illustrated with 
simulated data from a unit tetrahedron and results from 
a computer implementation are presented. The tree 
search takes a negligible amount of time and the one-
dimensional line search takes a small additional incre­
ment. 

I INTRODUCTION 

The general problem is to determine the identity and 
location of a part in 3-D space to within a known error 
in real time. Gordon and Seering '87 describe a method 
which uses light stripes between known edges of a 
polyhedral object. When three light stripes intersect a 
right corner, they are able to locate the object in negligi­
ble time. Bolles and Horaud '86 "concentrate on edges 
because they contain more information than surface 
patches and are relatively easy to detect in range data," 
page 8. Grimson and Lozano-Perez '84 use points on a 
known face and an estimate of the surface normal at each 
point to locate the object. On page 9, they suggest that 
if a point is on an edge of an object, "the recognition 
process is greatly simplified." 

The problem treated in this paper is to locate a gen­
eral polyhedral object with six degrees of freedom using 
data from a light stripe sensor. We assume that the light 
stripes locate 3-D data points on edges of the object to 
within a known error. Call each of these data points an 
edge point. Research is currently underway to develop 
effective sensors for this kind of application, see Tsai '85, 
Gordon and Seering '87 and Bolles and Horaud '86. 
There is a further assumption that each edge point is on 
a known edge of the object. This may occur in an appli­
cation such as in Gordon and Seering '87, where the ge­
ometric relation between the sensor and the object has 
been specified in advance or as in Arbab '87, where the 
edge points are identified with an edge via an interpreta­
tion method. 

In the next section the main results are provided on 
how the ends of a line segment of fixed length may inter­
sect two edges of an object in 3-D space. The Edge In­
terval Tree section shows how the edge intervals may be 
propagated as constraints in a tree search to find the lo­
cation of each edge point to within an interval on the 
edge. The section on Locating The Object shows how to 
locate the object within error by a one-dimensional line 
search. 

II EDGE INTERVALS 

Consider a line segment of fixed length, d, whose end 
points are known to intersect each of two edges, e0 and 
e1, see Figure 1. Now add an orientation to each line, 
so that a minus ( - ) and a plus (+ ) direction is defined 
along the line. Edge intervals are defined as a pair of in­
tervals, one interval on each line, with the following 
property. As the point of intersection on the first line 
moves in a monotonic direction from beginning to end 
of the first interval, the point of intersection on the sec­
ond line moves in a monotonic direction on the second 
interval. These intervals are mutually exclusive and in­
clude all possible intersections of the line segment with 
the two edges. 

Figure 1. Monotonic edge intervals on two edges. 

To describe the edge intervals introduce vertices 
"00' 01which define a finite edge €Q in Figure 1 and a 
positive direction on e0. Define a parameterization of a 
point along the edge using a convex combination of the 
vertices, 

(1) 

so that, 
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(2) 

(3) 

Similar vertices and parameterization are defined for edge 

Consider the line segment of length d. This 
line segment is constructed to be perpendicular to edge 
e0. As one end of the line segment moves from poo to 
PQI on edge e0 the other end moves from to on 
eage e\. One end of the line segment is moving along e§ 
in the negative direction and the other end is moving 
along ej in the negative direction. a sense 
of direction must change. This is because at P11 the line 
segment is perpendicular to edge q. It is impossible to 
continue moving in the negative direction on both edges 
and still maintain contact Therefore, as the line segment 
moves from to the sense of direction 

must change from - to Similarly, from 
to the senses are +, +. Finally, from 
returning to PQQ, PJQ the senses are - , +. To 

convince yourself, cut out the line and re-trace this path 
on Figure 1. 

To calculate values of OLQ and aj that correspond to 
edge intervals, the orthogonality condition 

(4) 

and the distance condition 

(5) 

must be satisfied. 

Equations (4) and (5) may be reduced to a standard 
quadratic equation in a$. The solution is the following 
equations for aQ and a1, where and g3 are 
dependent only on the edge vertices and the distance. 
These equations are too long to include here, but are in­
cluded in Silverman et. a l87. 

Cases where equations (6) and (7) are degenerate are 
classified as follows. If the distance, d, is shorter than the 
minimum distance between the edges, then the 
discriminant term in (6) is negative. If the edges are 
orthogonal, the discriminant in (6) is equal to zero. If the 
edges are parallel, the term a1 in (6) equals zero and the 
edge intervals are illustrated in Figure 2. In all of these 
cases, degenerate or non-degenerate, it is possible to 
compute the edge intervals by solving simple quadratic 
equations. 

This is a complete representation of edge intervals 
along edges e0 and e1, and although Figure 1 and 
Figure 2 are planar, this representation extends imme­
diately to arbitrary edges in 3-D space. Errors in the edge 

point data will cause error in the final location of the 
object. For the parallel case shown in Figure 2 if the 
distance, d, is within sensor error of the distance between 
the edges, edge interval calculation may fail. 

I l l THE EDGE INTERVAL TREE 

The edge interval tree has three levels: Oth level, 1st 
level and 2nd level, one for each edge point. A node at 
the ith level represents an interval on e:. There is an arc 
emanating to the next level for each edge interval. The 
monotonic character of the edge intervals enables an edge 
interval tree search for a set of three valid intervals, one 
on each edge. The valid intervals are subsets of the re-
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spective edge intervals.* A*set of valid intervals contains 
all sets of values such that; if each edge point 
is located at the value of a, on its respective edge, then 
the three mutual distances are consistent with the sensor 
data to within error. This is a location where the edge 
point data fit the object. 

Valid intervals are determined by propagating the 
edge intervals from and back to e0. The 
monotonic property oT the edge intervals implies there is 
a continuous, monotonic mapping from any point ai 
within the edge interval on e^ which with <£,, maps to a 
unique point a.- on e:. Let this mapping and its inverse be 
denoted by the transfer functions, 

(8) 

and 

(9) 

The transfer function Tij is the location of a point on an 
edge at a given distance from a point on another edge, 
where both points are expressed parametrically as in (1). 

The equation for T can be derived by solving 

(10) 

for (8) or (9). This leads to a quadratic equation 

(11) 

where a% ^2* °2 a r e functions of a/, see Silverman et. al/87 
for details. This quadratic equation is non-degenerate for 
any a{- in the edge interval on <?,-. The function Tiji indi­
cates there are two points on ej; at a given distance from 
a,-, one each for the plus and minus root in (11). At any 
node in the edge interval tree search the correct sign in 

(11) is determined by the edge interval on e,-. In the dis­
cussion below, let T denote a specific transfer function 
where the sign is determined by the edge interval being 
propagated. 

Searching the Edge Interval Tree 

A unit tetrahedron is illustrated in Figure 5. Three 
edges, and e2, are cut by a simulated light stripe. 
Three edge points, are known to within a 
given sensor error. The three mutual distances between 
edge points may be computed, do1' d12 a n d d20- A m o d e l 
of the object provides the vertices for each edge in some 
canonical location. The edge intervals for the the first 
two unit tetrahedron edge pairs are displayed in 
Figure 3 and Figure 4. This example will be used to il­
lustrate the tree search. 

The tree is propagated by intersecting intervals on 
common edges and transferring the resulting intervals to 
the next edge with (11). Pruning occurs when the inter­
sected interval is empty. The propagation and pruning 
steps for the tree differ at each level. Figure 6 shows the 
edge interval constraint propagation from edge interval 

in Figure 3 to in Figure 4. In Figure 6 the unit 
tetrahedron has been "unfolded" along ej to make a 
planar figure illustrating the edge interval tree search. 

The Oth level: This level propagates intervals on eo to in­
tervals on e using the edge intervals. Let this interval 
be noted by J] In Figure 6, 1] is actually the 
edge interval 

The 1st level: This level propagates intervals on e1 to in­
tervals on e2 using d12- For the edge intervals from e1 to 
e2, intersect the interval on e1 with l1, the interval passed 
in from the Oth level. Let this intersected interval be 
noted by If H1 is empty, then the tree is 
pruned at this point. In Figure 6, this results in I\, being 
intersected with Here because 

If H] is equal to E1 2 then propagate to e2 by using 
the respective edge interval. If not, propagate H1 to e^ 
using the transfer function T. That is "~ where 

(12) 

(13) 

This is illustrated in Figure 6, where |. 

The 2nd level: This level propagates intervals on e2 back 
to intervals on eo using d20- The propagation and pruning 
steps at level 1 are repeated at level 2 using the edge in­
tervals from e2 to e0 and the distance, . The result is 
an interval, 

Now propagate . a n d back t o e o t o ob­
tain another interval That is, 

(14) 

and 

(15) 
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Errors in the sensor data may cause localizations to be 
missed unless both intervals are increased. Let VQ be the 
intersection of the increased intervals, Ho and /Q. If Vo is 
empty the tree may be pruned at this point. Any non-
empty interval, VO, is a valid interval. This final pruning 
step is possible because the line segments d20 and d01 
must intersect eo at the same point, PO, to within error. 

IV LOCATING THE OBJECT 

If the solution is known to lie in a 
one-dimensional line search for a fixed point to witnin 
error, of the function, 

(16) 

will find all solutions within the valid interval. The line 
search is required because while all three distances are 
maintained by (16), both starting and ending points of 
intersection on eo must be the same to within error. 

The object localization problem is solved by locating 
the edge point, 
Once a particular triple , is known a transfor­
mation to within error from model space to image space 
may be computed to fit the object. 

A program has been written implementing the ideas 
presented here and it has been tested on the unit 
tetrahedron data. The edge interval calculation involves 
only a few quadratic equations to solve and takes negli­
gible time. The edge interval tree search requires a few 
comparisons and some evaluations of (11) per node. This 
too takes only a very small amount of time. Any edge 
interval tree with three levels has a maximum of 84 nodes, 
because the maximum number of branches at any node 
is four. The edge interval tree search for the unit 
tetrahedron has to examine only 15 out of the possible 
84 nodes. The rest are pruned from the tree. Experience 
with the current program indicates a few seconds of exe­
cution time on the IBM RT PC programmed in C. This 
includes line search of two valid intervals. It should be 
possible to substantially improve upon this. 
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