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ABSTRACT 

One of the most highly touted virtues of knowledge-based ex­
pert systems is their abil i ty to construct explanations of deduced 
lines of reasoning. However, there is a basic difficulty in generat­
ing explanations in expert systems that reason under uncertainty 
using numeric measures. In particular, systems based upon evi­
dential reasoning using the theory of belief functions have lacked 
any facil ity for explaining their conclusions. In this paper we re­
view the process whereby other expert system technologies pro­
duce explanations, and present a methodology for augmenting 
an evidential-reasoning system with a versatile explanation facil­
ity. The method, which is based on sensitivity analysis, has been 
implemented and a simple example of its use is described. 

I INTRODUCTION 

One of the most highly touted virtues of knowledge-based ex­
pert systems is their abil i ty to construct explanations of deduced 
lines of reasoning. Endowing such systems wi th an explanation 
facil i ty has two major advantages [1]. First, it contributes to 
the transparency of the program. That is, it allows the user 
to observe, and perhaps question, the individual inferences that 
contribute to the conclusions that are reached. This abil i ty to 
examine the inner workings develops a sense of confidence in the 
mind of the user; he can become satisfied that the system re­
ally "knows" what it is doing and has not just happened upon a 
plausible conclusion. An explanation capability is thus an impor­
tant ingredient in user acceptance of a knowledge-based system. 
Secondly, explanations can be a useful tool for the knowledge en­
gineer. Information gained by questioning the system about its 
own knowledge base can be valuable for debugging and refining 
the stored knowledge. Randall Davis' TEIRESIAS is a good ex­
ample of a system that exploits explanations for the purpose of 
knowledge engineering [2]. 

Throughout the history of artificial intelligence research, there 
has been much interest in developing knowledge-based systems 
that can reason wi th information that is uncertain or inexact in 
one way or another. Several technologies have been proposed for 
representing knowledge and deriving consequences from imper­
fect data: MYCIN'S certainty factors [13], Prospector's inference 
nets [10], fuzzy sets [17], Bayesian nets [8], and Dempster-Shafer 
belief functions [6] are prominent examples. Individual differ­
ences aside, all of these technologies have one th ing in common: 
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a basic difficulty in constructing explanations for a particular line 
of reasoning. 

In this paper we review the process whereby current expert sys­
tems generate explanations, and identify the reasons why expla­
nation generation is difficult in uncertain reasoning systems. We 
then propose an explanation facility for one class of automated 
reasoning systems that does incorporate uncertainty: evidential 
reasoning. Implementation of this facility results in a knowledge-
based system that has both a well-founded representation of un­
certainty and a non-tr ivial abil ity to explain its inference paths. 

I I EXPLANATION GENERATION 

The successful generation of explanations in knowledge-based 
systems has three requirements-

1. an effective explanation can be based upon a recapitulation 
of actions taken by a program; 

2. the correct level of detail of those actions must be chosen; 
and 

3. there must be a shared vocabulary that makes the program's 
actions comprehensible to the user. 

In a logic program, conclusions are deduced from a collection 
of facts and rules using the law of modus ponens [14]. One can 
construct a proof tree that shows the derivation of a goal by re­
cursively generating nodes at each invocation of a rule. Once the 
proof tree has been constructed, an explanation of a given com­
putation can be generated in a straightforward fashion. Suitable 
justifications for conclusions can be produced by reciting the fact 
(or collection of facts) that triggered the rule. When additional 
detail is required, reiterating the rule may also be of use. Mecha­
nisms to control the depth to which the proof tree is explored are 
used to better satisfy the second requirement—choosing the cor­
rect level of detail. Addit ional ly, a more appropriate vocabulary 
can be used by augmenting each rule w i th a natural language 
description that is displayed in place of the rule itself—thus ad­
dressing the th i rd requirement. Many other techniques as well 
have been used to produce better justif ications. 

The need to represent uncertain or inexact information in some 
applications has forced system developers to implement new for­
malisms. The augmentation of rules wi th certainty factors (as 
in M Y C I N [13]) and the use of inference nets (as in Prospec­
tor [10]) are well-known examples. Introducing uncertainty into 
a rule-based system can greatly expand the search required to 
reach a conclusion. In a binary-valued logic, any path from the 
goal to known facts is adequate to assert the t ruth of the goal, 
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but a rule-based system incorporating uncertainty must invoke 
all rules that unify with every subgoal in the search tree. While 
many systems have been written that successfully cope with the 
additional computation this paradigm requires, it presents sub­
stantial obstacles to the construction of suitable explanations. 

Tracing the arcs of an inference network is the analog of rule 
backtracing in a rule-based system to produce explanations. As 
with systems employing certainty factors, several evidence nodes 
may contribute to the belief in a hypothesis node, so an appro-
priate explanation may consist of several supporting reasons and 
the explanation mechanism must be able to separate those rules 
that argue for, against, or are indifferent to the hypothesis. In 
Hydro, an expert system designed for water resource manage­
ment problems [5], the Prospector model was extended to allow 
multivalued predicates, and explanation generation became more 
difficult. For example: 

Do you v i ah to see a d d i t i o n a l i n fo rma t i on? YES 

There ara two f avo rab le f a c t o r s ; in ordar o f impor tance: 
6 . 1 : 1) INTFW based on s o i l typa and v e g e t a t i o n , 
co r rac tad f o r s lope has a ?alua batwaan .72 and .99 
(■oat l i k a l y .855) ( c e r t a i n t y 4 .0 ) 

6 . 1 : 2) C o r r e c t i o n f a c t o r f o r gaology has a value 
between 1.0 and 2.0 (most l i k a l y 1.5) ( c a r t a i n t y 3.0) 

This explanation was constructed by walking the inference net 
and computing the range of possible values given the evidence 
collected to that point. The presence of numeric measures of 
certainty render the explanation barely comprehensible, contra­
dicting the third requirement. 

Prospector and Hydro both possess additional features to pro­
duce a more sophisticated interpretation of the state of their 
knowledge base, such as abilities to perform a best and worst-
case analysis of the possible effect of a missing piece of evidence. 
In a later version, a sensitivity analysis was performed by apply­
ing Prospector in batch mode to a test case while systematically 
modifying the input data [11]. This analysis was used primar­
ily to identify areas of disagreement between the expert and the 
system. 

The theory of belief functions, as originally conceived by 
Dempster [3] and further developed ay Shafer [12], is a gener­
alization of probability theory that provides a representation of 
degrees of precision as well as degrees of uncertainty. Its abil­
ity to express partial ignorance is of great value in the design of 
knowledge-based systems for real-world domains. Presently, the 
most highly developed knowledge-based system that incorporates 
Shafer's theory of belief functions for a wide range of application 
domains is Gister [7]. While Gister performs tasks similar to 
those of expert systems based on other technologies, i t , like all 
other systems based upon belief functions, has lacked an explana­
tion capability. In the next section, we present an overview of the 
evidential-reasoning technology employed by Gister. The deriva-
tion of a method for generating explanations within evidential-
reasoning systems follows that. 

I l l OVERVIEW OF EVIDENTIAL REASONING 

We now give a brief review of evidential reasoning. The 
reader is referred to Lowrance et.al., [7], for a fuller treatment of 
this technology. 

A. Fundamentals 

The goal of evidential reasoning is to assess the effect of all 
available pieces of evidence upon a hypothesis, by making use of 
domain-specific knowledge. Bodies of evidence are expressed as 
probabilistic opinions about the partial truth or falsity of state­
ments composed of subsets of propositions from a space of dis­
tinct possibilities (called the frame of discernment). The theory 
allows belief to be assigned to individual propositions in the space 
or to disjunctions of propositions. Belief assigned to a disjunc­
tion explicitly represents a lack of sufficient information to enable 
more precise distribution. This allows belief to be attributed to 
statements whose granularity is appropriate to the available evi­
dence. 

The distribution of a unit of belief over a frame of discernment 
is called a mass function. A mass function, m©, is a set mapping 
from subsets of a frame of discernment, into the unit interval: 

such that 

Any proposition that has been attributed nonzero mass is called 
a focal element. One of the ramifications of this representation 
of belief is that the probability of a hypothesis X is constrained 
to lie within an interval [Spt(X), Pls(X)] where 

(1) 

These bounds are commonly referred to as support and plausibil­
ity. A body of evidence (BOE) is represented by a mass function 
together with its frame of discernment. A BOE that represents 
one of the available pieces of evidence is called primitive. All 
other BOEs are conclusions or intermediate conclusions. 

In evidential reasoning, domain-specific knowledge is defined 
in terms of compatibility relations that relate one frame of dis­
cernment to another. A compatibility relation simply describes 
which elements from the two frames can simultaneously be true. 
A compatibility relation between two frames and is a set 
of pairs such that 

Evidential reasoning provides a number of formal operations 
for assessing evidence, including: 

1. Fusion — to determine a consensus from several indepen­
dent bodies of evidence. 

2. Translation — to determine the impact of a body of evi­
dence upon elements of a related, dependent frame of dis­
cernment. 

3. Project ion — to determine the impact of a body of evi­
dence at some future (or past) point in time. 
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4. D i s c o u n t i n g — to adjust a body of evidence to account for 
the credibil ity of its source. 

Several other evidential operations have been defined and are 
described elsewhere [7]. 

Independent opinions are expressed by mult iple bodies of evi­
dence. Dependent opinions can be represented either as a single 
body of evidence, or as a network structure that shows the inter­
relationships of several BOEs. The evidential reasoning approach 
focuses on a body of evidence, which describes a meaningful col­
lection of interrelated beliefs, as the pr imit ive representation. In 
contrast, all other technologies described in Section II focus on 
individual propositions. 

B. The Analysis of Evidence 

To make the description more concrete, we trace through the 
analysis of the following simplified problem. 

At 8:00 this morning I left my house in Palo Alto to 
come to the office. At 9:00 I received a phone call from a San 
Mateo County police officer who informed me that someone 
in his district found my dog, Rufus, running loose. At 10:00, 
a coworker arrived and said he saw a dog that looked like 
Rufus cross Hwy 280 on his way to work. Rufus has run 
away 10 times before-only once did I find him in Palo Alto. 
Where should I look for Rufus? 

The first step is to construct the spaces of possibilities (the 
frames of discernment). For example, my dog Rufus could pos­
sibly be in any of the following cities: 

{Atherton, LosAltos, MenloPark, 
MountainView, PaloAlto, Sunnyvale] 

Other frames could also be constructed; we would probably want 
one for highways 

and one for counties as well 

{SanMateo, SantaClara}. 

The second step is to construct the compatibi l i ty relations 
that define the domain-specific dependencies between the frames. 
Cities and counties are definitely related, so we might define the 
C i t i e s - C o u n t i e s relation graphically as shown in Figure 1. The 
relationship between cities and highways is also shown there. A 
connection between two propositions A\ and B\ indicates that 
they may co-occur ( in other words, 

T ime dependencies can also be expressed by compatibi l i ty re­
lations. We can construct a state transit ion diagram describing 
how far Rufus can wander. For example, suppose "that in one 
hour it is possible for a dog to go from my home in Palo A l to 
to Los Al tos, Menlo Park, or Mountain View. This information, 
along wi th travel times between other cities, can be expressed as 
the state transit ion graph in Figure 2, where the t ime interval 
for each arc is one hour. This graph can be interpreted as a com­
pat ib i l i ty relat ion, where each arc connects elements of the city 
frame to those cities where the dog could possibly be one hour 
later. 

H ighways -C i t i es 

Figure 1: Compatibi l i ty relations. 

Once the frames and compatibi l i ty relations have been estab­
lished, we can analyze the evidence. The goal of the analysis is 
to establish a line of reasoning from the evidence to determine 
belief in a hypothesis, (e.g., the present location of Rufus). 

The first step is to evaluate each piece of evidence relative to 
the appropriate frame of discernment. Each piece of evidence is 
represented as a mass function, which is a distr ibution of a unit of 
belief over subsets of the frame. For example, the fact that Rufus 
was at home when I left at 8:00 is pertinent to the Cities frame 
at 8:00 (Cities@S : 00) and I would at tr ibute 1.0 to PaloAlto 
to indicate my complete certainty that he was there. The phone 
call from the policeman gives information about Counties@9 :00, 
specifically that Rufus was in SanMateo at 9:00. Because this 

Figure 2: Compat ib i l i ty relation showing a state transit ion dia­
gram. 
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information is not nearly as compelling as my knowledge of Ru-
fus' whereabouts at 8:00, it must be discounted to assess its true 
impact. Assuming the report is 70% credible, we at t r ibute .7 
mass for SanMateo, and .3 for "anywhere". The th i rd piece of 
evidence, that my coworker saw a dog like Rufus cross Hwy280, 
gave information about Highways@\10:00 and might be assessed 
as giving .75 support that it was Rufus crossing the road, and 
.25 that my coworker couldn't see the dog well enough to identify 
h im. The last piece of evidence (the historical data) is assessed as 
90% sure that Rufus is not in PaloAlto at 10:00, and 10% chance 
that he is. This evaluation of evidence can be quite subjective, 
and all systems that reason under uncertainty require subjective 
estimates in one form or another. For purposes in this paper, 
it is sufficient to accept some numeric estimate of belief, and we 
won't further discuss how these assessments are made. 

The final step is to construct the actual analysis of the evi­
dence, in order to determine its impact upon the hypothesis. The 
hypothesis is asking for an assessment of belief over elements in 
the Cities frame at 10:00. The evidential operations can be used 
to derive a body of evidence providing beliefs about where Rufus 
might be at 10:00. A good start ing point might be to pool the 
San Mateo police report w i th the fact that Rufus was home at 
8:00. Before we can combine these two bodies of evidence, we 
must adjust them to a common frame, say Cities©9:00. 

The translation of a BOE from one frame to another is defined 
by 

The projection operation is defined exactly as translat ion, 
where the frames are taken to be one time-interval apart. Pro­
jecting the BOE representing Rufus being at home at 8:00 to the 
Cities frame at 9:00 uses the D E L T A - C i t i e s relation and yields 

These two independent BOEs are now relative to a common 
frame and can be combined using the fusion operation, which is 
implemented via Dempster's Rule oi Combinat ion: 

(3) 

Dempster's Rule is both commutative and associative (meaning 
evidence can be fused in any order) and has the effect of focusing 
belief on those propositions that are held in common. Fusing the 
two previous mass functions yields: 

Figure 3: The completed analysis graph. 

The remainder of the evidence is taken into account by trans­
lat ing, projecting, and fusing according to the analysis graph 
shown in Figure 3. The result is a BOE relative to the Cities 
frame at 10:00, and gives the conclusions as to the current where­
abouts of Rufus. Specifically, 

i 

The hypothesis, {LosAltos), has the greatest support, and i t 's 
belief interval is 

A l l of the operations discussed above have been implemented 
wi th in Gister. Frames and compatibi l i ty relations are repre­
sented as graphs, which can be constructed, examined, and mod­
ified interactively. Having a mechanical means to compute a 
conclusion is necessary, but without some deeper explanation of 
why the conclusion is believed, may be difficult to accept. 

The completed analysis graph can be seen to be the counter­
part of the proof tree of logical deduction. Each node represents 
an opinion and the arcs show the derivation of one opinion from 
other opinions and the knowledge contained in the compatibi l i ty 
relations. The complete graph shows the derivation of a con­
clusion from the pr imi t ive bodies of evidence. The next section 
presents a methodology that makes use of the analysis graph to 
explain evidential conclusions. 

IV GENERATING EXPLANATIONS WITHIN EVIDENTIAL 
REASONING 
We have already seen how the analysis graph can be con­

strued as the evidential analog of a proof tree. In this section 
we wi l l use it as a data structure that defines the information 
flow from pr imit ive sources of evidence to conclusions. The in­
terpretation of an analysis graph as a data-flow model provides 
an intui t ive appeal to the discussion that follows. 

As was done wi th Hydro, we wi l l use sensitivity analysis as the 
basis for constructing explanations. Because the belief function 
representation provides a richer vocabulary for expressing uncer­
tainties than was used in Hydro, we wi l l need a more sophisti­
cated technique to identify the most significant justif ications of 
a conclusion. 
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Sensitivity analysis requires a systematic variation of inputs to 
determine a family of solutions in the output space [9]. In Hydro, 
the probabilities of each piece of evidence are the relevant input 
parameters. In Gister, this is not feasible because the space of 
conceivable belief functions is exponentially large. Fortunately, 
a more intui t ive parameter space is available—one that is moti­
vated by the data-flow interpretation of the analysis graph. In 
part icular, the credibility of each pr imit ive evidence can be var­
ied and the effect upon a conclusion of interest ascertained. This 
is accomplished via the discounting operation. The new belief 
in a hypothesis can be computed by reevaluating the data-flow 
graph. Discounting is defined as 

(4) 

where a is the credibil ity of the original BOE. 

A. Single Hypothesis 

In this section, we develop the tools to explain why a, partic­
ular hypothesis was found to be strongly (or weakly) supported. 
For example, we seek an answer to the question, "Why do you 
believe Rufus is in Los Altos at 10:00?" 

The simplest case to consider is the fusion of two bodies of 
evidence as shown below: 

To perform a sensitivity analysis of this graph, we insert a 
discounting node after each BOE representing pr imit ive evidence. 
For each such BOE, , we define a, to be the credibility of that 
evidence, so that 

Obviously, if V i , ( a , = 1), then the computation in the modified 
analysis graph is the same as the ordinary fusion defined by the 
original graph. 

Ml discount 

(5) 
Here, Sptt(A) is interpreted as the sensitivity of the support 
for A to BOE, , and likewise for plausibility. 

2. Identify those BOE, wi th the extreme values. 

The quantities in the preceding equations indicate the change in 
the support or plausibil ity relative to a change in the credibil ity of 
an evidence source. The partial derivative is evaluated at a, = 1 
to assess the sensitivity of the conclusion, which was computed 
at a, = 1. 

In theory these quantities can be computed algebraically or nu­
merically; in practice numeric techniques are required. Returning 
to the previous example, we find 

From this information, it is apparent that BOE 1 is strong evi­
dence in support of A and BOE 2 weakly detracts from its sup­
port. 

I n general, the q u a n t i t i e s c a n b e com­
pared on the following scale: 

It can also be informative to analyze Spt(A) and Plst(A) si­
multaneously by making use of a sensitivity space plot as seen in 
Figure 4. Plot t ing on this graph for each 
1 yields a scattergram that can be used to further analyze the 
results of the sensitivity computation. The farther a point from 
the origin of sensitivity space, the greater the impact of that 
BOE upon the conclusion. Entries in the northeast quadrant 
identify BOEs that support the conclusion, while the southwest 
quadrant indicates an argument against the conclusion. Points in 
the northwest signify BOEs that add to the confusion about the 
hypothesis, while the southeast quadrant identifies BOEs that 
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serve to decrease the ignorance without necessarily arguing for 
or against. 

To this point, we have only given examples of a sensitivity 
analysis for a single fusion node. The techniques can be extended 
straightforwardly to apply across the full extent of an analysis 
graph. For example, the analysis in Figure 3 can be augmented 
with discounting nodes after each primitive evidence node. When 
the resulting analysis graph is viewed as a data flow model, the 
discounting nodes can be seen to act as "valves," where lowering 
the a-value serves to diminish the flow of information through 
the valve. 

By systematically setting each of the for some 
small 6, and reevaluating the data flow, a discrete approximation 
to the quantities can be obtained for any 
proposition in a conclusion node. This information then indicates 
the relevant import of each primitive evidence. Plotting each 
point in sensitivity space yields a graphic illustration of the effect 
each evidence has upon the conclusion. 

Returning to the Rufus example, sensitivity analysis shows 

from this information, we can conclude that my knowing that 
Rufus was at home at 8:00 had no bearing on the conclusion that 
he is probably in Los Altos now, while the remaining three reports 
were all necessary to the supporting argument. Therefore, only 
those reports should be included in the explanation: 

Why do you b e l i e v e Spt (Los A l t o s ) ■ .47? 

Because 
the p o l i c e r epo r t ed t h a t Rufus was seen in San Mateo 
at 9 :00 , and ay coworker r epo r t ed seeing a dog t h a t 
looks l i k e Rufus a long Highway 280, and Rufus was found 
in Palo A l t o once in the t e n t i a e s he ran away. 

Another example uses the negativity of 
answer a question: 

I s the re any reason to b e l i e v e t h a t Rufus i s not i n 
Los A l tos? 

Yes. 
Rufus was found in Palo A l t o once in the t e n t i a e s he 
ran away. 

If the user desires a more complete response than this, we could 
conceivably conjure an explanation from those compatibility re­
lations that were used along any particular path in the graph. A 
natural language text that describes what the compatibility re­
lation encodes might suffice (e.g., DELTA-Cit ies is "the limits 
on how far a dog can travel in one hour"); otherwise, the iden­
tification of particular links in the relation (perhaps graphically) 
can help pinpoint a reason. 

This analysis only indicates the effect of each primitive ev­
idence individually; the joint effect of multiple evidences is not 
determined. To compute joint effects numerically, while straight-
forward theoretically, requires exploration of a combinatorically 
large parameter space. Whether or not such a multivariate sen­
sitivity analysis would be useful for real problems remains to be 
determined. 

Specificity 

Figure 5: The characterization of mass functions in terms of 
specificity and consonance. 

B. Entire Body of Evidence 

Explanations of a single hypothesis (such as those derived 
in the preceding section) are quite similar to those produced in 
systems based on certainty factors or inference nets. The notion 
of a body of evidence that is used in evidential reasoning permits 
a higher-level description of an inference chain. Rather than 
asking a question about a belief in a particular proposition, the 
user can pose questions that search for the primitive pieces of 
evidence that were the most influential in general. 

There have been numerous proposals for characterizing BOEs 
[4] that can be used as the basis for selecting informative expla­
nations. While nearly any sound characterization will suffice for 
our present purposes, we will make use of several due to Yager 
[16]. 

We have already noted that the theory of belief functions al­
lows representation of varying degrees of precision as well as un­
certainty. The relative precision of a BOE can be characterized 
by the following expression for specificity: 

(6) 

where ||A;|| is the cardinality of the subset Ar It is easy to show 
that 

Roughly speaking, Spec(m) measures the degree of commitment 
of a belief function to precise propositions. The vacuous belief 
function, m : has the smallest possible specificity 
for any frame A mass function whose specificity is 1 is a 
probability distribution as well. 

The relative uncertainty of a BOE can be characterized by an 
entropy-like measure. Yager defines 

(7) 

and shows that Ent(m) is just Shannon's measure of entropy in 
the special case when m is a probability distribution. To use this 
measure to generate explanations, it will be more convenient to 
work instead with a measure of consonance: 

1 
Cons(m) = l + Ent(m)' (8) 
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Figure 6: Sensitivity space for characterizations of a body of 
evidence. 

so that 

Min imal consonance is thus maximal entropy, and exists when­
ever the focal elements of a mass function are mutual ly exclusive. 
Consonance equal to 1 occurs when all the focal elements are 
nested and thus represents a possibility distr ibution as defined 
by fuzzy set theory [17]. 

To gain some intu i t ion, it is useful to note that any BOE 
is characterized by a point in the unit square shown in Fig­
ure 5, which spans the space of all possible BOEs. The spe­
cial cases of possibility distributions and probabil ity distribu­
tions lie on the boundaries of the square. A Boolean statement 
has Cons(m) The vacuous belief function has 
Cons(m0) = 1 and Spec(m0) = 0 and is represented by the 
upper-left corner of the square. Starting with no information 
and gradually fusing pieces of evidence as they became available, 
we trace a path in the square that starts at the upper-left corner 
and wanders toward the right. The ideal analysis would reach a 
Boolean conclusion (upper-right corner), but typically the path 
stops somewhere short. The intu i t ion, then, is that pieces of ev­
idence that move the path closer to the upper-right corner are 
the most sufficient ones for focusing the conclusion. 

We are now in a position to select pieces of evidence as just i ­
fication of an evidential-reasoning inference chain. As before, we 
wi l l perform a sensitivity analysis to choose the components of 
the explanation, but this t ime we wi l l measure the change in our 
two characterizations of a BOE. We define 

(9) 
as the sensitivity of specificity and consonance respectively, where 
a, is the credibil i ty of BOE, as before. Once again, these mea­
sures can be computed for each primit ive evidence and plotted in 
sensitivity space for comparison (see Figure 6). In this graph, the 
northeast quadrant represents those BOEs whose inclusion in an 
analysis forces the path to the upper-right (the Boolean case) and 
are therefore important to the conclusion reached. The southwest 
quadrant contains BOEs whose inclusion decreases both the con­
sonance and specificity—these are pieces of evidence that run 
counter to the consensus, and may be suggestive of an errorful 
source or a need to maintain mult iple analysis paths. The other 
quadrants can be interpreted as labeled. Once again, distance 

from the origin indicates the relative contr ibution of evidence to 
the conclusion. 

Sensitivity analysis for the BOE that represents the conclusion 
from the lost-dog story reveals 

The sensitivities of support indicate that the fact that Rufus was 
at home at 8:00 did not contribute to the conclusion, and that 
my coworker's report was the most important piece of evidence 
(albeit by a slim margin). On the consonance side, all the reports 
were in agreement except for the historical information; this per­
mi t ted a small amount of belief to be attr ibuted to PaloAlto, a 
proposition not supported by the consensus. 

C. Using Sensitivity Results to Generate Explanations 

W i t h these tools in hand, a number of different questions 
about an analysis can be answered: 

Q: Why do you strongly believe A? 

A: Choose the BOE, for which is greatest. 

Q: Why d o n ' t you b e l i e v e B? 

A: Choose the BOE, for which is most negative. 

Q: Which p ieces of evidence serve to focus the 
conc lus i on more p r e c i s e l y ? 

A : Choose those BOEs for w h i c h a r e 
both positive. 

Q: Which p iece of evidence most s t r o n g l y d isagrees 
w i t h t he consensus? 

A: Choose the BOE, for which is most negative. 

Q: Which op in i ons can be s a f e l y ignored? 

A: Choose those BOEs for which 

Q: What are t he most c r u c i a l p ieces of evidence t h a t 
impinge upon t h i s conc lus ion? 

A: Choose those BOEs for which is greatest. 

In summary, the three requirements of explanation generation 
from Section II have been satisfied: 

1. The difficulty of recapitulating program actions wi th in sys­
tems that use a numeric measure of uncertainty has been 
overcome by the use of sensitivity analysis. Focusing on the 
credibil i ty of bodies of evidence instead of individual proba­
bilities makes this feasible for belief functions. 

2. The correct level of detail can be controlled in two ways. 
First , the depth of exploration of an analysis graph is se­
lected exactly as for proof trees, but wi th a natural cor­
respondence between arcs and meaningful inference steps. 
Second, the number of justif ications to be provided is ad­
justed by rank ordering the sensitivities and choosing the 
most important ones. 

3. A shared vocabulary is also provided in two forms. As wi th 
the other technologies, natural language text is associated 
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with a primitive evidence node and displayed in place of 
the machine representation. Second, the vocabulary is in 
terms of the high-level constructs of a set of related beliefs 
represented by a BOE, instead of each proposition and its 
belief individually. This is likely to correspond more closely 
to human thought processes. 

V DISCUSSION 

The use of evidential reasoning provides a richer vocabulary 
for expressing belief about uncertain events than is available in 
other technologies, but confounds the ability to construct suit­
able explanations of a chain of inferences. The use of sensitivity 
analysis as described here not only permits the customary forms 
of explanation characteristic of rule-based systems, but also en­
ables a variety of additional queries to be posed and answered. 

The tools presented in this paper have several uses in addition 
to that of constructing explanations for a user. Sensitivity in­
formation can be an important component of decision analysis. 
Knowledge of the sensitivity of conclusions can suggest whether 
sufficient information is available, or whether additional informa­
tion should be sought. It can also be used to focus information-
collection efforts. By hypothesizing the information that might 
be collected by a particular source, one can determine whether it 
could possibly have sufficient impact on the hypothesis to alter a 
pending decision. These ideas, while promising, have not as yet 
been investigated. 

We have presented an approach to constructing an answer to 
various kinds of questions that can be asked about a conclu­
sion derived through evidential reasoning. We have argued that 
the technique satisfies the three requirements for explanations. 
It also has the generality to be able to provide a variety of in­
formation about an evidential inference chain and can be used 
to further insulate the user from the cryptic numbers that are 
manipulated by the machine. Coupling this mechanism with the 
evidential-reasoning techniques already developed allows the cre­
ation of a powerful knowledge-based system for reasoning under 
uncertainty that can explain its behavior in terms understand­
able by humans. 
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