
Expl ic i t Integrat ion of Goals in
Heurist ic A lgor i thm Design

J. Mostow and K. Voigt*

Rutgers University Computer Science Department
New Brunswick, New Jersey 08003

Abstract

We describe a transformational derivation system that
semi-automatically derives a simplified version of
Mycin's therapy selection algorithm. It uses general
transformation rules to explicitly integrate the
multiple, sometimes conflicting goals that govern the
design of heuristic algorithms. The generality of its
transformations is demonstrated by using them to
derive a variation based on formulating and
integrating the same design goals differently.

I I n t r o d u c t i o n
Design of complex artifacts like programs, circuits,

and buildings requires the integration of multiple,
possibly conflicting design goals. Thus knowledge-
based design systems ought to represent and reason
about multiple design goals, since the better they
"understand" the design process, the more intelligent
the assistance they can provide. Current design
systems tend to lack this capability. Either they fail
to address multiple goals, or decisions that integrate
particular goals and resolve specific conflicts are
implicit ly precompiled into their knowledge base by a
manual knowledge engineering process [Mostow k
Swartout 86]. To remedy this deficiency, we need
better models for explicitly reasoning about multiple
goals in design (and other knowledge-intensive
problem-solving tasks) [Mostow 85].

One kind of intelligent design assistance is the
ability to explain various features of the designed
artifact. In the case of program design, [Swartout
83] points out that many questions about the designed
artifact cannot be answered satisfactorily without
referring to its development history, usually by asking
its developer. For example, if a program feature
depends on a particular manner of integrating certain
design goals, explaining this feature involves referring
to the design moves that carried out the integration,
and the design rationale that motivated them [Neches
et al 85]. Thus automating such explanations would
require explicitly representing this design history

This work wa§ supported by NSF under Grant Number
DMC-8610507, and by the Rutgers Center for Computer Aide to
Industrial Productivity.

information in machine-understandable form.
Automated explanation is just one motivation for
developing better models of goal integration in
design; [Mostow 85] describes a host of others.

We have chosen to investigate this problem in the
domain of heuristic algorithm design. To explore the
kinds of knowledge and reasoning needed to integrate
multiple design goals in this domain, we rationally
reconstructed a simplified version of Mycin's therapy
selection algorithm [Clancey 84], chosen because it
tries to satisfy several conflicting design goals. We
identified three kinds of goals:

• D o m a i n goals (here: medical goals)
prescribe the algorithm output.

• A l g o r i t h m goals govern the algorithm's
performance.

• Design process goals dictate the resources
available to the design process, such as the
time wi th in which the algorithm design
must be completed.

In particular, we chose to address the following
representative sample of the Mycin design goals listed
in [Mostow & Swartout 86]:

• D o m a i n goals:
o Maximize drug effectiveness.
o Minimize the number of drugs in the

therapy,
o Avoid contra-indicated therapies.

• A l g o r i t h m goals:
o Maximize time efficiency.
o Maximize space efficiency.

We encoded, in the form of domain-independent
transformation rules, the general knowledge needed to
integrate these goals and incorporate them into an
algorithm. We call the resulting algorithm RMTSA,
for Reduced Myc in Therapy Selection Algor i thm.
Given a set of drugs, the RMTSA is to generate the
therapy (subset of drugs) that best satisfies the above
medical goals, while not violating any of the algorithm
goals. Notice the potential conflict among the medical
goals in situations where they cannot all be satisfied
perfectly. While design process goals influence the
design, we have not modelled them explicitly in the
system.

1090 REASONING

I I The model of algori thm design
We model algorithm design as a transformational

derivation process leading from an initial specification
to an executable algorithm. Our algorithm design
states consist of two parts, a dataflow graph and an
agenda of design goals. The dataflow graph consists
of algorithm components such as memories, mappings,
filters, selectors, searches, and collects, whose input and
output ports are connected through dataflow links.
The agenda lists the design goals not yet incorporated
in the algorithm being designed. Design operators

• transform a partially designed algorithm so
as to incorporate, pursue, or avoid violating
a design goal,

• integrate multiple, possibly conflicting,
design goals into a combined goal, or

• reformulate a design goal to enable the
application of another design operator.

We adopted the ideas of using dataflow graphs and
allowing non-correctness-preserving transformation rules
from [Kant & Newell 83, Kant 85, Steier & Kant 85].

pointers to preceding and succeeding algorithm
components.

The semantics of each component type (memory,
mapping, test, filter, search, and collect) is
operationally defined by a rule for compiling it into
Interlisp code [Teitelman 78]. A dataflow graph is
compiled into its corresponding code by compiling each
of its components and appropriately nesting the
resulting pieces of code. The dataflow graph
representation of the algorithm is executable if all its
components are executable. In order for a component
(or rather its compilation) to be executable, the
component must not contain any non-operational
statements. Otherwise, more transformations are
needed to operationalize the component. The $Search
component is an example of a compound component,
which can include other algorithm components within
its own internal structure (see Figure I I I - l) . The
$Search schema has slots .Set for the choice set, .Map
for the mapping function (identity as default), and
.When for one or more filters (TRUE as default).

We have not attacked the problem of automatically
controlling the selection of transformation rules. We
avoided all issues of control by alternating user
selection of a supposedly suitable transformation rule
from the ful l set of rules, with automatic application
of this rule to the current algorithm design state.

Our system models the design of algorithms like the
one shown below, consisting of a cascade of generators,
mappings, filters, and sorters.

IV The in i t ia l a lgor i thm design state
We take the specification for the design of the

RMTSA as the initial state of our derivation. Figure
IV-1 shows the algorithm specification formulated in
our representation.

Init ial dataflow graph:

I I I A note on representation and
implementat ion

Our system is implemented in LOOPS, an object-
oriented programming environment developed at
Xerox [Bobrow 85]. Algorithm components, design
goals, and data input to the algorithm are represented
as objects. Links between the components of a
dataflow graph are represented as slots that contain

Mostow and Voigt 1091

The init ial specification of the RMTSA consists of an
init ial dataflow graph and an init ial agenda of design
goals. The dataflow graph has two components. The
mapping component S SubSetsl enumerates all subsets
of the input set. It is followed by the selecting
component $NDSelect, which non-deterministically
selects from its choice set of therapies (subsets of
drugs) a therapy that best satisfies the domain goals
(.DomainGoals) without the algorithm violating any
algorithm goals (.AlgrthmGoals). The agenda of
design goals lists three domain goals and two
algorithm goals.

V Der ivat ion of R M T S A 1 : f irst example
We now derive the RMTSA, introducing

transformation rules as needed, and showing those
portions of the resulting algorithm design state where
changes have occurred.

The init ial algorithm design state appeared in Figure
IV -1 . It lists $fewer-contra-indications as one of its
domain goals. The transformation rule
T r e a t G o a l As Cons t ra in t treats this goal as a
constraint. The cut-off value for thresholding — here 0
— is provided by the system developer to indicate that
no contra-indications wi l l be tolerated. The result of
thresholding is a new predicate, $Pred31, that returns
TRUE if the number of contra-indicated drugs in a
given therapy is less than or equal to this cut-off
value.

T rea t Goa l AsCons t ra in t : Treat goal G as
a constraint. Do so by thresholding using a
user-provided cut-off value.

Application of RefineSelect To Search replaces the
non-deterministically selecting component S NDSelectl
by a newly created search component $Search30.

Ref ineSelectToSearch: Replace non-
deterministic selection of an element
according t o c o n s t r a i n t s b y a
search for this element.

At this stage, $ Search 30 appears still in default
format, and is operational. In fact, the entire
algorithm is operational. However, since no goals
have been incorporated yet, it would return the first
generated subset of drugs, not the therapy that best
satisfies the domain goals.

Next, we apply the transformation
I nco rpo ra teCons t ra in t s to the contra-indications
constraint (now predicate $Pred31) in order to
incorporate it into $Search30.

Inco rpo ra teCons t ra in t s : To incorporate
constraints Cv ..., Cn on a selected
element, use them to filter the choice set.

Then transformation rule Cons t ra in t T o F i l t e r creates
a fi lter component($PFilt31) for IPred31. The last
step is needed since in our representation only
components, not predicates, are compilable into
executable code.

C o n s t r a i n t T o F i l t e r : Reformulate
constraint C as a filter.

We obtain the algorithm design state shown.

with:$Search30.When = ($PFilt31)

The goals $ more-drug-effectiveness and Ifewer-drugs
are converted into preferences by applying
TreatGoalAsPreference twice, once to each goal.

T rea tGoa lAsPre ference: Treat goal G as
a preference.

Only the agenda of design goals has changed.
.Domain Goals = NIL

.Preferences = ($more-drug-effective $fewer-drugs)
We can now use Sor tByPreferences to incorporate

the preferences. The resulting dataflow graph wil l
generate possible therapies, sort them according to the
preferences, and search for the first one that satisfies
the constraints.

Sor tByPreferences: To incorporate one or
more preferences P1, ..., Pn on a selected
element, use them to sort the choice set.
If mark the preferences for
integration. Additional effect: reduces
average runtime.

w i th : $Sort30.SortCrit =
(*COMBINE* tmore-drug-effective S fewer-drugs)
.Preferences = NIL

In order to reduce the space cost of our algorithm,
we now use CondensePreference to condense Smore-
drug-effectiveness into 3 categories; we pretend we
have been given this number by a domain expert.

CondensePreference: To help minimize
space, condense a preference P into N
categories.

We now notice a type clash: the input to $Sort30 is
a set of drugs, whereas $more-drug-effective in the sort
criterion compares individual drugs. Consequently, we
extend the preference $more-drug-erTective into one
that allows the comparison of sets of drugs. Here the
type clash is resolved by defining a new preference,

1092 REASONING

$ more-therapy-effective, which distinguishes between
bags of drugs [Mostow $ Swartout 86). Depending on
the kind of type clash and its context, other measures
might be needed.

The changes brought about by condensing and bag-
extending Smore-drug-eiTective are not reflected in the
dataflow graph or the goal agenda. Apart from the
creation of a new preference, the changes have taken
place in the internal specification of $ more-drug-
effective. The internal specifications of the domain
goals are stated in rather unreadable LISP code, so we
spare the reader the details.

The transformation Con jo in Preferences integrates
the preferences $more-therapy-effective and $fewer-
drugs.

ConjoinPreferences: To combine two
preferences P and Q, form their logical
conjunction P A Q .

This step creates a preference $ better- therapy, which
becomes the new sort criterion in $Sort30.SortCrit.

with:tSort30.SortCrit = $better-therapy

A final transformation pursues the algorithm goal
$less-time-cost.

P reComputeData : To help reduce run
time, precompute data known at design
time.

Here it precomputes the data provided by the
dataflow subgraph consisting of the components
S SubSetsl and $Sort30, which depend only on
information known at design time. Precomputation
eliminates the costly sorting from the algorithm, by
abstracting the elements of the choice set (therapies)
to therapy profiles, sorting the profiles according to
the sort criterion, and storing the sorted list of
profiles in a table. At runtime, the algorithm wil l use
this precomputed table to generate the equivalence
classes of therapies matching each successive profile,
thereby generating therapies sorted according to the
original sort criterion. The next two diagrams
summarize this transformation step.

Before PreComputeData :

At run time, the algorithm uses the presorted list of
profiles, or "instruction table'' (as it is called in
Mycin), to generate therapies in sorted order according
to the sort criterion Sbetter-therapy. An instruction,
for example "(2 0 0) ' \ means "Compose a therapy by
selecting two drugs from drug effectiveness category 1,
and no drugs from categories 2 and 3'\ Therapies
matching the sorted profiles are tested for contra
indications, and the first therapy with none is
returned.

Notice that the instruction table is actually just a
small portion of the entire table that would have been
computed if we had not instructed our profile
generator to produce only a subset of all possible
profiles. In our implementation, we contented
ourselves with generating 15 profiles, which we reduced
further by selecting only profiles that we considered
"realistic". For example, if acceptable therapies never
contain more than 5 drugs, then the profile "(3 1 2)"
prescribing 6 drugs is not realistic. To keep the set
of profiles finite, we chose not to generate any profiles
that use more than 5 drugs.

Presorting the profiles requires some design-time
interaction. Since $more-therapy-effective defines a
partial order, $ better-therapy is partial too. For
instance, it does not determine whether the profile
"(2 0 0)" (two first choice drugs) is better than "(0 1
0)" (one second choice drug). In situations like this,
the rule prompts the system developer to make the
decision based on domain knowledge. Ideally, the
expert should also be required to explicitly formulate
the reasons for the decision, or say if it is arbitrary.
These reasons could then be recorded and used to
eventually linearize partial orders.

The design of RMTSA terminates after the
application of P reComputeData . The criteria for
successful termination of the design process are

Mostow and Voigt 1093

fullf i l led. Al l domain goals have been incorporated
into the algorithm and have been reformulated and
integrated so that the algorithm is fully operational.
Further, the algorithm satisfies the posted algorithm
goals. A design would terminate in failure if one or
more of the domain goals or algorithm performance
goals could not be satisfied by applicable
transformation rules.

To summarize, we show the rule tree underlying the
derivation of RMTSA1 . A longer version of this
paper [Mostow & Voigt 87] presents the LISP code
corresponding to the final algorithm, and a
demonstration of its executability.

VI R M T S A 2 : a var iat ion
To test the generality of the transformation rules, we

applied them to a variation of the RMTSA problem.
The variation starts out wi th the same initial
algorithm design state as for R M T S A l , except for the
algorithm goals $less-time-cost and $less-space-cost.
The design diverges from the previous derivation when
we formulate the goal tfewer-contra-indications as a
preference and all the other goals as constraints. The
resulting algorithm, shown below, returns the therapy
wi th fewest contra-indications, subject to constraints
on its effectiveness and number of drugs. It generates
possible therapies, sorts them by the number of
contra-indicated drugs they contain, and outputs the
first one that has at most two drugs and passes a
minimum effectiveness threshold.

[Mostow & Voigt 87] details the derivation, the
final state, and the result of compiling and executing
it. The variation produces substantially different
behavior from the original version: different questions
are asked at design and runtime, and different
therapies are output. Nonetheless, the nature of the
design task remains very similar to the first example.
The same rules apply; only the thresholding
transformation had to be slightly modified. Some
additional coding was necessary to enhance the design
goal representations. The need to add information
about the goals is not surprising, and can be viewed
as feedback from implementation to
specification [Swartout 83].

A summary of the derivation is shown below.

V I I Conclusion
We have demonstrated how transformation rules can

convert an initially non-operational algorithm
specification into an operational algorithm so as to
satisfy multiple, interdependent, and sometimes
conflicting design goals. We hope to have given an
impression of the various reformulation steps needed to
incorporate domain goals into an algorithm, and of
how performance goals shape the algorithm.

1094 REASONING

In retrospect, we identify four types of knowledge
that enter the design process: domain knowledge,
algorithm knowledge, goal knowledge, and control
knowledge. In our example, domain knowledge
describes the medical domain in which therapy
selection takes place. Algorithm knowledge describes
various algorithm components, prescribes how to
combine these components into an algorithm, and tells
how to judge the performance of an algorithm. Goal
knowledge describes goals and the operators for
reformulating and integrating thern. We feel that this
"goal space" requires further investigation.

In our implementation, we have represented in the
computer enough medical, algorithm, and goal
knowledge to design the RMTSA. Interaction wi th a
human expert compensates for the system's lack of the
experiential knowledge needed to set thresholds,
determine the number of categories for condensing, etc.
Manual selection of transformation rules simulates the
considerable control knowledge needed to guide the
algorithm design process to an acceptable solution.

An interesting step towards explicit representation of
such control knowledge would be to automate the
reasoning that influences the formulation of a goal as
a preference or constraint. Comparing the two
derivations, we can see the strong effect of such
choices on the resulting algorithm. One heuristic is to
formulate conflicting goals as preferences. This
heuristic assumes that goal conflicts can be detected
early in the design process.

A design aid that explicitly deals with design goals
and their conflicts should be superior to the current
practice of engineering implicit solutions to such
conflicts by hand, leading to behavior that cannot be
adequately explained. Although we have not bui l t an
explanation component, our example derivations
contain the information needed to answer such
questions as why the two algorithms produce different
therapies as solutions, and whether the generation of
one therapy before another is based on genuine
domain knowledge or is just an artifact of the
implementation.

Acknowledgements
We would like to thank Bil l Swartout for suggesting

the original problem and contributing to the init ial
research, Bil l Clancey and Ted Shortliffe for
unearthing answers to questions about Mycin, and
Chris Tong and Lou Steinberg for helpful comments
on an earlier presentation of this work.

Refe r e n c e s

[Bobrow 85] D. Bobrow.
What it takes to support AI

programming paradigms, or: If
Prolog is the answer, what is the
question?

IEEE Transactions on Software
Engineering SE-11(11):1401-1408,
November, 1985.

[Clancey 84] Clancey, W.J.
Details of the Revised Therapy

Algorithm.
Rule-Based Expert Systems.
Addison Wesley, 1984, pages 133-146.

[Kant 85] E. Kant.
Understanding and automating

algorithm design.
IEEE Transactions on Software

Engineering SE-l l(l l):1361-1374,
November, 1985.

[Kant & Newell 83]
Kant, E., Newell, A.
An Automatic Algorithm Designer:

An Init ial Implementation.
In AAAI8S. 1983.

[Mostow 85] J. Mostow.
Toward better models of the design

process.
AI Magazine 6(l):44-57, Spring, 1985.

[Mostow & Swartout 86]
J. Mostow and W. Swartout.
Towards Explicit Integration of

Knowledge in Expert Systems: An
Analysis of MYCIN'S Therapy
Selection Algorithm.

In Proceedings AAAI86, pages
928-935. Philadelphia, PA, June,
1986.

Available from Rutgers University
Laboratory for Computer Science
as LCSR-TR-81 or AI/Design
Working Paper #35.

[Mostow & Voigt 87]
J. Mostow and K. Voigt.
Explicit Incorporation and Integration

of Multiple Design Goals in a
Transformational Derivation of the
MYCIN Therapy Selection
Algorithm.

Technical Report AI/Design Working
Paper 43, Rutgers University
Computer Science Department,
January, 1987.

Mostow and Voigt 1095

[Neches et al 85]
R. Neches, W. S war tout , and
J. Moore.
Enhanced maintenance and explanation

of expert systems through explicit
models of their development.

IEEE Transactions on Software
Engineering SE-11(11):1337-1351,
November, 1985.

[Steier & Kant 85]
D. Steier and £. Kant.
The roles of execution and analysis in

algorithm design.
IEEE Transactions on Software

Engineering SE-l l (l l) :1375-1386,
November, 1985.

[Swartout 83] Swartout, W.
X P L A I N : A system for creating and

explaining expert consulting
systems.

Artificial Intelligence 21(3):285-325,
September, 1983.

Also available from USC Information
Sciences Institute as ISI/RS-83-4.

[Teitelman 78] Teitelman, W.
Interlisp Reference Manual
Xerox Palo Al to Research Center,

1978.

1096 REASONING

