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A b s t r a c t 

This paper provides a contribution to qualitative reasoning for 
continuous process supervision. Tools for formalizing empirical 
knowledge of continuous processes and a naive reasoning nat­
urally integrating perception are proposed. A new paradigm 
emerges : maintenance of a single instantaneous and possibly 
partial understanding of a physical system during its evolution. 
This understanding in closed loop includes prediction and truth 
maintenance of whole histories of evolution at the data sam­
pling rate. This technique relies on both deep and empirical 
knowledge, using mainly intuitive notions like order of magni­
tude of non-negligible quantity, gain, delay and duration. Our 
approach is compared to existing work in qualitative physics 
basically focused on qualitative calculus of classical physics for­
malization. 

I Introduction 
This paper addresses the problem of supervising complex 
continuous processes and presents a new qualitative ap­
proach, based on well-known principles of control the­
ory. This approach can be compared to existing work 
in qualitative physics in the same sense as control theory 
can be compared to physics. The goal of control the­
ory is to provide tools to control discrete and continuous 
processes. Wi th in this framework, the fundamental laws 
governing physical system behavior are not taken into ac­
count. Roughly speaking, a control theory based model 
of a physical system has only to provide the ability to find 
out corrective actions when disturbances occur. But an 
important l imitation of control theory is that only the well 
functioning process is modeled. Thus severe disturbances 
or material faults can lead to unpredictible and dangerous 
evolutions. This is why skilled operators sti l l supervise 
controlled continuous processes. Our work is a first step 
towards computer aided supervision of continuous pro-
cesses. This automated closed loop reasoning is mainly 
based on dynamic p red i c t i on . An operator must be 
able to predict how evolutions can propagate through the 
entire process. Moreover, this prediction must be com­
pared to the real evolution over time. Non-significant dif­
ferences must be integrated into already predicted histo-
ries, whereas deep contradictions must lead to corrective 
actions which may include diagnosis. 

An application in progress is helping operators to achieve 
supervision of an existing continuous process. But let us 
take a simple example from everyday life. Cooking a sauce 
is a simple empirical process that can be handled wi th­
out a complex physical model. The cook has empirically 
identified as essential some perceived parameters like gas 
flow and temperature. This description is sufficient to 
supervise the cooking process : 

• Qualitative reasoning based on order of m a g n i ­
t ude of evo lu t ions allows rough prediction. For 
example, the response time before sauce boiling can 
be evaluated at one time to five minutes from the 
given gas flow. If an electrical cooker is used, its 
thermal inertia must be taken into account. 

• Such a simple approach would not be effective with­
out continuous perception. First, the qualitative 
predictions result are approximate. The response 
time before boiling may be re-evaluated from sen­
sor informations as cooking progresses. Second, dis­
turbances may occur. The cook may want to add 
water. This new inf luence on the sauce tempera­
ture must be integrated to the current prediction. 

Section II first underlines the limitations of existing 
work in Qualitative Physics for continuous process super­
vision. Section I I I emphasizes the importance of encoding 
empirical knowledge of continuous processes. Relevant 
Superv is ion Var iab les (RSVs) are the basic objects 
of our representation. E v o l u t i o n const ra in ts describe 
how evolutions propagate between variables over time. 
Section IV presents a constraint propagation technique 
allowing a single and possibly partial future evolution of 
the controlled system to be inferred from an init ial set of 
measured evolutions. 

I I Limitations of existing work 
Most existing work in Qualitative Physics (QP) proceeds 
in the spirit of quantitative physics. Qualitative calculus 
applied to classical physical laws permits a large range 
of physical behaviors to be explained and predicted. We 
argue that, as physical laws are not the basis of process 
models used for control, qualitative physics suffers from 
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severe limitations for process supervision. These limita­
tions can be summarized by the two following points : 

1. Low level formalization. 
QP simulation techniques apply a qualitative cal­
culus to physical variables. This calculus bases op­
erations (plus, minus, derivation, etc) on t ruth ta­
bles, operand variables taking their values in (de­
creasing, steady, increasing). As qualitative cal­
culus is not powerful enough (for example 
Y = Z cannot be solved if X increases and Y de-
creases), the real future behavior of a physical sys­
tem usually cannot be predicted given initial con­
ditions, as described by B. Kuipers [Kuipers 85]. 
Only a hypothesis graph of behaviors can be ob­
tained in the general case. Better qualitative tech­
niques, like J. de Kleer's "qualitative reasoning wi th 
higher-order derivatives" [deKleer and Bobrow 84] 
or O. Raiman's "order of magnitude reasoning" 
[Raiman 86] do not completely get rid of indetermi-
nations. Our problem is that continuous processes 
are complex physical systems. Completely model­
ing a system such as a refinery may be tedious. 
Moreover, a model using sophisticated mathemat­
ical tools may not be tractable by qualitative calcu­
lus. And last but not least, generating an hypothesis 
tree through a large model leads to a combinatorial 

2. Envisioning is not synthetic enough for supervision. 
QP defines envisionment as the graph describ-
ing all possible behaviors given some initial con­
ditions. But an envisionment may contain im­
possible behaviors, due to the formalization prob­
lems described above (this point is underlined by 
B. Kuipers). As continuous processes are complex 
physical systems, we doubt the explanation capa­
bi l i ty of a system using envisionment. The latter 
would provide a huge quantity of behaviors includ­
ing impossible solutions. On the opposite, the goal 
of computer aided supervision is to give operators 
a few relevant pieces of information. Information 
overflow already is the primary cause of panic. Fur­
thermore, envisionment cannot enable preventive 
actions in general cases because operators would not 
know which behavior is to be avoided. 

These inadequacies follow from the difference of approach 
between physics and control theory. However, the need 
of including qualitative techniques in closed loops has re-
cently been illustrated by K. D. Forbus [Forbus 86] and 
B. Williams [Williams 86]. 

I I I Mode l ing processes 

A. Relevant Supervision Variables 

A skilled operator uses a simple mental model of the pro­
cess. This model includes key parameters and production 
constraints. Key parameters may be physical parameters 
like temperatures, pressures, etc, or actions like feedback 
control regulator set-points, valves, etc. Production con­
straints are more elaborate concepts. They summarize re-
lations to be maintained between key parameters in order 
to meet production quality standards. These supervision 
parameters and constraints are encoded in our model as 
elementary components, which we call Relevant Super­
vision Variables (RSVs). RSVs are linked in a "causal" 
network. The semantics of an RSV is essentially captured 
in its relations wi th neighbour RSVs. In other words, an 
RSV X exists in a model only if it is relevant to the super­
vision of the entire process. An additional local seman­
tics is provided by typing RSVs, in order to distinguish 
actions, feedback controlled variables, equilibrium vari­
ables, etc. Note that such perceptive and interpretative 
background would be blurred in a description according 
to classical physics. Let us come back to the sauce cook­
ing example. A simple supervision model of this process 
could include the following RSVs: Dga$, for gas flow, and 
Vmizing which is a measure of how energetically the cook 
mixes the sauce, are actions; r,auce stands for sauce tem­
perature; characterizes a constraint to satisfy 
during the cooking to obtain a good sauce. 

We assume, as a first approximation, that each sensing 
of the supervised process is a measurement of some su­
pervision parameter. The corresponding RSV X takes its 
values in two spaces. One of them is the Quantity Space 
(QS) of Qualitative Physics (in the sense of B. Kuipers 
[Kuipers 85]). The other is a quantification of the con­
tinuous range of the parameter; the discretization step 
of which can be defined as the minimum amount of per­
ceived evolution of X which allows deductions about the 
state of the process or its future evolutions. In the cook­
ing example, Tsauce can continuously evolve from 10°C to 
100°C. A discretization step may be 10° C, if it is the min­
imum perceived change allowing the cook to deduce a new 
evolution. And a QS for Ttaue§ could be ( liquid-phase, 
boiling-point, vapor-phase), the boiling point taking its 
value on the discretized scale. In our application to con­
tinuous process supervision, control during normal work­
ing consists in maintaining relevant physical parameters 
in a single qualitative state, centered around a nominal 
value. 

B. Evo lu t ion constraints 

An evolution constraint from variable X to variable Y is a 
representation of how an evolution of X can be propagated 
as a partial influence on Y. It is composed of a qualita-
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tive transfer function, describing the nature of the rela­
tion linking X and Y, and empirical data such as values 
of gain, delay, and response time. Given a linear evolu­
tion of variable X, an evolution constraint infers a partial 
influence on variable Y. 

1 . B a c k g r o u n d representa t ion o f t i m e 

The formalism we use to represent temporal evolutions 
is based on numerically defined intervals. An elemen­
tary evolution is a linear evolution of an RSV over an 
interval. An evolution constraint infers a partial influ­
ence on an RSV Y from an elementary evolution of a 
RSV X over an interval t. This partial influence is a set 

► of elementary evolutions of Y over 
consecutive intervals j j . The important notion of delay 
is given by the difference between the beginnings of the 
intervals i and j1. Moreover the duration of the propa­
gated influence is equal to the duration of the elementary 
evolution, increased by the response t i m e of the con­
straint. The response time is defined as the time required 
for the response to a step evolution to settle within a given 
percentage of the final value. 

2 . Qua l i t a t i ve t rans fer f unc t i on 

A qualitative transfer function is a qualitative encoding 
of linear control theory models. Using a limited number 
of simple parameters, including the times of beginning 
and ending, the init ial and final values, it characterizes 
the matched evolution of X during the interval t. Ac­
cording to the nature of this evolution, a mixed quanti­
tative/qualitative reasoning is performed. It makes use 
of the essential notion of ga in , describing how orders of 
m a g n i t u d e are propagated via the constraint. From the 
gain, the init ial value and the slope of the considered evo­
lution, descriptive tokens are deduced for the propagated 
influence. Then, according to temporal informations, this 
evolution is detailed into a number of linear evolutions 
over intervals ji of S. 

Figure 1 gives an example of an evolution inference 
between the two variables and This is the 
case of the qualitative transfer function describing an in­
creasing relationship. The matched evolution of Dgas is 
a linear increase over an interval i. As the gain of the 
constraint is moderate, the order of magnitude of the in­
fluence on Ttauce is the same as that of the evolution of 
Dgat (influences can also be amplified or weakened; if the 
gain is exactly known, it may be numerically expressed). 
More precisely the influence is composed of four linear 
evolutions. The last two describe the cooling of the sauce. 
This is the damping of the init ial condition given by the 
final value of the influence (the end of j2 in the example). 
No hypothesis of the future evolution of Dgas is needed 
because only the effects over time of the elementary evo-

Figure 1: An example of evolution inference 

lution are propagated. 
An important advantage of our representation is that 

feedback loops can be easily encoded. Indeed, an empir­
ical representation of a feedback loop should reflect an 
integrated comprehension of the phenomenon, on the op­
posite of a low level representation relying on heavy com­
putations. Modeling a feedback regulator itself would lead 
to a computational issue, if based on a low level mod­
eling and simulation. For any feedback controlled vari­
able V, we automatically introduce an intermediate vari­
able Vsumm which summarizes all influences coming into 
the control loop. Its behavior is then described by an 
evolution constraint which integrates the expected global 
behavior. Likewise n-valued equilibria can be encoded. 
A justification based on control theory of this important 
part of the work is given in [Feray 86]. 

I V Dynamic Pred ic t ion 
Continuous process supervision is essentially based on the 
ability to predict how evolutions can propagate through 
the entire process. This section describes a method for 
solving this general problem. To each RSV X, we attach 
an evolution history and a recording-table of influences. A 
history of X is a contiguous sequence of linear evolutions, 
each supported by an open interval ]e1,e1+1[, so that the 
total evolution of X over the history is continuous. The 
evolution change dates el are called events. Influences 
propagated on X by evolution constraints have the same 
form as a history. A l l influences propagated on X over 
time are integrated in the history of X and recorded in a 
table. Each influence is justified by a particular variable 
evolution from which it has been inferred. 

Starting from a set of measured init ial evolutions, the 
propagation algorithm has to build a single prediction of 
the future evolution. The prediction is performed from 
present date up to a predefined horizon, based on a simu­
lation approach. The principle of the algorithm is to step 
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Figure 2: Influences and synthetized evolution 

through time, event by event, for each variable. One step 
consists in closing an elementary evolution over an inter­
val [e1,e1+1[ in the history of a variable X, as described 
in figure 2. The evolution of X during this interval is 
computed from the recorded influences. Influences are 
presently numerically combined, independently of the al­
gorithm. Symbolic facts like orders of magnitude of evo­
lutions and changes of values in the quantity space are 
extracted. From the computed evolution, influences are 
deduced through evolution constraints in the future of 
causally linked variables. The control of the algorithm 
guarantees that computed evolutions are complete, i.e. 
no influence can be forgotten. The algorithm stops either 
when each history has been integrated up to the horizon 
date, or when the init ial evolutions have completely been 
propagated. A classical limitation of this kind of propaga-
tion technique is that it can only solve triangular systems, 
as described by G. J. Sussman [Sussman and Steele 80]. 

In the above algorithm, nothing prevents an evolu­
t ion of infinitely small duration from being propagated, 
although this would be non-sense in naive reasoning. For 
this reason, a temporal granularity has been introduced. 
Its effect is a careful aggregation of too close events as 
influences are propagated. The results of the predic­
tion are compared to the real evolution over time. Non­
significant differences are integrated into previously pre­
dicted histories. When a measured evolution differs from 
the predicted one, all deduced influences are computed 
once again by recursive stepping through justifications. 
This t ru th maintenance of histories is achieved as a new 
prediction proceeds, at the data sampling rate. 

V Conclusion 
We have presented in this article a first approach to 

computer aided supervision of continuous processes. The 
importance of encoding empirical knowledge of processes 

has been emphasized. Supervision models use Relevant 
Supervision Variables as basic objects. By using orders of 
magnitude the evolution constraints describe how evolu­
tions propagate over variables. Dynamic prediction allows 
to infer a single future evolution of the controlled system 
from sampled sets of measured parameters. 

Our future work wil l address two problems. First 
the comparison process, which decides if observed differ­
ences between prediction and real evolution are signifi­
cant, must be improved. It has to be reliable because any 
dangerous evolution must be detected. The second prob-
lem is more fundamental: the current model may become 
obsolete as equipment fails. In this case the model should 
be dynamically updated. 
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