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Abstract 

We present a problem solving paradigm called 
generate, test and debug (GTD) that combines 
associational rules and causal models, producing a 
system with both the efficiency of rules and the breadth 
of problem solving power of causal models. The 
generator uses associational rules to generate plausible 
hypotheses; the tester uses causal models to test the 
hypotheses and produce a detailed characterization of 
the discrepancy in case of failure. The debugger uses 
the ability to reason about the causal models, along with 
a body of domain-independent debugging knowledge, 
to determine how to repair the buggy hypotheses. The 
GTD paradigm has been implemented and tested in 
three different domains; we report in detail on its 
application to our principal domain of geologic 
interpretation. We also explore in some depth the 
character of the problems for which GTD is well suited 
and consider the character of the knowledge required 
for successful use of the paradigm. 

1. Introduction 

Problem solving efficiency and broad range of 
applicability (robustness) are desirable but often 
incompatible features of Al systems. We present a 
paradigm called Generate, Test and Debug (GTD) that 
combines the efficiency of associational rule-based 
systems with the robustness of reasoning from causal 
models and we characterize the domains for which GTD 
may be applicable. An implemented program called 
GORDIUS uses the GTD paradigm to solve planning 
and interpretation problems in several different domains 
— geologic interpretation (the domain for which 
GORDIUS was initially developed), blocks world 
planning and the Tower of Hanoi problem. 

We have explored the use of GTD primarily for planning 
and interpretation tasks. Both tasks are of the general 
form "given an initial state and a final (goal) state, find a 
sequence of events which could achieve the final state." 
If the final state is in the future, we regard it as a 
planning problem; if the initial state is in the past, we 
regard it as interpretation. Examples of planning are 
block stacking and route planning. Interpretation 
problems include geologic interpretation and figuring 
out what happened to the economy. 
GTD solves problems in three stages. Figure 1 shows 
the data and control flow between the generate, test and 
debug stages. 

1. Generate — the generator uses associational 
rules to map from effects to cause. The left-hand 
side of a rule is a pattern of observable effects 
and the right-hand side is a sequence of events 
which could produce those effects. The rules are 
matched against the final state and the resultant 
sequences are combined to produce an initial 
hypothesis — a sequence of events that is 
hypothesized to achieve the final state. 

2. Test — the tester simulates the sequence of 
events to determine the validity of the hypothesis. 
If the test is successful (i.e., the results of the 
simulation matches the final state) then the 
hypothesis is accepted as a solution. Otherwise, 
the tester produces a causal explanation for why 
the hypothesis failed to achieve the final state. It 
then passes this explanation and the buggy 
hypothesis on to the debugger. 

3. Debug — the debugger uses the causal 
explanation from the tester to track down the 
source of the bugs in the hypothesis. It uses both 
domain-specific causal models and domain-
independent debugging knowledge to suggest 
modifications which could repair the hypothesis. 
The modified hypothesis is then submitted to the 
tester for verification. Alternatively, the debugger 
has the option to invoke the generator to produce 
a new hypothesis. 

Figure 1. Control Flow of GTD Paradigm 

As Its name implies, GTD is related to the traditional Al 
method of Generate and Test [Newell]. The debugger is 
included in GTD to provide more guidance in the search 
for a solution. In traditional generate and test, the tester 
reports only a single bit of information — success or 
failure. In the case of failure, the generator has no 
indication of what went wrong with the previous 
hypothesis and so It can only "try again." In GTD, the 
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debugger uses the test results extensively to focus the 
search for a valid hypothesis. 

The core idea underlying GTD has a long history in Al. 
Early work by [Sussman] explored "problem solving by 
debugging almost right plans" as a model of skill 
acquisition. [Rich & Waters] describe a similar paradigm 
for the Programmer's Apprentice, calling it AID 
("Abstraction, Inspection and Debugging") and more 
recently, [Hammond] presented a similar method which 
learned classes of bug repairs for the cooking domain. 

Our work advances the state of the art in several ways: 

1. Our implementation of the GTD paradigm is 
relatively domain independent. Just by replacing 
the associations rules and causal models our 
program GORDIUS has solved problems in 
geologic interpretation, all of the blocks-world 
examples in [Sacerdoti, 77] and the three-ring 
Tower of Hanoi problem. In addition, the Test and 
Debug portions of GORDIUS have been used to 
help diagnose faults in semiconductor 
manufacturing [Mohammed]. 

2. Our debugger is fairly robust. We have taken a 
large step toward developing a general method 
for debugging sequences of events. The key 
ideas include reasoning about time and causality 
using causal models of the domain. We have 
extended the available methods for reasoning 
about causal models, since previous domain-
independent programs for reasoning about 
sequences of events (such as [Chapman], 
[Sacerdoti, 77], [Tate], [Wilkins]) were limited to 
models which were not complex enough for the 
geologic interpretation problem. For instance, we 
need to represent and reason about quantified 
effects, conditional effects and effects that create 
or destroy objects. 

3. We have analyzed the relationships between the 
generator and debugger to determine how each 
contributes to the overall problem solving 
capabilities of the system. Based on this analysis, 
we have characterized the domains for which 
GTD is likely to be useful. 

The remainder of this paper describes GTD in more 
detail and discusses the relative contributions of 
associational rules and causal models to the GTD 
paradigm. Section 2 presents the use of GTD in 
geologic interpretation. Section 3 describes the GTD 
paradigm in a domain-independent fashion and Section 
4 discusses how the associational rules used by the 
generator and causal models used by the debugger 
each contribute to the overall performance of the system. 
Finally, the conclusions characterize domains in which 
GTD might be applicable. 

2. Geologic Interpretation 

Our research has focused primarily on the problem 
known as geologic interpretation [Shelton], in which we 
are given a diagram representing a vertical cross-

section of the Earth and a legend indicating the rock 
types (Figure 2). The task is to infer a sequence of 
events which plausibly explains how the region came 
into existence. Figure 3 shows one plausible solution to 
the cross-section in Figure 2. 

We use a simplified model of geology known as "layer 
cake" geology. Deposition, which occurs when silt in 
water deposits on the sea bed, creates horizontal 
sedimentary formations that stack up like the layers of a 
cake. Erosion occurs when wind abrades exposed rock 
formations and is assumed to occur horizontally, slicing 
through the Earth like a knife. Intrusion creates igneous 
formations when molten rock from below intrudes 
(pushes) into or through upper rock layers. Faulting 
splits the Earth and, in our model, moves one side of the 
fault downwards relative to the other side. Uplift and 
subsidence move the Earth uniformly up or down, 
respectively, and tilt rotates the Earth around some 
origin. 

D GRANITE 

□ MAFIC-IGNEOUS 

Figure 2. Geologic Interpretation Example 

1 Deposit Shale 
2. Intrude Granite into Shale 
3. Uplift 
4. Intrude Mafic Igneous through Granite and Shale 
5. Fault across Shale and Granite 
6. Erode Shale and Mafic Igneous 

Figure 3. One Plausible Solution Sequence to Figure 2 

2.1 Generation of the Initial Hypothesis 

This section describes how GORDIUS interprets the 
diagram of Figure 2, detailing the knowledge used at 
each stage of the problem solving process. The first 
step is to generate an initial hypothesis by matching 
scenarios against the diagram. A scenario is an 
associational rule that maps from geologic effects, which 
are observable patterns in the diagram, to a local 
interpretation, which is a sequence of events that could 
have produced the geologic effects. 
Geologic effects are represented in terms of topological 
patterns of edges and faces and their associated 
geometric constraints. For example, Figure 4 illustrates 
the "intrusion" scenario, which represents that an 
igneous formation intruded into an existing rock 
formation. The pattern in this rule (Figure 4a) matches 
those parts of the diagram where an igneous rock is 
between two rocks of the same type and the edges of 
those rocks are parallel. One match in Figure 2 occurs 
where FIGN1 is between FS2 and FS3. 
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Pattern Constraints 
Igneous(IGN) 
Same-type(R1,R2) 
Parallel(e1, e2) 

Figure 4a "Intrusion" Scenario Pattern 

Events' 
1 Create Rock1 
2. Intrude IGN through Rockl 

Interpretation Constraints: 
Part-of(Rocki,Rl) 
Part-of(Rock1, R2) 
lntersects(Rock1,IGN) 

4b. Local Interpretation 

The local interpretation of a scenario contains three 
types of information: 1) the events that occurred to form 
the observable effects; 2) temporal orderings between 
events; 3) the objects which are related via a part-whole 
hierarchy. In the intrusion scenario, the local 
interpretation (Figure 4b) contains an event that creates 
rock formation Rockl (where R1 and R2 are pieces of 
formation Rockl ) , followed by an intrusive event that 
creates the igneous formation IGN. In addition, the local 
interpretation includes constraints necessary for testing 
the hypothesis. For example, the intrusion scenario 
asserts that the igneous formation is constrained to 
intersect the rock formation. 

Note that scenario patterns do not necessarily imply a 
unique sequence of events. For example, there are (at 
least) two plausible explanations for the pattern 
"sedimentary-over-igneous" where a sedimentary rock is 
on top of an igneous rock: 1) the igneous rock intruded 
into the sedimentary rock; 2) the igneous rock intruded 
into some pre-existing rock, everything was uplifted, the 
upper layers eroded, exposing the igneous rock, which 
then subsided, after which the sedimentary rock was 
deposited on top of the igneous rock. Note that in the 
first interpretation the igneous rock is younger, while in 
the second it is older. The generator prefers the first 
interpretation since it is considered simpler (it is shorter) 
and hence more likely to have occurred. The second 
interpretation is used only if the first one leads to an 
inconsistency. 

The local interpretations derived from matching 
scenarios are combined to yield an initial hypothesis. In 
this example, four of the fourteen currently defined 
scenarios were used to produce the initial hypothesis 
shown in Figure 5. The applicable scenarios are 
"intrusion" (used twice), "faulting", "erosion" and 
"sedimentary-over-igneous" (using the first 
interpretation). Note that the interpretation of Figure 5 
differs from the solution in Figure 3 in two important 
respects. First, the faulting and intrusion are left 
unordered since the diagram in Figure 2 does not 
contain enough information to tell which event occurred 
first. Second, uplift does not appear because, for this 
example, the uplift event was removed from the local 
interpretation of the "erosion" scenario; we are using an 
incomplete scenario in order to provide a simple 
illustration of the test and debug stages of GTD. 

2.2 Testing the Hypothesis 

The initial hypothesis is tested using a simulation 
technique called imagining that combines qualitative 
and quantitative simulations. The imagining technique 
is described in detail in [Simmons, 83a]; in [Simmons, 
83b] we argue the need for both qualitative and 
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Figure 5. Initial Hypothesis Sequence Generated 

quantitative simulations in this domain. 

The imaginer is given a hypothesis — a partially ordered 
sequence of events (e.g., Figure 5) — and simulates one 
of the totally ordered sequences consistent with it. 
Simulating a total order is necessary because our 
quantitative simulator can handle only linear sequences 
of events. Simulating just one of the total orders is 
sufficient because our task is to produce one plausible 
interpretation. 

The qualitative simulation produces a causal 
dependency structure describing how the events cause 
the geologic objects to change over time; the 
quantitative simulation produces a diagram that is 
matched against the goal diagram. If the two diagrams 
match, the hypothesis is considered to be a plausible 
interpretation. If they do not match, the hypothesis is 
handed to the debugger for refinement. 

In this example, a bug is found during the qualitative 
simulation: our geologic models state that deposition 
occurs below sea-level, while erosion occurs above 
sea-level. Thus, when it comes time to simulate the 
erosion step in the sequence of Figure 5, the imaginer 
finds a mismatch between the state of the simulation and 
the preconditions required to carry out erosion. 

2.3 Debugging the Sequence 

The debugger attempts to repair the hypothesis by 
modifying the sequence of events. It uses both the 
causal dependency structure produced by the tester and 
geologic domain models to suggest plausible repairs. 
The modified hypotheses are then tested until a 
plausible hypothesis is found. Alternatively, if the 
debugging efforts seem to be moving away from a 
solution, the generator may be invoked to provide an 
alternative hypothesis. 
The debugger traces back through the causal 
dependency structure to locate the underlying 
assumptions made during the generation of the 
hypothesis that eventually led to the buggy situation. It 
then uses domain-independent debugging knowledge 
and the causal geologic models to suggest ways to 
change the assumptions in order to repair the bug. 

Recall that, in our current example, the bug is that the 
surface of the Earth is below sea-level at the time of the 
erosion. Two of the many assumptions underlying that 
bug are 1) some fixed amount of deposition (Dlevel-1) is 
done and 2) deposition is the last event to affect the 
height of the Earth's surface. In an attempt to raise the 
surface of the Earth above sea-level, which would repair 



the bug, the debugger first considers increasing Dlevei-
1, the amount of deposition. However, the debugger 
quickly infers that this would not help because our 
deposition model indicates that deposition can only 
occur under water, hence no amount of deposition can 
raise the surface above sea-level. 

The debugger next considers inserting processes that 
can increase the height of the surface. The two 
possibilities are uplift and tilt. The debugger prefers the 
uplift process because it infers that inserting a tilt would 
introduce additional bugs. The debugger thus inserts an 
uplift event between the deposition and erosion events, 
adding the constraint that the amount of uplift is enough 
to raise the surface of the Earth above sea-level (see 
FiGURE 6) 

Figure 6. Sequence Generated by GTD Algorithm 

This modified hypothesis is then submitted to the tester 
for verification. As mentioned above, the tester chooses 
an arbitrary total ordering (see Figure 3) consistent with 
the partial ordering in Figure 6. This time the simulation 
completes successfully, producing the diagram in Figure 
7. GORDIUS thus concludes that the sequence of 
Figure 3 is one plausible interpretation of the diagram in 
Figure 2. This does not imply, however, that all total 
orderings consistent with the partial order of Figure 6 are 
plausible solutions. 

Figure 7 Sucessful Simuiation of interpretation Example 

3. The GTD Algorithm 

The previous section illustrated how GTD works in the 
particular domain of geologic interpretation. This 
section briefly examines the characteristics of the GTD 
paradigm as it applies to planning and interpretation 
problems in general and supplies additional details 
about the technique. 

3.1 Generate 

The knowledge base for the generator consists of 
associations rules that map from effects to cause. In 
this section we describe the general form of the rules 
and discuss why the associational rules can be used to 
generate hypotheses efficiently. 
The right-hand side of a rule is a partially ordered 
sequence of events and associated constraints. In the 

blocks-world, for example, the rule for interchanging two 
blocks X and Y where X is initially on Y consists of the 
event "Puton(X,Z)" followed by "Puton(Y,X)" with the 
constraint that "Z#Y," that is, put X somewhere and then 
put Y on top of X. 

The left-hand side of a rule is a pattern consisting of 
parts that are matched against both the final state and 
the initial state. The part of the pattern matched against 
the final state represents observable effects that are 
produced by the sequence of events given in the rule's 
right hand side. The part matched against the initial 
state represents preconditions that must hold for the 
events to occur. For example, in the block interchange 
rule described above, "On(Y,X,end)" is matched against 
the final state and the pattern "On(X,Y,start), 
Clear(X.start)" is matched against the initial state.* 

The inference engine for the generator consists of 
matching the rule patterns against the initial and final 
states and combining the sequences of events in a 
consistent manner. The generator is, in general, quite 
efficient at producing hypotheses. This arises in part 
because we use efficient pattern-matching techniques, 
including discrimination nets. 
The main source of the generator's efficiency, however, 
comes from having associational rules that are nearly 
independent, that is, the events suggested by applicable 
rules can be pieced together to form a valid hypothesis, 
or at worst one that needs only a small amount of 
debugging.** Thus, an important task in constructing a 
good rule set is finding the level of granularity where the 
assumption of independence largely holds. This issue 
is discussed in more detail in Section 4. 
To deal with obvious cases where the assumption of 
independence fails, the generator possesses a limited 
form of consistency checking together with the ability to 
backtrack if an inconsistent hypothesis is detected. The 
generator can detect inconsistencies in temporal 
orderings and parameter values For example, it is 
inconsistent for the sequences "Deposition-1 followed 
by Intrusion-1 and "lntrusion-1 followed by Deposition-
1" to appear in the same hypothesis. Similarly, the 
generator can infer that one rule suggesting a tilt of 10° 
is inconsistent with another rule stating that the tilt 
should be 15°. 

Although it is preferable to have the generator do as 
much consistency checking as possible, testing for 
global consistency is a relatively expensive procedure 
that should be done infrequently. Thus, only after the 
generator produces an initial hypothesis is the resulting 
sequence of events completely tested. 

The scenarios for geologic interpretation differ slightly from this 
general description. First, they do not refer to the initial state since it 
is assumed always to be the same — bedrock that is initially below 
sea-level. Second, for efficiency reasons the scenario patterns are 
represented as diagrams, however, we are currently re-representing 
the patterns as sets of predicates in order to use the same generator 
for all our domains. 
** To be precise, the assumption of independence holds only for 
rules with different patterns since, as noted, the same pattern can be 
caused by different sequences of events. 
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3.2 Test 

We need to test tor two reasons. First, the hypothesis 
may be incomplete if there is no rule to account for some 
effect. This is a common problem in developing 
associational rule sets and occurs when the knowledge 
engineer overlooks unusual or infrequent situations. 
Second, combining local interpretations may not yield a 
globally consistent solution. For example, one of our 
scenarios matches any single, non-horizontal layer of 
sedimentary rock and infers that the rock was tilted. If 
tilting had occurred to that rock, however, all other 
existing formations would have been tilted as well, 
which may not be correct. 
There are two characteristics the tester must have for 
GTD to work properly. First, as in the traditional 
generate and test paradigm, the tester must be correct 
over the domain of interest relative to the generator. 
That is, the tester cannot reject valid hypotheses 
produced by the generator (i.e., allow false negatives) 
otherwise the GTD algorithm might miss solutions. We 
use the qualitative simulator of [Simmons, 83a] for our 
tester since we have found simulation to be a relatively 
accurate, yet simple, testing technique. 
Second, for the debugger to know how to proceed, the 
tester must return an explanation for why the test failed. 
The explanation is a causal dependency structure that 
details how the events in the hypothesis affect the state 
of the world and explicitly represents when objects 
persist, that is, the intervals of time during which they do 
not change. These two properties — causality and 
persistence — provide a foundation for a general 
method of tracking down and repairing a wide variety of 
bugs (see Section 3.3). 
Figure 8 shows part of the dependency structure 
produced by our simulator for the bug encountered 
earlier, in which the surface of the Earth is below sea-
level at a time when we would like erosion to occur (the 
complete dependency structure produced by GORDIUS 
has almost 200 nodes). It indicates, for instance, that the 
deposition of shale caused the height of the surface to 
increase by Dlevel-1 from time to to t1 and that that 
height persisted between t1 and t2. 

3.3 Debug 

The task of the debugger is to modify the hypothesis in 
order to repair the bugs found by the tester. The 
debugger uses the dependency structure created by the 
tester to track down potential sources of a bug — those 
assumptions made in generating the hypothesis on 
which the bug causally depends. This set is generated 
by collecting the leaf nodes of the dependency structure. 
In the example of Figure 8, the potential bug sources 
Include 1) nothing changes the height of the surface 
between time t1 and time t2; 2) time t1 is before time t2; 
3) the amount of deposition done is Dlevel-1; 4) sea-
level is a constant; 5) all of deposition's remaining 
(implicit) preconditions hold (this covers all conditions 
which are beyond the scope of the model, hence are not 
explicitly represented, such as the fact that deposition 
can occur only if sediment is present In the water). 
We still have the difficult task of deciding which of the 
potential bug sources is actually to blame and 

Figure 8 Partial Causal Dapandancy Structure 

determining what to do in order to repair the bug. This is 
handled by having domain-independent bug repair 
strategies that suggest modifications to the hypothesis 
based on an analysis of the domain models, the 
dependency structure, and the change to the state of the 
world needed to repair the bug. The bug repair 
strategies can suggest inserting or deleting an event, 
replacing an event with a "similar" event, changing 
parameter values and changing the temporal ordering 
between events. The debugger chooses among the 
possible bug repairs using a best-first search strategy 
whose distance metric is based on the number of 
unachieved goals and the length of the sequence of 
events. That is, it prefers short plans that account for as 
much of the goal state as possible. 

Different bug repair strategies are used for different 
types of assumptions. The current system includes bug 
repair strategies for: 1) the assumption that nothing 
changes a value during an interval (i.e., the value 
persists during that interval); 2) the assumption that a 
parameter has a particular value; 3) the assumption of a 
temporal ordering between events; 4) the assumption 
that all the implicit preconditions of an event hold. 
Currently the system cannot deal with situations in which 
the causal models are incorrect, the given initial state is 
incorrect and something assumed to be constant is in 
fact varying. 

To illustrate the use of repair strategies, consider the 
assumption "nothing changes Height(Surface) from t1 to 
t2." Since this is an assumption about persistence, the 
strategy is to insert a process that can change the value. 
In this case, we need to change the height of the surface 
to a value greater than sea-level. In the geologic 
domain there are several processes that can affect the 
height of the surface. Two of them, subsidence and 
faulting, are rejected because their effects are to 
decrease height. Uplift is suggested because its effect, 
raising the height of all geologic objects, is what is 
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needed. Tilting can either increase or decrease height, 
depending on the direction and origin of the tilt. Thus, 
the debugger does not know whether adding tilt will 
actually repair the bug by raising the surface above sea-
level. However, the debugger still suggests adding tilt 
as a possible repair because it considers the resultant, 
uncertain situation to be an improvement over the 
currently known, but buggy, situation. 

Much of the robustness of the debugger derives from its 
ability to reason from causal domain models (see 
Section 4.1). The debugger makes use of the following 
types of information in determining how to repair bugs: 
1) the types of objects which can be changed, created or 
destroyed by a process; 2) whether a process can affect 
an object in a particular way, such as changing its 
height; 3) the magnitude of the effect; 4) the conditions 
under which the effect occurs; 5) how long the change 
will last (persistence); 6) whether constraints on 
parameter values are satisfied. 

To facilitate this reasoning, we have developed a 
representation language for processes that is used in 
the four domains we have explored (geology, 
semiconductor fabrication, blocks-world and Tower of 
Hanoi). Processes are represented as "discrete 
actions," that is, they specify what the state of the world 
will be like after the process occurs, but say nothing 
about what happens while the process is occurring. The 
language represents time explicitly and describes the 
state of the world after the process occurs as functions of 
parameter values and the state of the world before the 
process occurs. In order to represent complex domains 
like geology, we have extended the range of traditional 
STRIPS-like action representations by including 
conditional effects, universally quantified effects and 
explicit constraints on parameter values (see [Simmons, 
83a]). 

4. The Nature of Associational Rules 
and Causal Models 

The utility of GTD is based on the claim that the 
generator provides an efficient means of synthesizing 
hypotheses and the debugger provides a robust means 
of modifying them. In this section, we analyze this claim. 

4.1 The Robustness Provided by 
Causal Models 

The claim that the debugger is rooust stems in part from 
the fact that the debugging algorithm described in 
Section 3.3 uses a fairly general technique to determine 
how to effect needed changes. However, the 
robustness of the debugger in a given domain depends 
largely on the robustness of the causal models it 
analyzes. Our approach will thus be useful in domains 
where such causal models are known and where they 
can be represented in a language that the debugger can 
analyze. A major research problem is whether such a 
domain-independent representation language exists, 
but experience with four rather different domains 
bolsters our belief that our process representation 
language and debugger can be used in a wide variety of 
domains. 
A related assumption underlying GTD is that it is easier 

to construct robust causal models than to construct 
robust associational rules. Otherwise, it would be less 
work simply to develop a robust generate and test 
system. Although there is empirical evidence from our 
own work and others (e.g., [Koton]) that robust causal 
models are indeed often easier to construct than robust 
associational rules, we are working to characterize why 
and for which domains this assumption holds. One way 
to do this is to observe that associational rules are 
typically derived either from experience or from domain 
models. In any reasonably complex domain one is 
unlikely, in practice, to experience enough specific 
cases to span a large fraction of the domain. Thus, to 
build a robust generator the bulk of the rule set must be 
derived from domain models. That is, domain models 
are a pragmatic precursor to the rules — hence it is 
more work to construct robust associational rules 
precisely when experience alone cannot span most of 
the domain. 
Reasoning from models is needed in many domains 
since it is often difficult to ensure that one's rules cover 
all situations that could arise. For example, in the 
geology domain there are infrequently occurring classes 
of events that might easily be overlooked. For example, 
Figure 4 shows the system's rule about intrusion. Figure 
9 shows similar rules, covering infrequently occurring 
cases in which two or more intrusions coincidentally 
intrude side by side. These rules are needed to infer 
that R1 and R2 are pieces of the same formation. The 
large number of possible (although unlikely) interactions 
among geologic processes makes it likely that a robust 
generator would need many more special case rules of 
this type. 

Figure 9. Additional "Intrusion" Scenario Patterns 

In some domains, a robust generator might be derived 
from a formal analysis of the domain. Such was the 
case with Dendral where group theory was used to 
prove completeness [Brown & Masinter]. However, in 
domains such as geologic interpretation it is not clear 
what types of topological and geometric analyses are 
needed or even if such an analysis is tractable. 
Another possible method for constructing a robust 
generator would be to simply reindex the causal models 
(which map from cause to effect) to form associational 
rules (which map from effects to cause). The problem, 
as we will discuss below, is that due to its size the 
resultant rule set would be no more efficient to use than 
the causal models themselves. Thus, constructing a 
generator in this way would make it robust but inefficient. 

4.2 The Efficiency Provided by 
Associational Rules 

Our experience has shown that the generator is efficient 
at producing valid or nearly valid hypotheses. Since, as 
was argued above, most of the associational rules can 
be derived from the causal models, why is using the 
using the associational rules so much more efficient 
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than reasoning directly from causal models? 
We believe that this efficiency stems from the fact that 
the associational rules we use encode two important 
abstractions of the causal domain models — the 
encapsulation of interactions and the encoding of 
problem solving knowledge. 

The encapsulation of interactions relates to the 
assumption, discussed in Section 3.1, that the rules 
should be nearly independent. A good set of 
associational rules is one in which each rule covers just 
enough of the domain so that it can be used nearly 
independently. For example, the rules in Figure 9 
encapsulate the interaction that the formation consisting 
of pieces R1 and R2 was split by the intrusions. If the 
patterns did not include R2, then invalid hypotheses 
might be produced since the rules would not encode the 
fact that R1 and R2 are created by the same process. 
On the other hand, if the patterns constrained R1 and 
R2 to be horizontal, the rules would be too specific and 
valid hypotheses might be missed. 
Associational rules also typically encode problem 
solving knowledge. Such rules derive from an analysis 
of both the domain models and the problem at hand. 
For example, the rule that a "fork" is useful in chess 
combines knowledge about legal chess moves (the 
domain model) with an analysis of possible moves and 
countermoves. Rules like these are efficient to use 
because the generator does not have to repeat the 
problem solving effort each time the rule is applicable — 
the problem solving knowledge is "compiled into" the 
rule. Such rules, however, are specific to the problem 
for which they were designed. A fork, for instance, is 
specific to the standard chess game and would be 
useless if one were allowed two moves at a time or if the 
object of the game were to lose all one's pieces. 
We have described what a good associational rule set is 
like, but in general it is an open problem how to create 
such a rule set. It seems that much of the knowledge 
comes from analyzing how the domain models interact 
and from practical experience with situations that are 
likely to occur. This raises the possibility of using the 
results of debugging an hypothesis to learn 
associational rules in a manner similar to the work in 
explanation based learning (e.g., [Mitchell, et al.]). We 
are currently exploring using GORDIUS' tester and 
debugger to automatically construct rules in the 
semiconductor fabrication domain; [Smith, et al.] has 
explored using causal models to generate geologic 
rules for doing dipmeter interpretation. 

5. Related Work 
The core idea in GTD of "debugging almost right plans" 
was pioneered by [Sussman] in the blocks-world 
domain. However, Sussman's debugger was not very 
robust since it used only an ad hoc set of debugging 
rules rather than reasoning from domain models. 
[Goldstein] attempted to construct a taxonomy that 
related bugs to types of errors made during planning. 
More recently, [Rich & Waters] and [Hammond] have 
explored paradigms similar to GTD in more complex 
domains — programming and cooking, respectively. 
Both systems employ a library of "cliches" to generate 
hypotheses and both reason from causal models to 
debug hypotheses. Our work takes a further step in this 

direction by extending the range of the paradigm — both 
in terms of its domain-independence and in the 
complexity of domains which can be handled. 
GTD has been used in both planning and interpretation 
tasks to construct a sequence of events that can achieve 
a final state from an initial state. The major difference 
between planning and interpretation is the relative 
amount of information contained in the final states. In 
interpretation problems the final state is usually more 
completely specified since it is a state that has already 
occurred and is thus, presumably, easier to observe. In 
planning problems, the initial state is usually more 
completely specified, especially in comparison with 
domains such as geologic interpretation where the initial 
state occurred so long ago that it cannot be specified 
accurately. 
The planning algorithms used by most implementations 
of domain-independent planners (e.g., [Chapman], 
[Sacerdoti, 77], [Tate], [Wilkins]) are similar to our 
debugging algorithm — a subgoal is chosen, a method 
is found to achieve the subgoal by reasoning from 
domain models, and the global effect of the action is 
computed. This is repeated until all the goals are 
achieved. Our debugger extends this line of research by 
extending the complexity of models that can be 
reasoned about. For instance, we represent and reason 
about quantified effects, conditional effects and effects 
that create or destroy objects. For example, in geology 
we need to represent that erosion affects all rocks on the 
Earth's surface (quantification) — either reducing their 
thickness or eroding them completely away (conditional 
effects and destruction of objects). 
Such planners, and our debugger, all suffer from the 
problem of potentially exponential search. This problem 
led to research aimed at solving problems at different 
levels of abstraction. Early work by [Sacerdoti, 74] 
showed the utility of abstraction, but the abstraction 
technique used — mainly removing preconditions of 
actions — was fairly simplistic. [Patil] showed that 
having multiple levels of vocabulary was a powerful 
problem solving tool. Our work demonstrates the utility 
of having different representations and inference 
mechanisms specialized for each level of abstraction 
(the generator and the debugger). 
An interesting point of comparison to GTD is the 
generate and test system of Dendral [Buchanan]. 
Buchanan has observed (personal communication) that 
the test results of Dendral were fairly uninformative — 
knowing that a peak was the wrong height did little to 
identify which bonds were wrong since many bonds 
contributed to each peak. This case illustrates a crucial 
assumption for GTD — that the goals are not tightly 
interdependent. 
A major open problem with GTD is determining when 
one is sufficiently "far" from a solution to stop debugging 
and to ask the generator for a new hypothesis. By 
running GORDIUS over a wide variety of problems, we 
hope to detect characteristics of the domain and 
problem solving strategy that will be useful In 
determining which stage of the problem solver to use. 

6. Conclusions 

This paper has presented GTD, a paradigm for 
combining associational rules and causal models to 
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achieve efficient and robust problem solving behavior. 
We have also discussed some aspects of GORDIUS, our 
implementation of GTD, as it relates to solving problems 
in geologic interpretation. The following list summarizes 
many of the domain characteristics that we believe are 
necessary in order for GTD to be a useful paradigm. 

1. Goals are not totally independent. If they were, 
we would not need both the generator and 
debugger, since with totally independent goals 
the debugging approach (solving goals 
independently) would always lead to a valid 
solution with little or no search needed. Since, in 
this case, the generator would lose its advantage 
of efficiency it would not be worth the extra effort 
to build both a generator and a debugger. 

2. Goals are not totally interdependent. If they were, 
one would again lose the efficiency advantage of 
the generator and so would not need both a 
generator and debugger. With totally 
interdependent goals the efficiency of the 
generator becomes as bad as that of the 
debugger, since the generator approach (using 
rules independently) would be likely to produce 
many invalid hypotheses before finding a correct 
solution. 

3. Nearly independent rules can be identified. GTD 
requires a set of rules whose right-hand sides can 
be pieced together independently to form a 
(nearly) valid hypothesis. It might not be possible 
to find such a set for a given domain, even if the 
goals are not totally interdependent. 

4. Robust causal models must be representable in a 
language that the debugger can analyze. 
Although we have developed a representation 
language suitable for modeling complex 
domains, it is likely that for other domains our 
language will need extensions or a different 
representation altogether will be needed. 

5. Experience alone cannot cover most of the 
domain. If experience can cover the domain then 
a robust set of associational rules would be 
easier to construct than robust causal models and 
the debugger would lose its main advantage of 
broad range of applicability. 

6. The tester must be correct. In particular, it must 
not allow false negatives. 

7. The tester must give causal explanations for any 
bugs found. Otherwise, the modifications made 
by the debugger will be random or empirical. 
However, the tester does not have to use the 
same models as the debugger if other methods of 
constructing explanations are available. 

The strategy behind GTD is to construct hypotheses 
using nearly independent associational rules but to 
include reasoning from causal models as a means of 
analyzing unforeseen interactions. This research has 
demonstrated the increased performance and 
competence exhibited by the GTD paradigm compared 
with using associational rules or causal models alone. 
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