
Universal Plans for Reactive Robots 
in Unpredictable Environments 

M . J . Schoppers 

Advanced Decision Systems 
201 San Antonio Circle #286 

Mountain View, CA 94040 

Abstract 

To date, reactive robot behavior has been achieved only 
through manual programming. This paper describes a 
new kind of plan, called a "universal plan", which can 
be synthesized automatically, yet generates appropriate 
behavior in unpredictable environments. In classical 
planning work, problems were posed with unique initial 
and final world states; in my approach a problem 
specifies only a goal condition. The planner is thus 
unable to commit to any specific future course of events 
but must specify appropriate reactions for anticipated 
situations. An alternative conception is that one 
universal plan compactly represents every classical plan. 
Which part of the universal plan is executed depends 
entirely on how the environment behaves at execution 
time. 

Universal plans are constructed from state-space 
operator schemas by a nonlinear planner. They explicitly 
identify predicates requiring monitoring at each moment 
of execution, and provide for sabotage, serendipity and 
failure without requiring replanning. 

1 . I n t r o d u c t i o n 

1.1. Scope of th i s Paper 

The work described herein continues my efforts toward 
synthetic reactivity, i.e. the automatic synthesis of robot 
programs capable of realtime performance in an 
unpredictable and/or dynamic world. This paper 
presents a solution to the problem of achieving a 
satisfying integration of goal-directed advance planning 
and sensor-driven reaction, without resorting to human 
programming. 

By now, the problems with the so-called "classical 
approach" to planning are old news. Without going into 
tedious detail: state space planning requires a great deal 
of information up front, is time-consuming, and delays 
the arrival of suitable actions; its plans must eventually 
be very detailed or else may risk failure; even so, they 
are britt le, being unsuited to temporal continuity and 

uncertainty. The core problem is one of over­
commitment. 

The use of abstract plans, of partial plans, and of 
"reactive procedures", side-steps the early commitment 
problem by interleaving plan refinement and execution. 
The penalty is that acting on an incomplete plan may 
make the goal permanently unachievable: the planner 
may paint itself into a corner. 

The work reported in this paper is the first fruits of a 
larger project concerned with the integration of 
planning, executing, sensing, and reacting. As a first 
step, that project will drive a robot arm in an 
environment that is rather less cooperative than a blocks 
world. The focus of the work is not on the robotics but 
on the planning, however, and this paper will be even 
narrower, concentrating on the plan representation and 
interpreter I have developed. 

1.2. Misch ie f in the B locks W o r l d 

We are to solve the following benchmark problem. 1 
have cast this problem in terms of a blocks world, to 
clarify (by way of contrast with the familiar) the issues 
involved. 

As in most blocks worlds, all the blocks are 
cubical and of unknown size; every block can 
be stacked on every other; and the usual 1-
on-1 stacking rules apply. In addition we have 
a robot arm with a hand as our only means of 
moving blocks. On the other side of the table 
from the robot there is a mischievous baby 
who will flatten block towers, snatch blocks 
out of the robot's hand, and even throw blocks 
at the robot. The robot may not snatch blocks 
back, may not touch the baby, and cannot 
keep anything out of the baby's reach. As 
partial compensation we are given an 
unlimited set of sensing devices. The robot is 
to achieve the usual tower of blocks: a on b on 
c. Devise plan execution software enabling the 
robot to cope efficiently with this domain. 

Schoppers 1039 



This problem highlights some issues that are challenges 
to the state of the art in AI and robotics: 

• The robot's knowledge is incomplete, lacking 
the blocks' sizes. The missing information 
must be mitigated if the hand is to pick up 
any blocks. 

• The problem does not specify the current 
state of the world - neither the current 
locations of blocks, nor the position of the 
hand. 

• The environment is capricious, allowing 
failure, sabotage and serendipity. Actions 
may not achieve their intended effects, and 
effects already achieved may not persist. 

These items all have to do with the robot's behavior in 
the face of uncertainty, whether due to ignorance or to a 
dynamic environment beyond the robot's control. The 
work reported here is the first example of problem-
independent synthetic reactivity. 

1.3. So lu t ion A p p r o a c h 

Accurate prediction being notoriously difficult, I have 
moved toward the other extreme, relying heavily on 
reaction. That in itself is not novel. The novelty of my 
approach arises from the fact that the representation I 
use to encode robot behaviors specifies appropriate 
reactions to every possible situation within a given 
domain, yet can be synthesized automatically and at 
moderate computational cost. 

Universal plans convey highly conditional advice of the 
form: 

// a situation satisfying condition P should 
ever arise while you are trying to achieve goal 
G, then the appropriate response is action A. 

There is no commitment to any particular sequence of 
events; in fact, universal plans contain little sequence of 
any kind. Instead, the task of the planner is to partit ion 
the set of possible situations on the basis of the reaction 
each situation requires. At execution time the actual 
situation is classified, and the response planned for that 
class of situation is then performed. Thus the behavior 
of an agent executing universal plans depends critically 
on which situations arise at execution time. Such 
reactivity allows universal plans to generate appropriate 
behavior even in unpredictable environments. 

The behavior of agents executing universal plans is also 
goal-directed. If the world is cooperative long enough, 
each action wil l have its expected effects and the net 

behavior will be indistinguishable from that generated 
by a linear plan. No matter how the environment 
behaves, however, a universal plan always selects the 
action that would, in a cooperative world, move the 
current situation toward the goal. 

The difference between the classical planning approach 
and that of universal plans is summarized in Figure 1. In 

F igure 1: Plan monitoring vs planned reaction. 

classical planning work, problems are posed with a 
specific initial world state, and plans are restricted not 
only to a particular set of situations but also to a 
specific ordering on those situations. Any predicates 
associated with individual actions are used only to 
determine whether an action has been completed, and 
whether it was successful. If so, the next action to be 
executed is determined from the sequence imposed by 
the planner, not from any knowledge of the 
environment. When an action fails to produce a ' g o " 
outcome, the only recourse is to replanning, beginning 
with the newly produced situation. 

In my approach a problem specifies only the goal 
condition — no initial state and no unique final state — 
so that the planner cannot over-commit to a specific 
future course of events. Instead the planner must 
anticipate possible situations and predetermine its 
reactions in those situations. The sensing module takes 
over the function previously served by sequencing, 
namely that of indexing into the set of available actions. 
And because the planner does not commit itself to a 
particular future, replanning is no longer necessary, no 
matter what serendipity, sabotage or failure takes place. 

t r i ang le tables are restricted to a subset of poasible situations 
but not to a sptcific ordering. See Section S. 

1040 REASONING 



The fact that universal plans can be generated 
automatically allows for a rather novel perspective: 

Planning is the goal-directed selection of 
reactions to possible situations. 

This view bridges the chasm between goal-directed 
planning and situation-driven reaction. It makes all 
behavior reactive, but allows for rationality in the prior 
selection of reactions. The notion of an action's success 
becomes irrelevant to the process of plan execution; this 
reflects the intuition that no plan is knowably foolproof 
until after it has succeeded. Just as success cannot be 
known until execution time, so the actual course of 
events cannot be known in advance: the idea of a 
procedure is an abstraction, practically applicable only 
in non-real-world environments. To realize plans as 
procedures is to equate plan structure with the seriality 
of behavior-through-time. In other words, some 
particular sequence of events is inescapable at execution 
time, but is a major over-commitment at planning time. 

2. Inpu ts to the P lanner 

2 . 1 . P r i m i t i v e Ac t i ons 

That the planner must drive a real robot arm has some 
important consequences. For example: we can no longer 
pretend that it is irrelevant how big the blocks are. In 
fact we must consider how to cope with positions and 
distances in general. The approach I describe here is well 
below the level of abstraction adopted by previous 
blocks world planners, and is borrowed in part from the 
REX project at SRI (cf. Section 5). 

The readings returned by all sensors are integers. The 
speed and acceleration values sent to the robot arm are 
also integers. In between, the most primitive actions are 
numeric functions. For example, if the arm is at x 

r now 
and we want it to stop at x. in the shortest possible 
time, we define speed-up as in Figure 2a. 

The functions for a s low-down stage are similar. 
Whenever we get new values for x or v , or even 

° now now 
for the arm's speed and acceleration can be adjusted 
t o suit. O f course, a n d a r e constantly 
changing. Thus, computing new arm motion parameters 
from current sensor readings establishes a feedback loop. 

We must also specify when each stage should be used 
(Figure 2b). There are three relevant predicates: is the 
arm at its destination? moving in the right direction? 
moving as fast as its destination will allow? Depending 
on the truth or falsity of these predicates, one of 
alow-down and speed-up will be imposed between 
sensors and effectors. 

Notice that these primitive actions are very different 
from traditional plan primitives in that they represent 
I/O conditions to be maintained for some unspecified 
length of time, not conditions to be achieved in the 
world. How long a given constraint is in force depends 
entirely on the environment. Moreover, there is no 
particular order in which speed-up and s low-down 
must be executed: that too is determined by the 
environment. 

At this point we must diverge from the REX project 
mentioned earlier. By design, Figure 2b can be expressed 
as the "universal plan" of Figure 2c. 

A synthesizer of universal plans must determine under 
what conditions the feedback functions should be 
imposed so as to achieve some condition in the world. 
How the necessary information is communicated to the 
planner is the topic of the next Section, which proceeds 
with "actions" at the level of umove to X" . The main 
point of the present Section was to show that what lies 
below that level of abstraction is in fact identical to 
what lies above: even the most primitive sensori-motor 
feedback constraints can be controlled by universal 
plans. 

F igure 2: Implementing arm motions with feedback. 

Schoppers 1041 



2.2. Act ion Descriptions 

The task of decomposing block transfers i n to more 
p r im i t i ve actions reveals an in terest ing amb igu i t y in the 
in te rpre ta t ion o f " a c t i o n " . On the one hand , f r o m the 
robotics perspective i t is immedia te ly obvious tha t f ive 
physical mot ions w i l l suff ice, namely : close the hand as 
far as possible; open the hand complete ly ; lower the 
hand vert ical ly as far as possible; raise the hand 
vert ical ly to some m a x i m u m height ; and move the hand 
hor izonta l ly un t i l above some target locat ion. Each of 
these mot ions can be imp lemented s t ra igh t fo rward l y by 
feedback funct ions as described in the previous Sect ion. 
Hence the blocks w o r l d doma in requires on ly f ive 
physical actions. On the other hand , cap tu r ing the 
blocks wor ld at the level of such actions requires about 
30 STRIPS- l ike operator schemas. W h i c h are we to 
regard as an act ion: the actual mo t i on , as ident i f ied by 
the funct ion d r i v i ng the a r m , or wha t actual ly happens, 
as described by the operator schema? 

C o n t r a r y to AI t r a d i t i o n , I chose to conceive of actions 
in terms of the robot ic funct ions used to realize them, 
and to regard operator schemas as effect descript ions. 
N o w the same act ion can produce mu l t i p l e effects 
depending on the env i ronmen t in wh ich i t is executed 
(cp. [side-effects]). Rais ing the e m p t y hand is precisely 
the same " a c t i o n " as rais ing the hand whi le ho ld ing a 
b lock, yet their effects are d i f fe ren t , and moreover, each 
effect is necessary at d i f fe rent t imes. The problems and 
benefi ts of p lann ing w i t h a l te rna t ive effects cannot be 
deta i led here, however. 

1042 REASONING 

When an action is described to the planner (Figure 
OPS), the pre- and post-conditions of its effects need not 
be complete: my planner utilizes an extension of the 
logic of Ginsburg [counterfactuals] to infer missing pre-
and post-conditions (e.g. that, to lower the hand around 
block X, the hand must be over X to begin with). 

2.3. Domain Constraints 

I wi l l not discuss the logic that determines which world 
states are possible and impossible; it is intuitively 
obvious (e.g. if the hand is open it can't be holding 
anything). What is crucial, however, is that the planner 
can deal with partially-determined world states. That 
occasionally involves facts of the form "Something is on 
block a" . In predicate logic (and all previous blocks-
world planners) such facts would be encoded as 
existentially quantified formulae within a world state 
model, and would give rise to considerable difficulties in 
ensuring a consistent world description. I solve this 
problem by using a possible-worlds TMS [tms] to encode 
and compute with world descriptions. This particular 
TMS will accept clauses of the form 

The fact "Something is on block a" is encoded as 
-x lear (a) , which means that one of on(b,a) or on(c,a) 
must be true for the above clause to remain valid. There 
is no need for an explicit existential in the world 
description: there is an implicit existential in the 
restriction logic. 

The planner manipulates multiple TMS instances, all 
sharing the same logic but having different truth value 
assignments. Thus, the planner can represent partial 
knowledge of the world at any point in the plan. More 
will be said in Section 4 about the importance of this for 
universal plan synthesis. 

2.4. The Goal 

The problem to be solved is posed to the planner as a 
condition to be achieved, not as a particular world state. 
For the problem discussed in the next section the goal is 
on(a ,b)Atop - how to stack a onto b and leave it there 
- and there are still 24 world states that satisfy this goal 
condition (the final location of c and the final state of 
the hand are variable). The initial state of the world is 
irrelevant at planning time. 



3. Universal Plans 

3.1. Interpretat ion 

The plan interpreter finds the action that is relevant to 
the current state of the world by using the completed 
universal plan as a decision tree. The pre- and post-
conditions of operators are evaluated in the current real 
world, and so determine, at each node, which branch 
should be traversed next. Exactly how these decisions 
are made will be detailed below. Eventually the 
interpreter arrives at the currently appropriate action. 
Just as that action's location in the tree specifies the 
path necessary to reach it, so its being chosen as 
appropriate specifies what conditions are true in the 
world. As long as those conditions remain true, the 
chosen action remains appropriate. When they change, 
the interpreter must search the tree again for the next 
appropriate action. 

The universal plan shown in Figure 4 is a plan to stack 
one block onto another: it realizes the very hlbck-
stacking action that other planners have taken for 

granted, and it is not trivial. We can extract from the 
plan a series of partial world descriptions with 
specifications of an action appropriate to the worlds 
described. This procedure involves a "method of 
assumed preconditions". Beginning with the root node 
conditions, assume them to be true, and note that no 
action is necessary. Now proceed backwards along the 
root node conditions, assuming them to be false, and in 
each case see what action is necessary to reverse the 
falsified condition. Assume the preconditions of this 
action (if any) to be satisfied. This generates a partial 
world description in which the action is appropriate. 
Now assume that the preconditions of the selected action 
are false... and so on, recursively. The result is shown in 
Figure 5. 

F igure 8: Decision tree form of s tack(a,b) . 

Of rourse, for efficiency's sake the interpreter tests not 
these world models but the individual conditions 
comprising them. The partial world descriptions can in 
fact be reorganiied into a decision tree which allows the 
interpreter to test only the conditions actually required 
to select the currently appropriate action, and those 
conditions are evaluated only once. The decision tree for 
the stack(a,b) plan is shown in Figure 6. 

Once the currently appropriate action has been 
determined, it can be executed continuously until the 
truth value of some predicate changes, in which case the 
decision tree must be traversed again from that 
predicate down to determine the new reaction. In the 

Schoppers 1043 



simplest case, only the last false condition in the active 
path will change to true, indicating that the current 
action has achieved its postconditions, and leading to 
what would be the next step for a classical sequential 
plan. It is also possible that some condition changes 
higher up in the tree. This corresponds either to 
serendipity or to sabotage. 

The decision tree form makes obvious the fact that every 
possible world state is provided for somewhere, simply 
because both outcomes of every predicate are classified 
eventually. Hence the name, "universal p lan" . An 
immediate consequence is that universal plans have no 
preconditions: they always apply. The kind of 
composition that produces universal plans is very 
different from the concatenation of sequential plan 
fragments. 

The stack(a,b) decision tree is never embodied as a 
data structure, but is merely a convenient description of 
how the interpreter executes a universal plan. The 
universal plan structure is used as a template from 
which a sequence of predicates is simultaneously 
extracted and evaluated, following the pattern of the 
above decision tree. 

3.2. Hierarchy 

Recall that in Section 2.1 the lateraling action was itself 
expressed as a universal plan. Hence, universal plans can 
be used to construct behaviors from the most primitive 
levels up. Equally importantly, it follows that something 
viewed as an "action'1 by the stack(a,b) plan can in 
fact be another universal plan. The ability to reuse a 
universal plan as a primitive reaction at a higher level 
gives us a form of abstraction: the planner can remain 
ignorant of the conditions used within lateral. Now it is 
easy to see that abstraction can also continue upwards 
beyond the stacking of individual blocks. The plan to 
build a tower of three blocks can be translated into the 
decision tree: 

on(c.tabic) ? 
T) on(b,c) ? 

T) on(a,b) ? 
T) no-op 
F) stack(a.b) 

F) ttack(b.c) 
F) unttack(c) 

By determining the currently appropriate block transfer 
action, and hence the currently appropriate arm motion, 
and hence the currently appropriate feedback constraint, 
this plan wil l achieve the a,b,c tower from any init ial 
state, and no matter what serendipity or sabotage occurs 
in the meantime. Notice also that this is the first plan 
representation capable of capturing the intuit ion that 

block towers should always be built bottom-up. 
Sequential plan representations provide no way to 
express this general heuristic, forcing it to become part 
of the planner's domain specific knowledge instead. 

3.3. Competence 

In principle, once we have a universal plan for a non-
conjunctive goal G (such as hold ing(a)) we actually 
have two ways to achieve G: the plan, and the 
"pr imi t ive" action A (in this case, grasp) that finally 
brings about G. How do we know which one to use if G 
becomes a goal in subsequent planning? 

This problem is an artifact of poor plan representations 
such as the traditional sequential one. Remember 
however that a universal plan is applicable in any init ial 
situation. In particular, the universal plan P to achieve 
G applies also in situations to which A applies, whereas 
A's applicability remains restricted by its preconditions. 
Consequently A, as a means of achieving G, is 
completely superseded by P, and might as well be 
forgotten. The construction of a universal plan 
represents a major increase in competence. 

4 . P l a n S y n t h e s i s 

The planner builds a universal plan by back-chaining 
from the goal condition, using the effect descriptions as 
goal reduction operators. There is a subtle difference 
from ordinary back-chaining, however: when a 
precondition becomes the goal of subsequent back-
chaining, the negation of that precondition must be true 
of all the situations occurring in that subplan. That is, 
the subplan to achieve on(a,b) need only consider 
worlds in which on(a,b) is not true. This is the 
planning-time version of the execution-time "method of 
assumed preconditions". Back-chaining terminates when 
the accumulation of goals above the current locus of 
control either forces the satisfaction of the preconditions 
being examined, or leads to contradiction. It is not 
necessary to consider each possible world state 
individually: the planner may assign the same reaction 
to groups of states, considered en masse in the form of a 
world state schema. Hence, universal plan synthesis is at 
least as efficient as synthesizing linear plans (see Section 
6.1). 

Whenever an effect description has multiple 
preconditions, goal conflicts are possible. The reasoning 
required to resolve goal conflicts is complicated by both 
the new plan representation and the multipl icity of 
effects per action. Details must be left for another paper. 

Identifying preconditions wi th goals at planning time can 
be continued into execution time. When the decision-tree 

1044 REASONING 



version of universal plan execution applies predicates to 
the environment, every false predicate is a failed 
precondition and hence a planning-time goal. Thus, the 
locus of control at execution time explicitly determines 
the goals being pursued, so that even the agent's goals 
are subject to the environment. 

5. Related Work 

My experience with using Georgeffs Procedural 
Reasoning System (PRS) [2, 3] to control an autonomous 
mobile robot [4] was seminal for this work. The goal of 
that project was to reduce the amount of advance 
planning, and hence of advance over-commitment, by 
decomposing behaviors (by hand) into sequences of goals, 
and by selecting at run-time the behavior to achieve 
each goal. In some respects the project succeeded: in 
navigating the robot around an office building, the 
planner's floor map became a connection graph, 
containing no advance knowledge at all about widths of 
hallways and distances between doorways. That 
information was acquired en route from sensory input. In 
other respects, however, progress was less than 
satisfactory. If the robot sensors saw a doorway where 
none existed it would get stuck just as helplessly as if it 
had been measuring distance. It succeeded in eliminating 
dead reckoning by distance maps only to have it 
reappear as dead reckoning by connection graphs. 
Armed with our knowledge of universal plans, we can 
now see that the PRS work did not go quite far enough 
in its attempt to achieve reactivity: it experimented with 
situation-dependent selection of means to achieve goals, 
but not with situation-dependent adoption and 
abandonment of goals. The fundamental difficulty was 
the rigidity of PRS's procedural control structure. 
Nevertheless, PRS's ability to eliminate dead reckoning 
from lower abstraction levels was instructive, and on 
subsequent analysis pointed to the importance of having 
actions whose duration depends on the sensed 
environment, and to a robotics-oriented view of motion. 

The REX project [9, 6] was equally influential: the 
behavior of a situated automaton is always contingent 
on the state of the environment. Indeed, the 
contingency assumes precisely the forms I have adopted 
for universal plans, with continuously evaluated 
predicates determining which numeric feedback function 
should be executed. My approach differs from that of 
the REX team in that universal plans are produced 
automatically, and are therefore symbolic and highly 
constrained structurally, while REX automata are hand-
coded. Indeed, symbolic representation of a REX 
automaton's knowledge is considered not only 

3I am indebted to Ken Dove of Advanced Decision Systems for 
the wording of this observation. 

superfluous but undesirable; instead, the automaton's 
state is a function of the entire contents of its memory. 
This lack of symbols is somewhat disconcerting from a 
planning point of view. The REX project is emphasising 
analysis of the information content of situated automata 
synthesized by hand; I am emphasising the automatic 
synthesis and control of reactive behavior. 

Triangle tables ; l , 8] are synthesized by extracting, from 
a conventional linear plan, the set of expected world 
states and the set of needed operators, then reorganizing 
the predicates involved to form an index into that set of 
operators. This reorganization increases the competence 
of the original plan, from coping with a specific set of 
situations in a specific order to coping with that set of 
situations in any order. Thus, triangle tables were first 
to give the environment a hand in selecting the operator 
to be performed next. That in itself is not sufficient (see 
my comments on PRS above), but it is a quirk of the 
rigidity of linear plans that selecting an operator 
instance also selects a control state. Serendipitously, 
triangle tables allow the environment to dictate the 
interpreter's (apparent) goals. That feature is crucial, 
and has been made explicit by universal plans. 

6. Cri t ique 

6.1. Computat ional Complexi ty 

Universal plans not only anticipate every possible 
situation in a domain but actually prescribe an action 
for every initial state; moreover, the prescribed action is 
usually optimal. These remarks suggest that universal 
plans must be limited to very small problem spaces. 

Universal plan synthesis is not a graph search problem, 
however. The blocks world as I solved it has >400 
possible world states, but the planner makes use of 
predicates and effect descriptions to decompose the 
problem space. In fact, universal plan synthesis is closer 
to a classification problem: given a set of possible 
situations, with an appropriate reaction already assigned 
to each situation, what is the complexity of producing a 
decision tree? In the best case the effort required to 
classify n distinct situations may be 0(log(n)). Only in 
the worst case, when each possible situation must be 
classified at a different leaf node, does the classification 
effort become O(n). For comparison, the total effort 
expended by a planner that produced a new plan for 
each init ial situation would be O(n) at best. 

6.2. Blocks Wor l d Problems 

The current planner relies on a STRIPS-like effects 
representation, restricting the plans to domains 

Schoppers 1045 



representable as state spaces, but this is not necessarily 
as serious as contemporary AI milieu might think. 
Clearly, in my case the state space representation has 
not condemned me to a static and predictable 
environment, nor to dead reckoning, nor to complete 
knowledge of every world state considered. Such 
limitations are artifacts of the reasoning engine, not of 
the problem representation. 

Neither have I been condemned to instantaneous actions 
and discrete worlds. State spaces may be inadequate to 
reasoning about continuous processes, but when sensory 
information is exploited to control both the current 
action and the manner of its performance, the increased 
behavioral competence removes much of that burden 
from the reasoning engine. The inability to respond to 
continuous stimuli is an artifact of sensory deprivation. 

6.3. T h e Sensing B o t t l e n e c k 

Sensing is the only reliable means to obtain feedback 
from the environment, but for many kinds of sensor, the 
rate at which readings can be converted to usable 
information is relatively slow. Universal plan execution, 
however, relies on sensory feedback continuously, and 
needs predicates from a variety of sources. The problems 
are aggravated in domains requiring knowledge of 
objects other than the robot itself, such as the locations 
of blocks when those locations cannot be controlled. 

If some predicate can only be evaluated infrequently, 
only domain-dependent considerations can determine 
how the robot should proceed in the meantime. It may 
turn out that predicates near the root of the universal 
plan are less crucial, for example, or that it is more 
effective to temporarily ignore the values of some 
predicates than to monitor them closely. At least the 
decision tree form of universal plans makes very clear 
what predicates are relevant to each reaction, and so 
may facilitate the determination of how to proceed at 
each point. This in itself is a useful contribution. 

7. S u m m a r y 

This paper has shown how to integrate goal-directed 
planning with situation-driven reaction in the case of 
robotic motion, namely by redefining plans so as to 
eliminate the over-commitment, inherent in procedural 
representations, to a particular course of events. Given 
suitable sensory input, the resulting plan representation 
generates appropriate behaviors even in unpredictable 
environments, allowing the environment to determine 
the robot's current goals. This achievement encourages a 
new perspective on planning as choosing reactions for 

situations that might arise, and on plans as never 
guaranteeing success. The universal plan structure 
replaces procedural indexing with sensory indexing; 
makes explicit the conditions under which actions are 
applicable; renders notions of success and failure 
irrelevant at execution time; and encourages hierarchy. 

A c k n o w l e d g e m e n t s 

This work has been supported in part by an internal 
R&D grant from Advanced Decision Systems. I especially 
appreciate the encouragement they provided when ray 
ideas were still emerging. Thanks also to Stan 
Rosenschein, Mike Georgeff, Amy Lansky and Leslie 
Kaelbling (SRI AI) for allowing me to participate in 
their progress, and to John Myers (SRI Robotics) for 
being a constructive critic of a first draft. 

References 

1. FIKES, R.E., HART, P.E. AND NILSSON, N.J. 
"Learning and executing generalized robot plans". Artif 
Intel 5(1972), 251ff. 

2. GEORGEFF, M. AND BONOLLO, U. Procedural 
expert systems. Proc 8th IJCAI, 1983, pp. 151ff. 

3. GEORGEFF, M., LANSKY, A. AND BESSIERE, P. 
A procedural logic. Proc 9th IJCAI, 1985. 

4. GEORGEFF, M., LANSKY, A. AND SCHOPPERS, 
M. Reasoning and planning in dynamic domains: an 
experiment with a mobile robot. Tech Note 380, AI 
Center, SRI International, 1986. 

6. GINSBERG, M. Counterfactuals. Proc 9th IJCAI, 
1985, pp. 80-86. 

6. KAELBLING, L. An architecture for intelligent 
reactive systems. Proc Workshop on Planning and 
Reasoning about Action, AAA I , 1986. 

7. McALLESTER, D.A. A three-valued truth 
maintenance system. Memo 473, MIT AI Lab, 1978. 

8. NILSSON, N.J. Triangle tables: a proposal for a 
robot programming language. Tech Note 347, AI 
Center, SRI International, 1985. 

9. ROSENSCHEIN, S.J. "Formal theories of 
knowledge in AI and robotics". New Generation 
Computing 3 (1985), 345-357. 

10. SRIDHARAN, N.S. AND HAWRUSIK, F. 
Representation of actions that have side effects. Proc 
5th IJCAI, 1977, pp. 265ff. 

1046 REASONING 


