
Goal Conflict Concerns

Marc
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720

U.S.A.
Abstract

A major problem for a knowledge based planner is the deter­
mination of potential plan failures due to goal conflict. Given
a potential plan, it is computationally intractable to compare
every effect of that plan against all planner goals. A common-
sense planner named KIP, Knowledge Intensive Planner, is
described. KIP determines user plans for the UNIX Consul­
tant System, KIP uses goal conflict concerns to focus atten­
tion on those effects and goals which are likely to cause goal
conflict. A concern refers to those aspects of a plan which
should be considered because they are likely sources of plan
failure. Violated Default Concerns allow the planner to use
default knowledge effectively in cases where the planning
situation has not been specified completely. Unintended
Effect Concerns allow KIP to plan effectively when plans are
used in novel situations. User goals are often only inferred in
response to a threat from a potential plan. A new concept
termed interests, is introduced. Interests are general states that
KIP assumes are important to the user. While interests refer
to general states of the world, goals refer to a concrete state of
the world.

1. Introduction
Human problem solving is a knowledge intensive pro­

cess. People know much about many plans, and also know
about the many ways which these plans can fail. However,
people have the uncanny ability to consider only a small pan
of this planning knowledge while problem solving. They
select one or two potential plans to solve current problems
among the many plans they have used in the past. They can
determine which aspects of a selected plan might cause plan
failure in the current planning situation without examining
every possible problem that might occur. Early planning pro­
grams (Fikes71, Ncwell72, Sacerdoti74) could consider every
possible plan failure, since they planned in a domain with a
limited number of plans and goals. However, a brute force ap­
proach is not computationally tractable in a knowledge rich
domain.

A planner which is able to effectively use a large body
of knowledge about a knowledge rich domain is called a com­
monsense planner (Wilensky83). Such knowledge includes a
general understanding of planning strategy, detailed descrip­
tions of plans, the conditions necessary for these plans to exe­
cute successfully, and descriptions of potential goal conflicts
these plans might cause.

In this paper, I describe a commonsense planner called
KIP, Knowledge Intensive Planner. KIP is being developed
for UC, the UNDx Consultant system (Luria85, Wilensky 84a,
86). This planner has a large knowledge-base of information
bout the UNIX operating system. The parser and goal
ualyzer (Mayfield 86) of UC pass KIP a set of goals, and KIP

Computer Science Department
Technion, Israel Institute of Technology

Haifa
Israel

tries to find appropriate plans for those goals. UC is a conver­
sational system, and if necessary KIP can query the user for
more information. Nevertheless, KIP tries to provide the best
plan it can with the information provided by the user. This
plan is then passed to other UC components, which use the
plan to generate a natural language response to the user.

There are two types of plan failure: (1) condition failure
- plan failure due to an unsatisfied condition necessary for the
plan to execute and (2) goal conflict failure - plan failure due
to the effect of the plan conflicting with a goal. In this paper,
we describe how potential plan failures due to goal conflicts
between an effect of a potential plan and a goal are detected.
(For more on condition failure detection see Luria86, 87).
Detecting failures due to goal conflict is more complex than
detecting failures due to condition failure. A potential plan
might fail due to a limited number of conditions. In contrast,
any of the effects of the same plan could potentially conflict
with one of the many explicit and background goals of an
agent. Since a commonsense planner is faced with a combina­
torial explosion of potential goal conflicts, it cannot consider
each potential goal conflict as a source of plan failure. There­
fore, an algorithm is needed to limit those potential goal
conflicts which should be considered.

In the next section, we provide an example of a plan
which causes a goal conflict. This example reflects the
difficulty in the goal conflict detection problem. We then ex­
amine the properties of an algorithm that addresses this prob­
lem and describe those issues that must be addressed by any
algorithm that detects goal conflicts. In the following section,
an algorithm for detecting potential goal conflicts is described.

2. An Example of Goal Conflict Detection
When given a set of user goals, KIP should detect any

conflicts between goals the user has specified and other user
goals of which KIP is aware. Additionally, KIP creates a po­
tential plan for the user's goals. KIP should detect goal
conflicts between the effects of the potential plan and other
previously unconsidered goals of the user. Effects can conflict
with other goals by causing states which are incompatible
with these goals, or by making plans to achieve these goals
impossible. The problem of detecting goal conflicts is
difficult, since KIP must consider conflicts between the effects
of the plan, and the explicit and background goals of the user.
If there is a conflict, KIP should try to resolve the conflict.
Conflict resolution may occur by either modifying the plan,
changing the order in which plans for various goals are exe­
cuted, or choosing a new plan. For example, suppose the user
asks the following question:

Luria 1025

(a) How do I move a f i l e named junk to a
f i l e named f i l e l ?

KIP might select the USE-MV-COMMAND plan. KIP creates an
individual instance of this plan for the particular problem si­
tuation of moving the file named junk, say the USE-MV-
COMMANDl plan. This plan is to execute the command mv
junk f i l e l . KIP needs to examine the USE-MV-
COMMAND1 plan in order to detect any goal conflicts between
an effect of the USE-MV-COMMANDl plan and one or more of
the goals of the user, both explicit and inferred.

For example, KIP might detect the following potential
problem with the USE-MV-COMMAND 1 plan: One effect of this
plan is that if filel exists, it will be overwritten. Let us call
this result the destination file deletion effect. This effect
conflicts with the user's background goal of having access to
his file named filel. There is a conflict between the destina­
tion deletion file effect of the USE-MV-COMMAND1 plan and
the user's goal of having access to the file named filel. This
conflict occurs because once the USE-MV-COMMMANDl plan is
executed, the user will no longer be able to access the file.

Detecting the goal conflict is difficult since KIP should
know about a number of potential effects of USE-MV-
COMMANDl. For example, KIP might also consider the fol­
lowing effects of the USE-MV-COMMANDl plan:

I f the f i l e named junk does not e x i s t ,
the message is p r i n t e d :
mv: junk : Cannot access: No such f i l e
o r d i r e c t o r y
The p r o t e c t i o n of the f i l e named junk
is the same as t h a t of the f i l e
named f i l e l .
I f the user does not have permiss ion
on the cur ren t d i r e c t o r y ,
the message is p r i n t e d :
mv: junk : rename: Permission denied.
I f the f i l e named f i l e l i s w r i t e
p r o t e c t e d , the user is asked:
ove r r i de p r o t e c t i o n 444 f o r f i l e l ?
KIP might consider the following effects that the USE-

MV-COMMANDl plan inherits from its parents in the hierarchy
of plans:

The d i r e c t o r y inode w i l l be updated.
The d isk arm w i l l move due to
a d i r e c t o r y update.

KIP also needs to know about many other background
goals of the user that could conflict with these effects. For ex­
ample, KIP might also consider these background goals of the
user:

Try to l i m i t d isk space usage.
Execute commands in a way t ha t
main ta ins a low load average.
Have a smal l number of f i l e s in
each d i r e c t o r y .
Keep your password sec re t .

None of these background goals of the user conflict with the
effects of the USE-MV-COMMANDl plan.

3. Exhaustive Search as an Algorithm for GCD

The goal conflict detection problem (GCD) refers to the
problem of detecting those goal conflicts that require goal
conflict resolution. This problem occurs when KIP has creat­
ed a potential plan for a goal of the user. KIP should deter­
mine if any effect of this plan might cause a conflict with a
goal of the user. Here we examine the properties of an algo­
rithm which addresses the GCD problem.

A weak method for solving the goal conflict detection
problem would be to compare every potential effect of a par­
ticular plan with every explicit and background goal of the
user. According to this method, if KIP knew about 5 effects
of a plan and knew about 50 explicit and background goals of
the user, KIP would need to make 250 tests for conflict. How­
ever, exhaustive search is inefficient in a knowledge rich
domain. In order to avoid checking for conflicts between
every effect of a plan and every potential goal of a user, we re­
quire some knowledge efficient method of identifying which
potential conflicts should be considered.

Secondly, a human planner usually knows right away
that a certain plan will fail. A human planner does not appear
to consider every possible goal of the user as a possible source
of conflict with every effect of a plan. Rather, the human
planner considers only those effects and goals which will
often cause the plan to fail.

Thirdly, KIP may not be aware of the values of many of
the conditions of a particular plan. Most previous planning
research assumed that the values for all the conditions is
known. However, in UC, and most other knowledge rich
domains, when a user describes a planning problem which is
then passed to KIP, the values for many conditions are usually
left out. All users would believe that normal goals, like the
user wants to preserve the contents of his files, would be as­
sumed by the consultant. A naive user might not be aware of
many of the effects of UNIX commands that require a more
sophisticated knowledge of UNIX. An expert user would be­
lieve that the consultant would make certain assumptions re­
quiring this more sophisticated knowledge of UNIX. It would
be undesirable to prompt the user for this information, particu­
larly for those values which are not important for the specific
planning situation.

Therefore, KIP should rely on default situation
knowledge in order to detect potential goal conflicts. For ex­
ample, KIP might have knowledge that unless there is infor­
mation to the contrary, it is likely that a file has read and write
permission. If exhaustive search is used as an algorithm for
GCD, a comparison of every effect with every goal might be
difficult due to the KIP's dependence on default knowledge.
Since much of the knowledge about a particular situation may
be unknown, each of the individual comparisons for conflict
might entail much effort and uncertainty.

Fourthly, many goals of the user are inferred by KIP,
rather than being described by the user in a particular problem
situation. These goal inferences are based on KIP's long-term
knowledge about the user's long term interests in the general
state of the world. Interests are general states that KIP as­
sumes are important to the user. An interest differs from a
goal in that one can have interests about general states of the
world, while goals refer to a concrete state of the world. For
example, preserving the contents of one's files is an interest,
while preserving the contents of the file named filel is a goal.
KIP's knowledge base includes many interests that KIP as­
sumes on the part of the user. Goals are generated only when
expressed by the user, or by KIP itself during the planning

1026 REA80NINQ

process.
The reliance on long-term knowledge about interests

makes exhaustive search for goal conflicts difficult. An indi­
vidual goal is often only inferred by KIP when there is some
action that might threaten an interest of the user. If KIP were
to compare every effect of a plan with all the goals of the user,
it would first need to examine each interest of the user. It
would also need to determine if an individual goal should be
inferred in the situation due to the particular interest. Check­
ing each interest would be a very inefficient use of knowledge.
Very few of these interests wil l give rise to goals in a particu­
lar situation, and even fewer wil l become causes of goal
conflict.

Therefore, a knowledge efficient algorithm that addresses
the GCD problem should consider only a limited number of po­
tential goal conflicts and ignore other potential goal conflicts
completely. Such an algorithm should utilize default
knowledge and instantiate user goals when user interests are
threatened.
4. Concerns

In the previous sections, we have described the difficulty
and importance of the Goal Conflict Detection problem.
Therefore, we have introduced a new concept in KIP, called a
concern which addresses this problem.

A concern refers to those aspects of a plan which should
be considered because they are possible sources of plan
failure. A concern describes which aspects of a plan arc likely
to cause failure.

There are two major types of concerns, condition con­
cerns, and goal conflict concerns. Condition concerns refer to
those aspects of a plan that are likely to cause plan failure due
to a condition of the plan that is needed for successful execu­
tion. (These are fully described in Luria86, 87). Goal conflict
concerns refer to those aspects of a plan which are likely to
cause plan failure due to a potential goal conflict between an
effect of a plan and a goal of the user. Goal conflict concerns
are represented as three way relations between the selected
plan, the conflicting effect, and the threatened goal.

The conditions about which KIP is concerned are always
conditions of a particular plan. Goal conflict concerns, how­
ever, relate plans to user goals and to other pieces of
knowledge that are not part of the plan. Examples of this
knowledge include background goals which may or may not
be threatened by the plan. Since these background goals are
usually not instantiated until such a threat is perceived, goal
conflict concerns often refer to conflicts between a potential
plan and an interest of the user. Stored goal conflict concerns,
refer to concerns about conflicts of interest. These are con­
cerns about the selected plan conflicting with an interest of the
user. If KIP detects a conflict-of-interest concern, then KIP
must determine if it should infer an individual goal on the part
of the user that reflects this interest. If KIP decides to infer
this individual goal, then a dynamic concern between the
selected plan and the individual goal is also instantiated.

Some goal conflicts are more likely to occur than other
goal conflicts, and some goal conflicts are more important
than others if they do occur. The representation of goal
conflict concerns reflects this difference by assigning a vary­
ing degree of concern to the stored concerns in the knowledge
base. There are many factors that determine the degree of
concern about a conflict-of-interest. The planning knowledge
base designer needs to determine how likely a conflicting ef­

fect is to occur, how likely it is that the user holds the
threatened goal, and how important this goal is to the user.

In the present implementation of KIP, information re­
garding concerns of potential plans is supplied by a human ex­
pert with a great deal of UNIX experience. In principle, how­
ever, the information might be supplied by an analysis of data
of actual UNIX interactions.

5. An Example of Goal Conflict Concerns
Before describing the other types of goal conflict con­

cerns, and KIP's complete algorithm for dealing with these
concerns, we consider a simple example of the use of goal
conflict concerns. We describe the order of the steps of this
algorithm. Suppose the user asks the following question:

(b) How do I change my password?
KIP is passed the goal of changing the password of the

user. KIP's knowledge base contains a stored plan for the
goal of changing a password, namely, the USE-PASSWD-
COMMAND plan. In addition to the stored condition concerns
for this plan, KIP identifies one stored conflict-of-interest con­
cern for this particular plan, the password authentification
problem. If the user changes his password on one machine, it
may not be changed on another machine. As the effect of the
USE-PASSWD-COMMAND plan, the user's password is changed
on his current machine. The effect conflicts with the user's in­
terest of having the same password on all machines on which
he has an account. Let us call this interest the identical pass­
word interest. This user interest is a subgoal of the user being
able to remember his password.

Concerns are stored between the effect that is likely to
cause goal conflict and the interest with which it is likely to
cause goal conflict. In this example, the stored goal conflict
concern which KIP has identified is a three-way relation
between the USE-PASSWb-COMMAND plan, the effect that the
password is changed on this machine, and the identical pass­
word interest.

KIP next evaluates the identical password interest in this
particular planning situation. KIP uses knowledge about the
particular user to determine if an individual goal should be in­
ferred in this situation which reflects the identical password
interest. For example, if KIP knows specifically that the user
has an account only on the current machine, then KIP does not
assert an identical password goal for the user. Consideration
of this goal conflict concern stops. KIP may have information
that the user has accounts on many machines, or may make
this assumption based on default knowledge from the user
model. In either of these cases, KIP then asserts an individual
identical password goal on the part of the user.

KIP next evaluates whether the goal of the user is the in­
tended effect of the selected plan. According to KIP's input,
the user has specified that his goal is to change his password.
KIP's knowledge base stores the fact that the USE-PASSWD-
COMMAND plan is the best plan to accomplish this password-
change goal. Thus, KIP detemines that the goal of the user is
the intended effect of the plan. KIP assumes that the concerns
indexed under the USE-PASSWD-COMMAND plan are not con­
cerns about the intended goal of the plan. Therefore, KIP as­
sumes that the conflict between the password-changing on the
current machine and the identical pasword interest is a real
goal conflict, not an artificial goal conflict.

KIP next evaluates this potential goal conflict. In this
case, the concern about multiple passwords is marked as hav-

Luria 1027

ing a high degree of concern, and therefore a goal conflict is
inferred. This potential goal conflict is then passed to the goal
conflict resolution mechanism.

6. Taxonomy of Goal Conflict Concerns
In this section, we describe a number of different types

of goal conflict concerns. These different types address im­
portant issues for goal conflict detection in unique situations.
In the following section, we describe the goal conflict concern
algorithm. We wil l describe how these types of concerns are
used together in the context of that algorithm.

6.1. Default Concerns vs. Violated-Default Concerns
The previous concerns have all been default goal conflict

concerns. Default goal conflict concerns are those concerns
with which the planner is usually occupied, given a set of de­
faults used to make assumptions about the world. When these
defaults are violated, new concerns arise which I call
violated-default goal conflict concerns. For example, suppose
the user asks the following questions:

(c) How do I p r i n t out a f i l e
on the l i n e p r i n t e r ?

(d) How do I p r i n t out a very long
f i l e on the l i n e p r i n t e r ?

In example (c), KIP selects the USE-LPR-COMMAND plan.
Since no defaults have been violated, only default concerns
are accessed. KIP finds no goal conflict concerns for this plan,
and it is returned as a plan for accomplishing the user's goal.

In example (d), KIP also selects the USE-LPR-COMMAND
plan. However, in this example, KIP should also access the
violated-default concerns of the plan. Since the size of the de­
fault file is usually assumed to be short, the fact that the user
has specified that the file is a long one violates a default. Be­
cause this default is violated, KIP accesses the violated-
default concerns for the plan that reflect this violated default.
KIP accesses a conflict between the effect of printing out a
long file and the interest of being considerate to other users of
system resources.

Thus, KIP always accesses the default goal conflict con­
cerns of a particular plan. A plan's violated-default concerns
are only accessed when a default is violated. However, only
those violated-default concerns that reflect the violated default
are accessed.

Accessing only the concerns that reflect the violated de­
fault makes the implementation of violated-default concerns
difficult In example (d), for instance, the violated-default
concern is detected by accessing a category of plans that
manipulate long files. Let us call this category the long-file-
plans category. Since the default of the file being short is
violated, a USE-LPR-COMMAND l plan is created. The USE-
LPR-COMMAND l plan is dominated by both the USE-LPR-
COMMAND plan and the category of long-file-plans. The indi­
vidual plan inherits all the concerns of both parents. USE-
LPR-COMMAND 1 thus inherits conflict-of-interest concerns
from both the USE-LPR-COMMAND plan and the long-file-plans
category. KIP knows that concerns arising from the long-
file-plans category are violated-default concerns. The rela­
tionship between long-file-plans category and USE-LPR-
COMMANDl is created in order to reflect the violated default.

One advantage of this implementation is that general
concerns about non-default situations can be stored in one
general category. For example, the long-file-plans category

and its concerns are also used by KIP to detect other similar
conflicts. KIP can use this category to detect conflicts regard­
ing the use of system resources when compiling a very large
program, typesetting a long paper, or sending a very large file
over the network.

There can also be more exacting descriptions of
violated-default concerns in a more specific category. For ex­
ample, sending a 50,000 byte file to the lineprinter might not
be considered excessive and therefore would not generate a
concern. However, sending the same size file to the laser
printer, which takes much longer to print, would generate a
concern. Therefore, a specific concern category of plans
which print large files on a laser printer would be necessary to
represent this information. Thus, if the user wants to print a
file that KIP knows is 50,000 bytes long, printing the file on
the laser printer would cause a concern. Sending the file to
the lineprinter, however, would not cause a concern.

6.2. Intended Effects vs Unintended Effects Concerns
When KIP is unable to find a stored plan that solves the

goals of the user, it uses another plan that is used for some
other similar goal. For example, suppose the user asks the fol­
lowing question:

(e) How can I f ree up d isk space?
If KIP has no stored plan for this goal, it might select the USE-
RM-COMMAND plan to accomplish the goal of the user. As an
effect of that plan, disk space of the file that is removed is
marked as free. One of the problems with using this plan is
that it conflicts with the user's interest in preserving his files.
The conflicting effect of using the USE-RM-COMMAND plan on
a particular file is that the file is removed. This effect conflicts
with user's goal of preserving the individual file. Let us call
this conflict the preservation/removal conflict. In order to
detect this goal conflict, a concern should be accessed between
the removal of the file and the preservation of the file. The
preservation/removal goal conflict should be passed to the
goal conflict resolution mechanism.

However, suppose the user asks the following question:
(f) How can I remove a f i l e ?

In example (f) , KIP would also select the USE-RM-COMMAND
plan in order to satisfy the user goal. The USE-RM-COMMAND
plan is defined as a plan in service of the goal of removing a
file. In this example, however, the user actually intends to re­
move a file. Therefore, the goal of preserving this file should
not be threatened and the preservation/removal conflict should
not be detected. Therefore, in example (f) , KIP should not
access a concern about the conflict-of-interest between remov­
ing a file and preserving a file.

This type of goal conflict between an intended effect and
a general interest is termed an artificial goal conflict.
Artificial goal conflicts should not be passed to the goal
conflict resolution mechanism. This problem often occurs
when a planner does not properly evaluate the threatened in­
terest with respect to the query goal.

In order to avoid detection of artificial goal conflicts, KIP
differientiates between intended effect concerns and unintend­
ed effect concerns. Intended effect concerns refer to
conflicts-of-interest in which the selected plan is being used
for its usually intended effect. Unintended effect concerns
refer to conflicts-of-interest in which the selected plan is being
used for some other effect of the plan. KIP always accesses a
plan's intended effect concerns. A plan's unintended effect

1028 REASONING

concerns are only accessed when the user goal is not the in­
tended effect of the plan.

In example (f) , since the USE-RM-COMMAND is being
used for its intended effect, the concern about file deletion is
not even considered. In example (e), however the USE-RM-
COMMAND plan is being used for an effect other than deleting
a file. Therefore, all unintended effect concerns are con­
sidered, including the concern that using the USE-RM-
COMMAND plan wil l conflict with the user's goal of preserving
his files.

In KIP, if a particular action is used as a plan for more
than one goal, two or more different plans are created. For ex­
ample, once KIP knows that a plan for freeing up disk space is
to use the rm command, it creates a USE-RM-COMMAND-FOR-
DISK-SPACE plan. This plan has a different intended effect
than the USE-RM-COMMAND-FOR-DELETING plan. Therefore,
this plan wi l l have different intended effect concerns and
unintended effect concerns than the USE-RM-COMMAND-FOR-
DELETING plan.

Therefore, when KIP has selected a plan for the goal
which it has been intended, KIP must check all the intended
effect concerns for that particular plan. If KIP has selected a
plan in order to satisfy a goal for which the plan has not been
intended, then both the intended effect concerns and the unin­
tended effect concerns must be checked.

6.3. Other Types of Concerns
There are a number of other different types of goal

conflict concerns that cannot be fully described due to space
limitations. These include:
Expressed Goal Conflict Concerns - dynamic concerns that
are expressed by the user or created by the goal analyzer.
These concerns reflect the concern of the user that a potential
plan may cause a goal conflict.

Effect Goal Conflict Concerns - stored concerns between ef­
fects and user goals. These concerns reflect knowledge that
certain effects give rise to goal conflicts independent of plans
that cause these effects. Previously discussed concerns have
all been plan goal conflict concerns.

7. KIP's Algorithm for Dealing with Goal Conflict
Concerns

In the diagram below I have expanded on those parts of
the KIP's planning algorithm in which goal conflict concerns
play an important role.

7.1. Concern Retrieval
After KIP detects the goals of the user, it selects a poten­

tial plan and creates an instance of that plan. KIP then checks
for any violated defaults in the particular planning situation by
comparing the values of properties in the planning situation,
that have been specified by the user, against the default values
for those properties. For each violated default, KIP deter­
mines the most specific stored violated default concerns for
that violated default. Some violated defaults may generate
concerns regarding conflicts due to an effect that is not part of
the potential plan. Therefore, the conflicting effects of goal
conflict concerns are matched against the effects of the poten­
tial plan. KIP discards all concerns whose effects are not ef­
fects of the potential plan.

KIP next evaluates whether the user goal is the intended
effect of the selected plan. If the goal is not the intended ef­
fect of the plan, then both the intended and unintended goal
conflict concerns are gathered. If the user goal is the goal for
which the plan was intended, then only the intended effect
concerns are gathered.

Once intended, unintended and violated default concerns
are gathered, it sorts them based on the degree of concern.
KIP then decides on a threshold level for concern. This level
is based on the planning situation. For example, if the plan is
the normal plan for these goals, a high threshold wil l be
chosen. A lower threshold is chosen when the plan has not
been used before. The concerns which are below the thres­
hold level are discarded.
7.2. Concern Evaluation

KIP then creates dynamic concerns for each of the stored
concerns. It evaluates the concerns according to the degree of
stored concern. KIP first evaluates the conflicting effect by
determining if the conditions necessary for the effect are true
in KIP's model of the world. Secondly, KIP evaluates the
threatened interest to determine if the interest is important in
this particular problem situation. If KIP determines that the
interest is important, than the interest is inferred as a goal. If
not, then the concern is disregarded. In either case the interest
evaluation is remembered so that other concerns which are re­
lated to this interest are not reevaluated.

During this evaluation, KIP assigns a new degree of con­
cern to the dynamic concern based on the particular planning
situation. However, many of the values necessary for this
evaluation wil l not be known and must be provided from unc-

Luria 1029

ertain default knowledge. Therefore, the degree of concern of
the dynamic concern is calculated by using both the degree of
concern of the stored concern and the degree of certainty in
the default knowledge. For example, consider a case where
KIP evaluates a dynamic concern which has a high degree of
concern, and the default knowledge claims that the interest is
an unlikely goal. In this case, KIP decides that the degree of
concern of the dynamic concern is moderate.

7.3. Concern Treatment in the Planning Process
Once KIP has evaluated a concern it can proceed in one

of three ways, depending on the degree of that particular con­
cern. If the degree of concern is low, KIP can choose to disre­
gard the concern. Disregard means that the concern is no
longer considered at all. KIP can try to revise other parts of
the plan, and suggest the plan to the user with no reservations.

If the degree of concern is high, KIP can choose to
elevate the concern to a source of plan failure. In this case,
KIP determines that it is very likely that the plan wil l fail.
KIP tries to fix this plan in order to change the value of this
condition, or tries to find another plan.

The most complex case is when the degree of concern is
moderate. In this case, KIP can choose to disregard the con­
cern, or elevate it to a source of plan failure. KIP can also
choose to overlook the concern. Once KIP has developed a
complete plan for this problem, it is once again faced with the
need to deal with the overlooked concern. If the plan wil l
work, except for the overlooked concern, KIP can again
choose to disregard the concern, or elevate it to a source of
plan failure. At this point, KIP can also choose to suggest an
answer to the user. Depending on the degree of this over­
looked concern, KIP may choose to express the concern to the
user in the answer.

7.4. Implementation and Representation
KIP is implemented in Zetalisp on a Symbolics 3670.

Concepts are represented in the KODIAK knowledge represen­
tation language (Wilensky 84b). In particular, knowledge
about UNIX commands has been organized in complex hierar­
chies using multiple inheritance. Therefore, when searching
for stored default concerns of a particular plan that uses a par­
ticular UNIX command, KIP must search through a hierarchy
of these commands. This is also true when looking for default
violations, KIP searches up the hierarchy, and retrieves the
stored stored concerns or default violations in this hierarchy.

Stored goal conflict concerns are presently implemented
by creating a different CONCERN concept for each concern.
Also, a 3-way HAS-CONCERN relation is created between each
concern, the conflicting effect and the threatened interest or
goal which are cause for concern. Degrees of concern are im­
plemented by creating a HAS-CONCERN-LEVEL relation
between the particular concern and the degree of concern.
Degrees of concerns are presently implemented as numbers
from one to ten. Dynamic condition concerns are implement­
ed as instances of these stored concerns.

Defaults are implemented in the current version of KIP
by attaching default values of conditions to the plans them­
selves. Context dependent defaults are implemented by ex­
ploiting the concretion mechanism of UC, which tries to find
the most specific concept in the hierarchy. Therefore, since
KIP retrieves the most specific plan in the knowledge-base, it
automatically retrieves the most specific defaults.

Violated default concerns are implemented by creating a
different VIOLATED-DEFAULT-CONCERN concept for each
violated default concern. A HAS-VIOLATED-DEFAULT-
CONCERN relation is added between the concern and the
stored default which is violated. Therefore, when KIP has
found the default that has been violated, it looks for the violat­
ed default concerns that are referenced by this default.

Particular concerns have been entered into the database
of UNIX plans through a KODIAK knowledge representation
acquisition language called DEFABS. These concerns are all
based on my experience using UNIX and on discussions I
have had with other UNIX users in our research group. We
are currently investigating a way to enter this concern infor­
mation using the UCTeacher program (Martin, 1985) a natural
language knowledge acquisition system. Eventually, KIP may
incorporate a learning component that would allow KIP to
detect the frequency of certain plan failures and to store these
as concerns.
8. Trace
User: How do I move a f i l « named j u n k . l i s p to a f i l e
named f i l e l ?
KIP is passed: goal o f moving f i l e junk to the f i l e
f i l e l
f i l e j u n k . l i s p belongs t o user
f i l e j u n k . l i s p i s a l i s p f i l e
f i l e f i l e l belongs t o user
Select ing plan USE-MV-COMMAND
Creat ing USE-MV-COMMAND1
Checking against de fau l ts
j u n k . l i s p i s a l i s p f i l e v i o la tes de fau l t f i l e as
t e x t f i l e
v i o l a t e d de fau l t concerns:
l i s p f i l e i s i n proper format fo r current l i s p
no v i o l a t e d de fau l t concerns match condi t ions of
USE-MV-COMMAND1
Determining i f USE-MV-COMMAND1 is used fo r i t s
i n t e n t i o n
goal o f moving f i l e junk to the f i l e f i l e l
is i n t e n t i o n of USE-MV-COMMAND1
Skipping unintended concerns
Gathering intended concerns
f i l e l w i l l be deleted (5)
Sort concerns
A l l above thresho ld
Create dynamics concerns
concernl f i l e l w i l l be deleted
eva luat ing concernl
de fau l t knowledge - f i l e l probably does not ex i s t
concernl - value 3
overlook concernl
p lan works except f o r concernl
pass concernl to expression mechanism
UC: To move the f i l e junk to the f i l e f i l e l ,
type mv j u n k . l i s p f i l e l .
However, i f f i l e l e x i s t s i t w i l l b e de le ted .

9. Relationship to Previous Research
Early planners such as STRIPS (Fikes71) did not address

Goal Conflict Detection as a separate problem. Conflicts were
detected by the resolution theorem prover. The theorem
prover compares a small set of add or delete formulas, and a
small set of formulas that described the present state and the
desired state of the world. If an action deleted the precondi­
tion of another action in the plan sequence, backtracking al­
lowed the planner to determine another ordering of the plan
steps. ABSTRIPS (Sacerdon'74), modified STRIPS to avoid these
interacting subgoal problems by solving goals in a hierarchical
fashion. Conflicts in ABSTRIPS were also noticed by the
theorem prover. However, since the most important parts of
the plan were solved first, they occurred less often and fewer
paths were explored.

Sacerdoti's NOAH (Sacerdoti77) program separated the
detection of conflicts from the rest of the planning process us­
ing his Resolve-Conflicts critic. This critic detects one partic-

1030 REASONING

ular kind of conflict, in which one action deletes the precondi­
tion of another action. We refer to this type of conflict as a
deleted precondition plan conflict. The critic resolves the
conflict by committing to an ordering of steps in which the ac­
tion which requires the precondition is executed first. The

ordering of steps is usually possible since NOAH uses a least
commitment strategy for plan step ordering. By separating the
detection of goal conflicts from the rest of the planning pro­
cess, NOAH needs to search fewer plan paths than earlier
planners.

In order to detect conflicts NOAH computes a TOME, a
table of multiple effects, each time a new action is added to
the plan. This table includes all preconditions which are as­
serted or denied by more than one step in the current plan.
Conflicts are recognized when a precondition for one step is
denied in another step. In order to construct this table, NOAH
must enter all the effects and preconditions for each of the
steps in the plan every time a new step is added to the plan.

NOAH'S separation of Goal Conflict Detection Phase
from the rest of the planning process was an important addi­
tion to planning research. However, NOAH'S approach is
problematic in a number of ways. First, it only detects
conflicts that occur as a result of deleted preconditions. Other
conflicts, such as conflicts between effects of a plan and other
planner goals, cannot be detected using this method. Most of
the examples in this paper are part of this category of conflict.
If many planner goals were included in a TOME, as would be
necessary in real world planning situations, this method would
be computationally inefficient. Therefore, the same problems
that were discussed earlier in regard to exhaustive search also
apply to this method. A TOME is (1) computationally
inefficient, (2) not cognitively valid, (3) unable to deal with
default knowledge, and (4) assumes that all user goals are
known, i.e. would have to evaluate every planner interest in a
particular planning situation.

By using concerns, KIP is: (1) computationally efficient -
each plan has a relatively small number of concerns regarding
potential plan failures, (2) cognitively valid - concerns
correspond to the commonsense notion that people can deter­
mine which aspects of a selected plan might cause plan failure
in the current planning situation without examining every pos­
sible problem that might occur, (3) able to deal with default
knowledge and consider new problems when certain defaults
are violated, and (4) able to consider potential conflicts with
long term planner interests and instantiate goals which reflect
these interests when they are threatened.

10. Summary
A major problem for a knowledge based planner is the

Goal Conflict Detection problem. People only consider a
small number of potential goal conflicts. Previous planning
programs, however, have accessed all effects of a plan and all
potential goals of the user. Goal conflict concerns were intro-
duced in order to address this problem. KIP only needs to ac­
cess a small number of goal conflict concerns in order to
determine if a likely goal conflict exists. Violated Default
Concerns allow the planner to use default knowledge effec­
tively in cases where the planning situation has not been
specified completely. Unintended Effect Concerns allow KIP
to plan effectively when plans are used in novel situations.

11. References
Ernst, G. and Newell, A. 1969. GPS: A Case Study in Gen-

erality and Problem Solving. New York: Academic
Press.

Fikes, R. E., and Nilsson, N. J. STRIPS: A new approach to
the application of theorem proving to problem solving.
Artificial Intelligence, Vol. 2, No. 3-4, pp. 189-208.
1971.

Luria, M. "Commonsense Planning in a Consultant System"
Proceedings of 9th Conference of the IEEE on Systems,
Man, and Cybernetics, Tuscon, AZ. November, 1985.

Luria, M. "Concerns: How to Detect Plan Failures." Proceed­
ings of the Third Annual Conference on Theoretical Is­
sues in Conceptual Information Processing. Philadel­
phia, PA. August, 1986.

Luria, M. "Concerns: A Means of Identifying Potential Plan
Failures." Proceedings of the Third IEEE Conference on
Artificial Intelligence Applications. Orlando, Florida.
February, 1987.

Martin, J., 1985. Knowledge Acquisition Through Natural
Language Dialogue, Proceedings of the 2nd Conference
on Artificial Intelligence Applications, Miami, Florida,
1985.

Mayfield, J., 1986. When to Keep Thinking, Proceedings of
the Third Annual Conference on Theoretical Issues in
Conceptual Information Processing. Philadelphia, PA.
1986.

Newell, A., and Simon, H. A. Human Problem Solving.
Prentice-Hall, Englewood Cliffs, N. J. 1972.

Sacerdoti, E., Planning in a Hierarchy of Abstraction Spaces,
Artificial Intelligence Vol. 5, pp. 115-135,1974.

Sacerdoti E. A Structure for Plans and Behavior Elsevier
North-Holland, New York, N.Y. 1977.

Wilensky, R. Planning and Understanding; A Computational
Approach to Human Reasoning. Addison-Wesley, Read­
ing, Mass., 1983.

Wilensky, R., "KODIAK: A Knowledge Representation
Language". Proceedings of the 6th National Conference
of the Cognitive Science Society, Boulder, CO, June
1984.

Wilensky, R., Arens, Y., and Chin, D. Talking to Unix in En­
glish: An Overview of UC. Communications of the As­
sociation for Computing Machinery, June, 1984.

Wilensky, R., et. al., UC - A Progress Report. University of
California, Berkeley, Electronic Research Laboratory
Memorandum No. UCB/CSD 87/303. 1986.

Sponsored by the Defense Advanced Research Projects Agency (DoD),
Arpa Order No. 4871, monitored by Space and Naval Warfare Systems
Command under Contract N00039-84-C-0089.

Luria 1031

