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Abs t rac t 

Recently, Hummel and Landy proposed a variation on the 
Dempster/Shafer theory of evidence that tracks only the first and 
second order statistics of the opinions of sets of experts. This 
extension permits the tracking of statistics of probabilistic opin­
ions, however, as opposed to tracking merely Boolean opinions 
(or possibilities within the "frame of discernment"). Both the 
Dempster/Shafer formulation and the Hummel/Landy formulation 
assume that bodies of experts that are combined to form new 
statistics have independent information. We give a model for 
parameterizing degree of dependence between bodies of informa­
t ion, and extend the Hummel/Landy formulation for combining 
evidence to account for sets of experts having dependent informa­
tion sources. 

1 . B a c k g r o u n d 

Many systems using artificial intelligence concepts must com­
bine information from disparate sources of knowledge to make a 
decision. Often the information that is given is incomplete: evi­
dence is accumulated suggesting one alternative or another, but in 
a quantitatively inconclusive way. The use of purely Bayesian 
techniques sometimes encounters difficulties, due to the lack of 
sufficient information. There are thus many different ways that 
have been proposed for combining evidence. One method, called 
here the Dempster/Shafer theory of evidence [1], has received 
considerable interest and some use in experts systems. 

Central to the Dempster/Shafer theory, and several other 
formulations of combination of evidence, is a way of handling 
uncertainty in propositions. Rather than assigning probabilities to 
possible labels ( from a "frame of discernment"), these theories 
attempt to assign degrees of confidence to the various proposi­
tions. In Shafer's explanation of the Dempster/Shafer theory of 
evidence, this is done through the use of "belief functions" to 
assign weights to subsets of labels in their theory. In general, 
there is a set of possible labels, and a set of numbers representing 
a current state of belief. When additional information is 
obtained, the numbers are changed to a new state. Each state is 
associated wi th the body of evidence obtained to that point, and 
the updating method represents the combination of the current 
body of evidence with the incremental evidence. 

For example, for medical diagnosis applications, a patient 
can have one of a set of possible diseases. Evidence is obtained 
in the form of symptoms and test results. Given a current set of 
symptoms and results, a doctor might decide to run an additional 
test, and update the assessment of the patient's condition based on 
the results, in conjunction with the information already present. 

In the theory of "belief functions," a state is represented by 
a probability distribution over the power set of the set of possible 
labels. Thus a number is assigned to every subset of labels. New 
evidence is represented, in the Dempster/Shafer theory, by a new 
state, also assigning a number to every subset. The Dempster 

rule of combination [2] is used to combine these two states to 
form a new state. 

Other possibilities include "Bayesian" approaches, for which 
a state is generally represented as a probability distribution over 
the set of possible labels. Each value is regarded as a "subjec­
tive" or " inferent ia l" probability, and the use of Bayes' formula 
in the presence of various independence or simplifying assump­
tions is defended by a body of research and results, especially 
those developed by Good, Savage, De Finit t i , and Ramsey et al. 
A survey treatment is given in [3]. 

In a recent work by Hummel and Landy [4 ,5 ] , it is shown 
that the Dempster/Shafer formulation is equivalent to the tracking 
of statistics of sets of experts expressing Boolean opinions over 
the set of labels. The sets of experts update by combining, using 
Bayesian updating, in pairs over the product space of experts. 
Further, an alternate formulation is suggested. In this formula­
t ion, experts have probabilistic opinions, rather than Boolean 
opinions, and the state of the system is represented by the mean 
and covariance (of logarithmic values) of those opinions. 

A drawback of both developments is that conditional 
independence assumptions regarding the sources of information 
must be imposed. These assumptions are often unrealistic. 
Roughly speaking, the assumptions state that the probability of a 
particular piece of information in the context of a single label, 
given some existing information, is the same as the probability 
without the existing information. Independence is defined in 
terms of probabilities taken over the set of all labeling situations. 
Consider, for example, the case of a medical diagnosis example. 
Assume that s1 represents the set of symptoms and information 
obtained to date, and J2 is the new information. What is required 
is that the probability of the existence of the symptoms s1 

amongst the set of all patients having a given disease must be 
the same as the probability of the existence of the same set of 
symptoms s1 among the set of patients having the symptoms s2 

and the disease . Further, this equivalence must hold for all 
diseases . In essence, this says that information about the symp­
toms s2 yield no information as to the probability of the 
symptoms s1, in the presence of any given disease. Since symp­
toms generally have a common basis, this assumption rarely 
holds. 

In fact, the independence assumption is not very realistic for 
most applications. It is required to justify the updating formulas, 
and is so predominant in most formulations for the combination 
of evidence that the limitations are generally overlooked. 

In this paper, we introduce a model for measuring a "degree 
of independence" between sets of information. The degree of 
independence is measured by a single variable which 
can in turn depend upon the information values (the symptoms), 

We then extend the Hummel/Landy formula­
tion for the combination of information to the case where the 
information it a-independent. The case wi l l correspond to 
the same independence assumption as before. The case a 
corresponds to completely dependent information, in the sense 
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that s1 implies the information J 2 . 

Moreover, we develop f o r m u l t i to that the statistics are 
taken over the union of the sets of experts, rather than over the 
product space. We f i nd the use of the product sets of experts 
"less natural" than simply combining all experts into one collec­
t ion. The diff iculty, of course, is that when combining the experts 
into one collection, each expert must be required to update his 
opinion based on some other opinion, and it is not a priori speci­
fied which other opinion should be used. We suggest a solution. 

2. Formulation 
Let be a set of experts. Each expert « is privy to a 

body of information (symptoms) about the current situation. We 
denote by t the information shared by the associated experts. The 
goal is to label the current situation ( i .e. , the current patient) with 
a label X from the set of possible labels A. It is assumed that A is 
mutually exclusive and exhaustive. Each expert evaluates 
the information t and assigns a probability distribution to the set 
of possible labels A, represented by the set of values 
The average opinion, computed by taking a mean over all ' ~, is 
denoted by Likewise, the covariance values are given by 
the formula 

Logarithmic opinions are d e n o t e d a n d are given 
by the formula 

'•<•» 
where Prob(X) is a prior probability of label X over all situations 
(e.g., the probability of the given disease among all patients). 
The value c, is an indeterminate constant, meaning that the ys 

values are defined only to within an additive constant independent 
of X and of e. Means and covariances of the y't are also defined, 
yielding means and covariances of the logarithms, and are 
denoted by u ( f ) and C ( / ) respectively. The use of the logarithmic 
opinions simplifies the formulas, and is suggested in [6]. 

Now, suppose that we have two collections of experts C\ and 
£2 And thus two bodies of information s\ and s2. We wish to 
combine the information and to obtain a new 
mean u.# 1^2 10s2 * new covariance Cn9n. Similarly, we should 
combine the means and covariances of logarithms. 

In Hummel and Landy [4] , the formula is given for the 
log's, wi th complete independence. The formulas are: 

These formulas are derived by assuming that updating takes place 
using the set of all committees of two consisting of one expert 
f rom and one expert f rom ( i .e. , the product space), and 
that wi th in each committee, Bayesian updating is used with a con­
ditional independence assumption. 

3 . Un ions of exper ts a n d a - independence 

Conditional independence, used in the formulas above, 
assert that Prob where the pro­
babilities are taken over the set of all labeling situations (e.g., 
patients), and not over the experts. 

We now define the information and to be 
independent i f : 

for al l It is important to realize that a-independence is not 
symmetric, that in general. Note that for 
a - 1 , the assumption reverts to conditional independence. For 

a = 0 , we have that the information s1 implies (with probability 
one) the information i 2 . corresponds to negative 
evidence. The existence of such an a constitutes an assumption, 
and is not a completely general measure of independence or 
dependence. Specifically, we are assuming that is 
independent of This is a strong assumption, but is not as 
strong as the assumption of independence. 

One possibility for obtaining the would be to poll 
experts for their estimates. Alternatively, a might be obtained 
from the formula: 

Of course, these kind of joint statistics are often hard to obtain. 

In the presence of a(s1,,s2)-indepcndence, it is not hard to 
show that log-probabilities now update according to the formula 

The new updating formulas become 

Obviously, the formulas have changed very l i t t le: the updating 
term giving the new information is simply weighted by the degree 
of independence of the new information. While this idea is fun­
damentally simple, we have justified the use of this weighted 
updating through a precise definition of a-independence. 

We now introduce a second new concept to the formulation, 
that of union-based combination. In the formulas from the previ­
ous section, the information in is based on the product 
space of experts We find it more desirable to base for­
mulas on the union space of experts The resulting set of 
information, contains updated opinions for each expert 

However, we must specify the manner in which each 
expert performs the updating, since there are no longer obvious 
pairs of opinions for each resultant expert. The method advo­
cated here is to have the experts in update in a Bayesian 
fashion based on the mean opinion from the set Likewise, the 
experts in update using the information obtained from the 
mean opinion of experts in This changes the component for­
mulas, so that, 

Likewise, for . , we have the same formula, but with all 
occurrences of and exchanged. In particular, we make use 
of the value a(s 2 , s i ) -

The combination formulas for the means and covariances 
over the union of the sets of experts can be calculated, and now 
depends on the number of experts in the component sets, 
and For the log-probabilities, with a-independence, the for­
mulas are: 
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where we have suppressed the A. argument in the first equation, 
and p = 

We see that a state now consists of the mean log-opinion 
all labels the covariance of the opinions 

and a weight of evidence, corresponding to the 
number of experts participating in those opinions. In the case of 
complete independence, 1, the above for­
mulas become simple addition of the means and covariances, as in 
the original Hummel/Landy formulation. However, with the 
covariance formula, there are additional mixed terms which meas­
ure the difference in the mean opinions of the experts in €\ and 
the experts in 

Many other formulations are possible. For example, we can 
compute means and covariances of the probabilities instead of the 
log-probabilities. We omit the formulas here, for lack of space. 
We could also use only incremental evidence, so that experts in 
update using the means of the opinions of , while the experts in 

use their actual opinions. This leads to slightly different for­
mulas. Finally, as we have seen, the formulations can be posed 
for either the product spaces of experts, or the union set of 
experts: many variations are possible. 

4. Discussion 
The entire approach of tracking statistics of sets of experts 

has a number of features to commend it. For example, a belief 
function as used in the Dempster/Shafer theory of evidence 
requires the specification of 2N values, where there are N labels. 
If only first and second order statistics are tracked, as suggested 
here, then the number of values needed to specify a state is only 

For large N, this can mean a substantial savings 
in computational effort needed to update a state. 

Further, we at least in principle have replaced the notion of 
subjective probabilities with objective statistics. These statistics, 
given sufficient resources, could be measured by, for example, 
"po l l i ng" methods. Our formulas are thus f irmly based on objec­
tive probability theory, and thus foundationaly secure. Of 
course, the assumptions are still debatable in the context of any 
particular application, and the value of in the a-
independence of two sets of evidence is most likely to be a subjec­
tive quantity. We expect that, in practice, information wi l l be 
deemed to be, for example, 0.4-independent, based on subjective 
criteria. In essence, the subjective component of combination of 
information has been pushed to a meta-level, where degrees of 
independence of information sources are estimated, instead of 
estimating degrees of confidence of labels in the presence of 
specific information. 

The use of a collection of opinions permits a distinction 
between uncertainty and ignorance. A state of belief consists not 
of a single opinion, but of a collection of opinions. The state can 
be represented by a mean opinion, and a measure of the spread 
(or distribution) of those opinions. The spread measures a degree 
of uncertainty, since if all opinions are identical, there is a consid­
erable degree of certainty in the single expressed opinion. Updat­
ing is done by combining the mean opinions and combining the 
uncertainties. Basically, the new mean opinion becomes a 
compromise between the two mean opinions of the composing 
evidence. Uncertainties are likewise mixed, and generally accu­
mulate. Further, in the presence of dependencies in the informa­
tion sources, uncertainty increases if the opinions from the two 
sources of information are divergent. 

Finally, we note that the theory makes explicit the depen­
dence on the order in which information is combined. That is, if 
information s1,, J 2 , • • • , * , , are to be combined, the various a 
values and the outcome of the entire system wi l l depend upon the 
order in which the information is mixed. The system is neither 
commutative nor associative, in the presence of the a-
independence formulation. This may be realistic, in the sense that 

decisions are often based on incrementally gaining evidence, and 
that the interpretation and outcome depends on the order in which 
information is obtained. A separate expert system could be used 
to decide on the order in which to combine information. 

Acknowledgements 

This research was supported by Office of Naval Research 
Grant N00014-85-K-0077, Work Unit NR 4007006. We thank 
Michael Landy for useful discussions. Manevitz thanks the 
Courant Institute for their kind hospitality during his visit to 
N Y U . 

References 
[1] Shafer, G. , A mathematical theory of evidence, Princeton 

University Press, Princeton, N.J. (1976). 

[2] Dempster, A. P., "Upper and lower probabilities induced 
by a multivalued mapping/ ' Annals of Mathematical Statis­
tics 38, pp. 325-339 (1967). 

[3] Kyburg, Henry E., The Logical Foundations of Statistical 
Inference, Reidel, Dordrecht (1974). 

[4] Hummel, Robert A. and Michael S. Landy, "A viewpoint 
on the theory of evidence," N Y U Robotics Research 
Report #57 (November, 1985). Submitted to IEEE Tran­
sactions on Pattern Analysis and Machine Intelligence. 

[5] Hummel, Robert and M. Landy, "Evidence as opinions of 
experts," Proceedings of the "Uncertainty in AI" Workshop, 
pp. 135-143 (August 8-10, 1986). 

[6] Charniak, Eugene, "The Bayesian basis of common sense 
medical diagnosis," Proceedings of the AAAI, pp. 70-73 
(1983). 

Hummel and Manevitz 1017 


