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Abstract 

An abstraction mapping over clausal form theories 
in first-order predicate calculus is presented that 
involves the renaming of predicate symbols. This 
renaming is not 1-1, in the sense that several 
predicate symbols Ri,.. . , Rn from the original 
theory are all replaced by a single symbol R in the 
abstract theory. In order to preserve consistency, 
however, the clauses that distinguish the Rj's must 
be discarded in the abstract theory. This leads to a 
simple semantics; the union of the extensions of 
each of the Ri's in any model of the original theory 
forms the extension of R in a model of the abstract 
theory. 

1 Introduct ion 

An important method of constraining search in 
combinatorially intractable problems is to map the 
representation of the problem into an abstract 
representation, solve the problem in the abstract 
search space and use the abstract solution to guide 
the search in the original problem space. Work of 
this nature has been pursued by many researchers, 
most notably [Amarel 1972, Hobbs 1985, Korf 1985, 
Plaisted 1981, Sacerdoti 1974]. Of importance in 
this work is that certain formal properties hold 
between the original and the abstract versions of 
the problem in order to justify the use of 
abstraction. In this paper we wil l define a syntactic 
abstraction mapping between two first-order 
theories that involves the renaming of predicate 
symbols, a subclass of those mappings first defined 
in [Plaisted 1981]. The mapping is demonstrated to 
have the following properties. First, the abstract 
thoery wi l l be consistent if the original theory is; 
second, for each abstract theorem T" there exists a 
theorem T in the original theory for which T is an 
abstraction; third, the model-theoretic semantics of 
the abstract theory is intuitively appealing. 

In section 2 we present the formal definition of a 
predicate mapping, and show in section 3 both its 

This work was supported by the Air Force Systems 
Command, Rome Air Development Center, Griffiss Air 
Force Base, New York 13441-5700, and the Air Force Office 
of Scientific Research, Boiling AFB, DC 20332 under 
Contract Number F30602-86-C-0008 which supports the 
Northeast Artificial Intelligence Consortium (NAIC). 

The author would like to thank the Xerox Corporation 
University Grants Program for providing equipment used in 
the preparation of this paper. 

relation to Plaisted's abstraction mappings, and its 
inherent problem of generating inconsistencies at the 
abstract level. Section 4 provides a set of syntactic 
restrictions that satisfies a particular semantics, and 
Section 5 demonstrates that these restrictions 
overcome the inconsistency problem by showing 
constructively that a model exists for the abstract 
theory given a model of the original theory. Section 6 
wi l l consist of a small example, and section 7 finishes 
with concluding remarks. 

2 Predicate Mappings 

We wi l l assume standard first-order logic terminology 
as in [Enderton 1972]. In addition, all wffs wi l l be 
taken to be in clause form [Robinson 1965]. Recall that 
a clause is a set of literals, and that clause C subsumes 
clause D if there exists a substitution <j> such that Co is 
a subset of D. In addition, C and D are variants if C 
and D are instances of one another; that is, they are 
identical except for a renaming of variables. 

Predicate mappings are functions that map predicate 
symbols from one first order language to those of 
another. Given two sets of predicates P i , P2, 

f : P 1 - P 2 , 
where the Pi are the only symbols that possibly 
distinguish the first order languages Li and L»2. What 
is noteworthy about f is that it is not necessarily 1-1, 
and therefore more than one relation symbol from I4 
can map to the same relation symbol from L2. We can 
then define f over literals such that literals in Li are 
mapped to literals in L2 by replacing the predicate 
symbols under f. Likewise, f can be extended to clauses 
and sets of clauses in precisely this way. 

3 Plaisted's Abstraction Mappings 

Predicate mappings are a subclass of abstraction 
mappings that are defined in [Plaisted 1981]: 

DEFINITION. An abstraction is an association of a set 
f(C) of clauses with each clause C such that f has the 
following properties: 
(1) If clause C3 is a resolvent of CI and C2 and 

D3 e fl(C3), then there exist Dl 6 fl(Cl) and 
D2 * ftC2) such that some resolvent of Dl and D2 
subsumes D3. 

(2) RNIL) = {NIL}. (NIL is the empty clause.) 
(3) If CI subsumes C2, then for every abstraction D2 

of C2 there is an abstraction Dl of CI such that Dl 
subsumes D2. 

If f is a mapping with these properties, then we call fan 
abstraction mapping of clauses. 

Ttnenbtrg 1011 



In addition, Plaisted proves the following theorem: 

THEOREM. Suppose o is a mapping from literals to 
literals. Let us extend to a mapping from clauses to 
clauses by Suppose o satisfies the 
following two properties: 

~ . That is, preserves 
complements. 

(2) If C and D are clauses and D is an instance of C, 
then is an intance of , That is, 
preserves instances. 

Then <j> is an abstraction mapping. 

By this theorem, predicate mappings are abstraction 
mappings since they preserve both complement and 
instance. 

Abstraction mappings have the property that from 
every clause C derivable from a set of clauses S, there 
exists a clause C derivable from AS) that subsumes an 
abstraction of C (proven in [Plaisted 1981]). 
Informally, we might say that every solution in the 
original problem space has a corresponding solution in 
the abstract space. This wi l l be termed the upward-
solution property. 

A problem with abstraction mappings, however, (and 
hence with predicate mappings) is that they may result 
in abstract theories which are inconsistent even though 
the original theory is consistent, which Plaisted termed 
the "false proof' problem. As an example, suppose we 
have a clause set for a simple domain in which we have 
objects that are bottles ana glasses, with clauses 
stating that they are disjoint (note that all clauses wi l l 
be in implication form for ease of interpretation): 

1) 
2) 

and the clause stating that object A is a bottle: 
3) Bottle(A). 

If our predicate mapping f maps both Bottle and Glass 
to a new predicate Container in the abstract theory, 
then from the abstract theory we can derive a 
contradiction: 

- Contained A) 

The approach taken in the remainder of the paper is to 
restrict the original set of clauses over which the 
predicate mapping can be applied so as to preserve 
consistency. 

4 Restricted Predicate Mappings 

The intuition behind the semantics of restricted 
predicate mappings is that we would like the 
interpretation of a predicate in the abstract theory to 
be the union of the interpretations of each of the 
predicates in the original theory that map to it. So the 
objects that are Containers are all of those objects that 
are either Bottles or Glasses, or any of the other things 
that map to Container. 

We can obtain this interpretation syntactically by 
removing all of those axioms from the original theory 
that serve to distinguish the relations that are 
conflated at the abstract level. Relations Ri , . . . , Rn in 
axiomatization 01, can be made indistinguishable in 
axiomatization 82 by systematically replacing each Ri 

with a new symbol R' under some predicate mapping f 
as before, but including in 62 only those clauses flC) 
such that C is in Bi and every clause mapping to C is 
derivable from So, for instance, if we wish to 
conflate the relations Glass and Bottle by mapping 
them to the same symbol, say Container, then given 
the axioms 

we would have in the new clause set only 

since Corkability is true only of Bottles, and therefore 
distinguishes Bottles from Glasses in the original 
theory, while Breakability is true of both Bottles and 
Glasses. In other words, the clause 

would not be placed in the new clause set since one of 
the clauses that maps to it, namely 

is not derivable from the original clause set. 

This constraint, however, is stronger than required. 
For instance, it keeps one from ever asserting in the 
abstract theory that an object is a container in theories 
in which bottles and glasses are disjoint, as in (1) - (3) 
above, since it wi l l never be the case that an object in 
the original theory is both a bottle and a glass. Given 
the desired semantics, it is permissible to allow the 
inclusion of mapped positive clauses from the original 
theory, those clauses containing no negated literals, 
into the abstract theory. That is, if obiect A has 
property P, then certainly object A wil l have the 
abstract property f(P), and likewise for predicates of 
any arity. Thus, one can map the clause Bottle(A) to 
ContainerA), since all bottles are containers, even 
though Glass(A) may not hold. In addition, this allows 
the mapping of clauses such as Bottle(A) v Glass(A) to 
Container(A) v Container(A). 

5 Formal Definitions and Proof of Consistency 

We use [C]f to denote the set of symbols or clauses that 
map into C under predicate mapping f. That is, 

Each such D wil l be called a specialization of C. If 9 is 
a clause set and D is a clause then we wil l use D to 
mean that the null clause can be derived from the 
clause set D by the inference rule full resolution 
[Robinson 1965]. Let 9 be an axiomatization in clause 
form of a theory over language L1 and let f be a 
predicate mapping from L1 to L2. We define a 
restricted predicate mapping, to be a subset 
where 
(4) there exists some 

and either C is a positive clause or 

The main theorem states that given a clause form 
axiomatization 6 and a restricted predicate mapping g, 
g(6) is consistent if is. In other words, consistency is 
preserved by the mapping. Given that a first-order 
clause set 9 is consistent if and only if it is satisfiable, 
i.e., there exists a model that assigns truth to all of the 
clauses D such that this theorem wi l l be proven 
by constructing a model of g(9) from a model of 

Standard formal semantic terminology wi l l be assumed 
[Enderton 1972]. In particular, an interpretation is a 
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structure < D , G > , where D is a set of objects, the 
domain, and G is an interpretation function that 
assigns to each constant symbol an object from D, to 
each n-function symbol an n-function mapping objects 
in D to an object in D, and to each n-predicate symbol 
an n-relation over objects in D. Furtner, we say that y 
is a value assignment if it assigns to every variable 
symbol an object in D. If o is a symbol from the 
language over which G is defined, we say that G(o) is 
the interpretation of o under M, which in the case of an 
n-predicate wil l be a set of n-tuples. In addition, 
clauses are assigned truth values according to semantic 
rules pertaining to the logical symbols, which in the 
case ofclause form is universal quantification, 
negation, and disjunction. If o is a clause and y is a 
value assignment, then M(o) returns either True or 
False under y, denoted by My(o). IfMy(a) =Truefor 
every value assignment y, then we say that o is True in 
M, or M(o)=True, otherwise o is False in M. An 
interpretation M = is a model of a clause set 
if D is True in M for every clause D such that 

Theorem: 
Let 8 be an axiomatization in clause form of a theory 
over language L1, let f be a predicate mapping from L1 

to L2, and let g be the restricted predicate mapping 
defined relative to fas in (4) above. For any model 
M= is a model of 
where for every predicate symbol o of L2, 

(5) 

and for every non-predicate symbol o, 
Proof: 
Let us assume that M' is not a model of g(0). There 
must then be some clause that is False in M' 
There are two cases to consider - first where C is a 

Positive clause, and second where C contains negated 
erals. 

Case 1: Assume C is a positive clause. 
For membership of C in it must be that there 
exists some clause E € [C]f such that by the 
definition of g. Since M is a model of 8, E is True in M. 
Then, for every value assignement y, My(E)=True. 
Let us take truth in M andM' relative to a particular 
value assignment v. E is of the form 

, where ai represents the 
predicate Pi's list of arguments. My(E)=True means 
that My(Pi(ai)) = True for some literal of E. Since ai 
represents the terms (an,..., ajj) of Pi, then 

Additionally it follows 
that jj G'(flPi)) under y, by the 
definitions of the interpretation function G given in 
(5) above, and the predicate mapping f. That is, for 

True, but this literal is 
in C, and so M'y(C)=true. Therefore, True 
for every value assignment y since y was chosen 
arbitrarily, making M'(C)=True, contradicting our 
assumption. This dispatches the first case. 

Case 2: Assume C contains negated literals. 
For membership of C in g(8), for every clause 
9 h E and some by the definition of g. Since M is 
a model of True for every such E, and 
therefore My(E)=True for every value assignment y. 
Since C is False in M\ there must exist a value 
assignment y such that M'y(C) = False. Let us take 
truth in M and M relative to this value assignment y. 

C is of the form 
..., -» Sk(bk)K where ai and bi are the arguments of 
each of the literals. That is, some of the literals in C 
are negated, and some may be positive. For every 
literal L i C, MY) = False. This means that for 
every E i [C]f, for every positive literal W z E, 
My( W) = False, since were it not, then 
M y(g(W))=True for some literal W and hence 
M'y(C)=True by the definition of G', contradicting our 
assumption that Therefore, under this 
value assignment one or more of the negated literals 
in each E e [C]f must be True. 
Since each -Si(bi) is False in NT under y, then each 
Si(bi) is True. That is, taking bi to represent the 
ground terms (bn,..., by) of each 

(Si) for each of the negated 
literals under y. But by the definition of G', for each of 
the Si's there exists some [Si]f where 

under this same value 
assignment. That is, My False for some 
specialization Qi of each predicate Si of each negated 
literal in C. Let E be the clause consisting of the 
negation of each such Qi(bi) and some specialization of 
each of the positive literals in C. Note tnat 
My(E) = False, since each of the literals in E are False. 
This then contradicts the earlier conclusion that every 
E i [C]f be assigned True by M for every value 
assignment y. This dispatches case 2, and hence 
establishes tne theorem, QED 

Restricted predicate mappings are no longer 
abstraction mappings by Plaisted's definition, since the 
upward-solution property is notpreserved. However, 
abandoning the completeness afforded by the upward-
solution property is likely what is required to solve 
frequently encountered problems at a lower cost than if 
they were solved directly in the original theory. These 
restricted mappings do have what can be termed the 
downward-solution property, since a trivial corollary of 
the theorem is that for every clause derivable from tne 
abstract theory, there wi l l be a specialization of it 
derivable from the original theory. Note that there 
may be no solution to tne problem in the abstract 
theory since its solution requires some of the details 
that are ignored at that level. However, every abstract 
solution is guaranteed to have a specialized solution to 
the original problem. 

An important objection that one might have is that the 
syntactic mapping function g given in (4) is 
undecidable, since it is based upon determining 8 - D 
for every clause D mapping to each candidate clause in 
the abstract clause set. One should note, however, that 
the search for derivability can always be arbitrarily 
bounded, and if no proof is obtained within this bound 
then it can be assumed that this clause is not derivable. 
In this way, consistency is stil l preserved between the 
original and the abstract theory, the abstract theory 
being simply weaker than it theoretically could be, i.e., 
having fewer theorems. The appropriate amount of 
resource that one should expend in constructing 
abstract theories is quite an important issue but 
outside the bounds of this paper. These kinds of 
performance choices, however, are discussed in 
[Hartman and Tenenberg 1987], elsewhere in this 
volume. 
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choice about which clauses remain in the abstract 
theory is not done so on an arbitrary basis. 

7 Conclusion 

A useful way of viewing abstraction is as a function 
that maps one first-order theory into another. We have 
defined predicate mappings that involve the renaming 
of predicate symbols, where more than one of the 
original symbols can map into the same abstract 
symbol. These predicate mappings are a subclass of 
Plaisted's abstraction mappings, and as such suffer 
from the fact that consistency in the original theory 
may be lost in the abstract theory. To remedy this, we 
introduced syntactic restrictions to the predicate 
mapping that guarantee the preservation of 
consistency. These restrictions amount to eliminating 
the axioms in the original theory that distinguish the 
predicates which are being conflated in the abstract 
theory. This has a simple semantics; the extension of 
each of the predicates P in a model of the abstract 
theory can be constructed from the union of the 
extensions of each of the predicates that map to P in 
any model of the original theory. A proof of this was 
provided, along with an example demonstrating one 
possible use of the restricted predicate mappings. 
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