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I Abstract 
We are investigating the possibility of constructing 

meaningful and computationally efficient approximate 
reasoning methods for the first order logic. In 
particular, we study a situation when only certain 
aspects of the domain are of interest to the user. This 
is reflected by an equivalence relation defined on the 
domain of the knowledge base. The whole mechanism 
is called domain abstraction and is demonstrated to 
lead to significant computational advantages. The 
domain abstraction discussed in the paper is only a 
very special case of the more general notion of 
abstraction which is discussed shortly here and is a 
subject of the currently ongoing research. 

I I INTRODUCTION 
In this paper we are interested in providing a basis 

for meaningful reasoning wi th low complexity. Such 
reasoning wi l l be called limited to indicate that it is 
weaker than the general first order logic proof 
methods. Recently many authors have tried to 
develop different logic systems, which would have 
better complexity properties than the classical 
propositional or predicate logic [Patel-Schneider 85], 

[Lakemeyer 86], [Konolidge 85] and in a way [Fagin 
85]. Here, we take a different approach by developing 
approximate methods of reasoning within the same 
logic. 

Approximate methods are widely accepted in 
numerical computations. Unfortunately automated 
reasoning, which is computationally at least as 
expensive as numerical computing does not have a 
proper notion of approximation and has still to follow 
the ambitious "A l l or nothing" approach. The main 
problem is lack of the proper notion of error, without 
which it is difficult to provide any meaning to an 
approximation. 

In this paper we demonstrate a notion of error 
which is sufficiently general to cover both automated 
reasoning and numerical computations. The following 
example illustrates the point: 

Example 1 

Suppose we want to compute a volume of a certain 
cube A. Assume that we round up the measurements 
of A, say to the closest integer in meters. If we 
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calculate now, say, the volume of A our result wil l be 
biased wi th error, say 1 m3. 

Let us now take a look at this simple example from 
the more general point of view. Let the measurements 
of A form a knowledge base and let Volume(A,x), 
where A is our cube and x stands for volume be a 
query. (We could also have other queries asking for 
the diameter of A, total area of faces, etc.) The 
process of rounding up the measurements of A can be 
now viewed as replacement of the original knowledge 
base by a new one, less precise but presumably easier 
to deal wi th. The price of this simplification is paid 
in the loss of precision - we wil l not compute a " t rue" 
volume of the cube anymore but some other value. 
This new, approximate value wil l share certain 
properties with the real answer. Indeed, let the 
answer to our query be represented in the form of 
atomic formula Volume(A, 124 m3). Although this 
formula may not necessarly be true, the formula 

Volume(A,x) will be true (Since 
our error is equal to In other words <t> form a 
property of the real answer, which is preserved by the 
approximate answer. In fact all formulas of the form 

and 
b 125 wil l be preserved. On the other hand the 
preservation is not guranteed if 123 
For instance the formula 
124.1)) Volume( ) wil l not necessarly be preserved 
(i.e it is true for our approximate answer, but could 
be false for the real answer). ■ 

Our notion of error is motivated by this example - it 
wil l be the set of all formulas (notice that error is a 
set) which are not preserved by the approximate 
answer. In our case belongs to the error, while 
does not. 

This notion of an error wi l l be called local error 
since it is related to a particular query. We define 
also a global error resulting from the replacement of 
our knowledge base by the "rounded up" one. The 
global error wi l l be simply a set of all queries, which 
are not quranteed to be answered correctly by the 
"rounded up" knowledge base. In the Example 1 we 
could imagine the whole variety of queries, asking for 
a diameter, total area of faces, color of a cube etc 
(assuming the proper data is in the knowledge base) . 
Some of these queries wi l l be answered correctly, 
because the "round up" does not affect them. 
Therefore, while the global error wil l divide queries 
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into two categories (correctly answered, incorrectly 
answered), the local error wil l indicate "how far" each 
individual answer (for each individual query) is from 
the real answer. Needless to say the local error wi l l be 
empty for queries, which are answered correctly, that 
is which are not in the global error set. 

This paper is intended to serve as a "case study" for 
the notions introduced above, for a very special type 
of approximate reasoning method, called domain 
abstraction. Under domain abstraction only certain 
aspects of the domain wil l be of interest to the user. 
Instead of domain constants, he will deal with 
equivalence classes of them. In consequence he will 
deal wi th "rounded up" knowledge base, similar to the 
numerical one just described. 

Important observations about the fundamental role of 
abstraction in approximate reasoning were made by 
Hobbs in [Hobbs 85]. The notion of abstraction is also 
studied in [Imielinski 85]. Here we concentrate on the 
domain abstraction (to be defined in the next section) 
by discussing it's computational benefits and (global) 
errors. 

The paper is divided into two parts. In the first 
part of the paper, in section three, four and five we 
define formally the notion of abstraction and discuss 
the issues of query processing and the error of domain 
abstraction. Finally, we briefly discuss applications of 
domain abstraction in the limited reasoning. 

I I I B A S I C N O T I O N S 
By the Knowledge base, denoted by KB (or DB) we 

understand any finite collections of formulas of some 
first order language L. We also use the term database 
specially when the KB is a collection of atomic 
formulas corresponding to the relational database. 

By the query we mean any open formula of L. and 
by the answer to a query the set of all substitutions 
of domain constants for variables such that the 
resulting closed formula is a logical consequence of 
KB . 

By the domain of the knowledge base we mean the 
set of all objects occurring in the KB. 

By the equivalence relation on the set D we mean a 
binary relation on D which is reflexive, symmetric and 
transitive. Equivalence relation is selective on the 
subset D0 of D iff for any element the 
equivalence class of 

I V D O M A I N A B S T R A C T I O N 
Let D be the domain of our Knowledge base and let 

R be an equivalence relation on D. Let L be the first 
order language of the knowledge base. We can extend 
R in the natural way to models of L. Two models, m 
and m' wi l l be R-equivalent iff for any atomic formula 
Ra r . .aB which is true in m (m1) there is an atomic 
formula Rb r . . b n which is true in m' (m), such that 
ajRb, for 

The equivalence relation R can be given one of the 
following interpretations: 

1. It may correspond to the relevant features 
of the external world which are of interest 
to the user 

2. It may be used by the system to hide 
certain features of the external world from 
the user 

3. It may correspond to the error with which 
data is entered into the database. As a 
consequence we do not entirely believe what 
is stated in the database, but take it wi th 
"the grain of salt", which is reflected by 
equivalence relation R. 

Al l these interpretations have similar consequences: 
i.e the user's view of external world is even more 
incomplete that the view of the knowledge base. The 
"noise" is introduced on the interface between the user 
and knowledge base. However, there is an important 
difference between these two approaches: In the first 
approach the choice of abstracted interpretation is 
made by user, while in the second interpretation the 
choice is made by administrator of a system. This 
distinction wil l have further consequences later in the 
paper. 

Let KB be a knowledge base and let R be the 
equivalence relation on the set of models of KB. The 
equivalence relation R determines a new, weaker, 
semantic consequence relation NR on L. 

iff for any model m is true 
not only in m but also in all models which are R-
equivalent to R. 

This definition corresponds to the truth definition for 
the necessity operator in the Kripke model with R as 
its access relations. This is studied in more detail in 
the paper [Imielinski 87]. Intuitively, the external user 
whose information is filtered out by the relation R 
cannot distinguish between two models which are 
equivalent, therefore all models which are equivalent to 
models of KB are, for this user "as good" as models 
of KB . Obviously some of the formulas of KB will be 
lost if they are not "filtered out" through R. 

The above definition could be interpreted also in the 
different way, as abstraction of KB. Indeed, our user 
no longer sees the knowledge base KB but rather 
some logically weaker set of formulas corresponding to 
his, less precise now, set of possible worlds namely: 

There is m' such that m'Rm and 

Clearly any formula o is a semantic consequence of 
KB in the new sense iff it is true in each model from 
M(KB,R) . 

The equivalence relation R which is defined on the 
domain of knowledge base induces equivalence relation 
on the name constants of the knowledge base language 
L. The equivalence classes of this relation wil l be 
denoted by [a] where "a " is a name constant. 

The key question, which we are going to investigate, 
is whether R is computationally more attractive than 
standard We are also interested in estimating the 
"error" if the reasoning is performed in the abstracted 
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knowledge base instead of the original one. 

Example 2 

Let our knowledge base have a form of a very long 
disjunction, say of the form: 

Let us assume that the user's equivalence relation R 
is defined in such a way on the domain of the 
knowledge base that all elements a,...an belong to the 
same equivalence class, say [a] and all elements b 1 . . b n 

belong to the other equivalence class, say [b). In such 
case the resulting knowledge base can be viewed 
simply as the atomic formula: One can 
visualize very long disjunctions reducing its size to 
very short, if not atomic formulas, after applying this 
kind of abstraction. There are therefore obvious 
computational benefits of this technique here. ■ 

We use here two different languages: the abstracted 
language Lft and the basic language L. The abstracted 
language is the first order language with name 
constants The formulas of are 
interpreted either as second order formulas (if we 
allow quantification on equivalence classes) or as first 
order formulas of some extension of L. 

Second Order Interpretat ion of L. 

The second order interpretation of the formula o of 
La wi l l be denoted by au (where " u " stands for 
" unaware", which wil l be clear later on). The 
satisfiability relation for this interpretation wil l be 
defined on the basis of the quotient models which is 
equal to the set of all equivalence classes (with respect 
to R) of models of KB. Notice that quotient models 
are simply built as relations defined on equivalence 
classes [a] of domain constants aeD. We will say the 
<TU is true in KB iff it is true in each quotient model 
of KB. 

This interpretation corresponds to the situation when 
the external user is unaware of the fact that he is 
using any abstracted language. In fact he treats or 
equivalence constants as if they were names of singular 
objects. He is simply unaware of the fact that they 
are really unary predicates. 

First order Interpretat ion of LA 

In this interpretation denoted by 0a the user is 
aware of " cheating" and he treats all the constants of 
the language as unary predicates. Formally let L be 
the language L extended by unary predicates u i v . . ,un 

corresponding to the equivalence classes of R on the 
name constants of L. Any formula of Lt can be 
translated into the formula of L by replacing all 
constants [a] by existential quantifiers range restricted 
to the unary predicate corresponding to [a]. All 
quantifiers in La are treated as ranging over the 
objects of the domain D. 

Example 3 

The atomic formula wil l be translated to 
the formula: 

are 
unary predicates corresponding to equivalence classes 

the 
equivalence class [a]). 

Example 4 

Let KB be a knowledge base storing all direct flight 
connections in the United States. One natural 
abstraction which can be considered is provided by the 
equivalence relation putting all cities which are in the 
same state into the same equivalence class. The 
abstracted language La is going to use names of the 
states instead of using the names of the cities. In the 
second order interpretation the user wil l not be 
"aware" that states are really predicates. Let us now 
consider the query a: Give me all direct or indirect 
connections wi th one stop over from New York to 
Seattle. According to the second order interpretation 
ou the user wi l l get some erroneous connections. For 
example, if there is a flight from New York to LA 
and the flight from San Francisco to Seattle then this 
will be printed as connection because LA and San 
Francisco are in the same state ! Therefore, instead of 
the real answer to the query we wi l l get some 
approximation of it which is complete but not sound 
(i.e we get more tuples than necessary). In the same 
time this approximation wil l give us a correct 
information about which connections are not possible. 
On the other hand take now the first order 
interpretation oa. This wi l l be a very conservative 
interpretation, which in fact wil l lead to a subset of 
the real answer, i.e to the approximation which is 
sound but not complete. Indeed, even if there is a 
flight from NY to Seattle with one stopover in San 
Francisco it wi l l not be printed out, since there are 
other models in M(KB,R) in which the place of arrival 
of the flight from NY is different from the place of 
departure of the flight to Seattle. In other words, 
even if the knowledge base contain formulas 
Connected(NewYork State,California) and 

Connected(California, Washington) no matching 
between two occurrences of California wi l l occur (since 
the user is aware that there may be many cities there. 
These two approximations differ in their treatment of 
equivalence classes, in the former approach equivalence 
classes are always unifiable wi th themselves, in the 
latter one they are never unifiable wi th themselves. 

I 
Let us now investigate the basic questions related to 

the very notion of abstraction: How good this 
approximation is? Does it lead to computational 
benefits ? . 

We wi l l approach these questions by investigating 
first the following problems: 

Actually it it a possibility operator in the Kripke model with access 
relation R defined as domain equivalence relation defined on models 
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1. Given a theory KB how to construct theory 
[KBjR , called first order R-reconstruction in 
L* such that 

2. The same question but w i th regards to a 
theory ' in , called second order 
R-reconstruction on LA such that or that 
the set of models of is equal to the 
set of quotient models of KB. 

3. What is the error between KB and [KB]R , 
i.e. for which formulas KB and KB R give 
different answers? 

The first two questions wi l l be investigated in the 
next two subsections. The last question is a subject of 
section 5. 

I V . l . First order R-reconstructions of the knowledge 
base KB 

We wi l l assume here that our knowledge base is a 
set of positive (no negation) formulas. Later we 
discuss deductive (with implication) databases. 

Here we are interested in representing the set of all 
formulas of the language L* which are true in all 
models of M(KB,R). For a formula ^ we would like to 
establish a new formula or shortly if R is 
clear from the context, such that: 

It easy to check that [ ] behaves like a possibility 
operator'*. Therefore: 

Therefore we cannot generate [T]R on the formula by 
formula basis. Instead we first transform T to the 
disjunctive normal form and treat each disjunct 
separately. For each individual disjunct U we form a 
set of formulas [U]R by the following procedure: 

1. First rename all variables in U in such a 
way that no variable occur twice in U. We 
add proper equality conditions to reflect the 
fact that several different occurrences of the 
same variable were renamed differently. As 
the result we get the set of literals and the 
set of equalities. 

2. Replace each individual constant "a " 
occurring in any of the literals by the 
variable with range restricted existential 
quantification over unary predicate [a](x), 
corresponding to the equivalence class 
generated by a. [U]R wil l be formed by 
ignoring all equality conditions and making 
a conjunction of all literals possibly with 
such a range restricted existential 
quantification. 

Therefore, in general only single literal formulas of D 
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exactly two elements ,and there are three occurrences 
of B in the database, therefore at least two of these 
occurrences have to be equal. 

In general these kind of "combinatorial" inferences 
about equality are much harder to perform that even 
the standard first order derivations (i.e derivations 
when we assume that the equivalence relation is 
selective). We can conclude the above considerations 
in the following: 

"Ignorance" Principle 

Abstraction is computationally beneficial if we either 
don't know anything about the cardinality of 
equivalence classes or we know that there are singular 
(i.e contain one element) 

IV .2 . Second Order R-reconstruction 
The second order reconstruction is much simpler 

than the one described above. We simply take each 
formula of the knowledge base KB and map all 
constants into their equivalence classes. Some of the 
terms wil l collapse into one (for example in the case 
of disjunctions) and in the result we will always 
obtain a simpler theory. These is in fact a pure 
language abstraction. 

Example 6 

If we take the formula from the above example we 
wil l get the following second order reconstruction 

where are new name constants for 
equivalence classes 

I 
It is easy to see that both transformations lead to 

the proper R-reconstructions of the knowledge base 
both in the first order and in the second order case. 

V GLOBAL ERROR OF THE 
APPROXIMATION 

Here we will evaluate the error which arises from 
assuming the R-reconstruction of the KB instead of 
KB itself. We want to characterize the set of formulas 
of L* which are preserved under domain abstraction. 
Let be the set of constants of the language L* and 
let UL be the set of unary predicates in L' 
corresponding to equivalence classes. Without loss of 
generality we assume that all our predicates are 
untyped, i.e., all database constants can occur on all 
positions of the predicates. We will construct a 
sublanguage L0 as follows: 

1. For any database predicate p and unary 
predicates u,,...u where each u is either a 
r » 

predicate corresponding to equivalence class 
or a universal domain predicate ,the 
formulas of the form: 

D(x ) it t rue i f f x belongs to the domain D of the knowldgebasr 

Given database KB and equivalence relation R by 
extended database we will mean the database KB 
extended by the unary predicates corresponding to the 
equivalence classes. 

Lemma 4 

The set of all formulas preserved by domain 
abstraction R is equal to the set of all formulas of 
which are consequences of the extended database. In 
other words the difference between the KB and its R-
reconstruction can only be detected by the formulas 
out of 

I 
Notice that the language is in principle a 

propositional language generated by quantificational 
atomic formulas. Disallowing arbitrary existential 
quantification is the consequence of the fact that there 
are no free variables in the formulas of 

In a similar way we can obtain the estimation of 
error in terms of the abstracted language Le. 

V . l . Domain Abstraction and Approximations 
The above considerations provided an error for the 

semantic consequence relation For the queries 
belonging to the "error set" domain abstraction is not 
expected to give correct values: What will be the 
relation of the answers to queries computed according 
to the first order and second order interpretation? 
Let be a query, R be an equivalence relation and 
let denote an answer to this query in the 
knowledge base KB, while denote the R-answer 
returned to treated as first order interpretation and 

the R-answer returned due to the second order 
interpretation. We have the following lemma: 

Lemma 5 

For any knowledge base KB, any abstraction R and 
any query 

That is is a sound but not always complete 
approximation, while (The second order 
interpretation) is complete but not always sound 
approximation, i.e. in general it wil l return more 
tuples then necessary. If, however belongs to L * 
then both answers wi l l coincide with 

I 

The analysis of local error would tell us "how close" 
are these approximations to the real a n s w e r W e 
wil l do it in the full version of the paper. 

In the next section we will discuss the influence of 
domain abstraction on deduction process. 
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V I R-resolut ion 
Here we would like to consider simple deductive 

database built from atomic facts and universally 
quantified Horn formulas without function symbols. 
Let DB denote the set of atomic facts of this database 
and let denote the set of Horn rules. In database 
theory, given a query Q we can either look at the 
database as a single theory T or modify the query Q 
to the form in such a way that can be 
directly evaluated on DB forgetting about the formulas 
from These two ways are equivalent, although the 
first one treats rules as a part of the database while 
the second one in treats them as a part of query. In 
abstracted database these two ways are no longer 
equivalent. The incorporation of rules into the query 
leads to a much less costly evaluation which we wi l l 
call R-rtBolution. In R-resolution (R, from the 
equivalence relation R) all formulas before being 
transformed to clausal forms have all variables 
renamed, so no variable occurs twice, and proper 
equality conditions are added. Then all formulas and 
negation of the query are transformed to the clausal 
form and standard resolution is performed with one 
slight modification of great computational 
consequences: all equality conditions imposed between 
two variables fail. This condition can be weaken again, 
if some additional conditions are imposed on 
equivalence relation R (selectivness of R on some 
subdomains, etc). In general, in this approach, the 
query Q in the presence of deductive rules ~ is 
treated as By the R-an$wer to Q we wi l l 
understand the answer to computed from the R-
reconstruction of the DB (the set of atomic facts). 

Example 7 

WQxyz—Wxyz, where P, Q and W0 are predicates 
whose extensions are stored in the database and W is 
a derived predicate. Let our query have a form 
{xyzrWxyz}. In order to answer this query we can 
either treat the whole database (both facts and the 
above rules) as one theory, or modify a query Q to 
the form These two 
ways are equivalent, unless domain abstraction is 
applied. With domain abstraction and no knowledge 
about selectivness of R, the second disjunct of Q^ wil l 
fail (unification wil l fail). If we treat the database as 
a single theory, including rules, then the R-
reconstruction of it wil l lead to the different result 
and in fact wil l not be computationally attractive 
(effectively, it wil l require computing a fixpoint of the 
database before the R-reconstruction, which could be 
very expensive) I 

The general failure of unification, in case we know 
nothing about R makes R-resolution very easy. Even, 
if we have some partial knowledge about selectivity of 
R, R-resolution wil l still be easier than the standard 
resolution. A short analysis is provided in the next 
section: 

V I . 1. Complexity of Abstracted Reasoning 
There are two major computational advantages of 

abstraction: The R-reconstruction of the theory T is 
simpler than T itself and the reasoning is much less 
demanding because of the limited unification. In this 
way we obtain substantial computational 
improvements, which wil l be illustrated for two types 
of theories: Horn theories without functions and Horn 
Theories with function symbols. 

Horn Theories wi thout function symbols 

For a Knowledge base intensions in the form of sets 
of Horn Clauses without function symbols any query 
could be processed in time which is a polynomial 
function of the size of the database [Vardi 82]. We 
wil l demonstrate here that under domain abstraction a 
very large class of queries can be processed in time 
which is a linear function of the database size. Let us 
first define the notions of a proper query and of a 
proper rule. 

Def ini t ion 

By the proper query Q we mean a query such that 
in any conjunct of Q with more then one database 
literal involved (i.e when the predicate is the database 
predicate) there is an equality literal , where x 
occurs in l1 and y occurs in l2.s 

By a proper rule we mean a universally quantified 
Horn rule, which either has a single literal in it's 
body or, if it has more than one literal, for any literal 
I in the body there is some other literal Y such that 1 
and i" share the same variable. 

This definitions eliminates expensive and rather rare 
IIcartesian product" like conjunctions of the form 

It sti l l contains a very large family of 
practical queries and rules.. We have now the 
following easy fact: 

Fact 1 

be a knowledge base intension built from 
proper Horn Clauses without function symbols and let 
Q be a proper query then the R-answer to a query Q 
can be generated in time which is linear wi th respect 
to the database size. 

Proof 

As we have pointed out before "pure" equality 
conditions of the form are always evaluated to 
* False" under abstraction. Therefore, if such conditions 
occur in conjuncts the whole such conjuncts wil l be 
evaluated to false. Hence, the only parts of the query 
which wil l "get through" wil l be single literals and 
disjunctions or existential quantifications of them. Such 
queries however can be clearly processed in the linear 
time wi th respect to the size of the database. ■ 

More interesting situation occurs, when R is partially 
selective. We wil l discuss it in more detail in the full 
version of the paper. 

We wi l l now discuss a situation when the function 
symbols are present: 
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Function Symbols and Abstraction 

It is well known that the problem of query 
processing is undecidable in the general case when 
function symbols are. present in the database. Can 
domain abstraction help to make this problem more 
tractable? 

In the same way as before we wil l distinguish two 
different interpretations, first and second order. Under 
the first order interpretation, when nothing is known 
about the equivalence relation, unification wil l still fail 
uniformly, as in the function-free case. In the same 
tr ivial way as before, we wil l always be able to 
compute an answer to a query (in most cases in time 
which is a linear function of the database size). A 
more interesting case occurs when the equivalence 
relation is partially selective. For instance, in case of 
natural numbers, the equivalence relation can be 
selective for all natural numbers up to n0 and map all 
larger numbers into one equivalence class called 
" L A R G E " . Such an abstraction wil l preserve all 
formulas which were proved "using small numbers" 
and wil l distort all formulas which "depend" on large 
numbers. This could be viewed as another 
interpretation of some "intuitionistic" principle that 
proofs using large nonconstructive numbers are invalid. 

Situation is different when one considers a second 
order interpretation. Here, in order to have a well 
defined Herbrand Universe, we want R to be a 
congruence relation with respect to all functions, 
namely we want the following formula to be true: 

Indeed, otherwise f([a]) wil l even not be defined. If 
(*) is the case and R has a finite number of 
equivalence classes, then we can effectively compute 
answers to queries under second order interpretation 
(i.e. treating equivalence classes as constants). This is 
the case because a new Herbrand universe (built from 
equivalence classes) is finite. 

V I I L I M I T E D I N F E R E N C E 
Given a database KB in a predicate language L we 

can treat L as abstraction of some unknown 
"prelanguage" This will result in a very cautious 
treatment of object identity in the database, namely 
by treating all constants as equivalence classes of some 
unknown equivalence relation R. In more intuitive 
terms this treatment corresponds to somehow 
impersonal interpretation of names of objects: Instead 
of saying "Smi th" we will say "Some Smith" and 
instead of saying "Smith brings an apple" we wil l say 
"Some Smith brings Some apple". The resulting 
reasoning wi l l have low complexity characteristic to 
the, described before, abstracted reasoning. We could 
gradually introduce more information about R 
(selectivness etc) and get better and better 
approximations of the "real" answers to queries 
both in terms of already discussed upper - and 
lower - approximations 

V I I I OTHER TYPES OF ABSTRACTION 
In [Imielinski 87] the different types of abstractions 

were introduced. If we define abstraction equivalence 
relation by fixing some formula and making two 
models: ml and m2 equivalent iff the diagram of 
(i.e. roughly speaking the set of all constants c such 
that Q(c) is true in the model) is identical in ml and 
m2 This formula is called a view. It turns out 
that the R-reconstruction of any theory KB is equal 
to the set of all consequences of KB which can be 
constructed using formula Q(x) as the basic predicate 
and all logical connectives and quantifiers. This is 
discussed in detail in [Imielinski 87]. 

DC C O N C L U S I O N S 
We introduced here new notions of errors in logic 

and studied one particular approximation, called 
domain abstraction, as an illustration of these formal 
notions. We argued that the notion of abstraction 
provides meaningful approximate method, which is 
computationally attractive with a clear notion of error. 
It can be used for a preliminary computation of the 
answer to a query, which can then be followed, if 
necessary, by some precise procedure. The notion of 
abstraction is much more general than the specific 
domain abstraction introduced in this paper. We 
indicated this in the last section of the paper. 
Investigating different types of abstractions AS 
approximation mechanisms in logical reasoning is a 
promising area for further research. 
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