
Doma in A b s t r a c t i o n
and L im i ted Reasoning

Tomasz Imielinski

Department of Computer Science
Rutgers University and

Polish Academy of Science

I Abstract
We are investigating the possibility of constructing

meaningful and computationally efficient approximate
reasoning methods for the first order logic. In
particular, we study a situation when only certain
aspects of the domain are of interest to the user. This
is reflected by an equivalence relation defined on the
domain of the knowledge base. The whole mechanism
is called domain abstraction and is demonstrated to
lead to significant computational advantages. The
domain abstraction discussed in the paper is only a
very special case of the more general notion of
abstraction which is discussed shortly here and is a
subject of the currently ongoing research.

I I INTRODUCTION
In this paper we are interested in providing a basis

for meaningful reasoning wi th low complexity. Such
reasoning wi l l be called limited to indicate that it is
weaker than the general first order logic proof
methods. Recently many authors have tried to
develop different logic systems, which would have
better complexity properties than the classical
propositional or predicate logic [Patel-Schneider 85],

[Lakemeyer 86], [Konolidge 85] and in a way [Fagin
85]. Here, we take a different approach by developing
approximate methods of reasoning within the same
logic.

Approximate methods are widely accepted in
numerical computations. Unfortunately automated
reasoning, which is computationally at least as
expensive as numerical computing does not have a
proper notion of approximation and has still to follow
the ambitious "A l l or nothing" approach. The main
problem is lack of the proper notion of error, without
which it is difficult to provide any meaning to an
approximation.

In this paper we demonstrate a notion of error
which is sufficiently general to cover both automated
reasoning and numerical computations. The following
example illustrates the point:

Example 1

Suppose we want to compute a volume of a certain
cube A. Assume that we round up the measurements
of A, say to the closest integer in meters. If we

Research support*) by NSF grant DCR 85-04140

calculate now, say, the volume of A our result wil l be
biased wi th error, say 1 m3.

Let us now take a look at this simple example from
the more general point of view. Let the measurements
of A form a knowledge base and let Volume(A,x),
where A is our cube and x stands for volume be a
query. (We could also have other queries asking for
the diameter of A, total area of faces, etc.) The
process of rounding up the measurements of A can be
now viewed as replacement of the original knowledge
base by a new one, less precise but presumably easier
to deal wi th. The price of this simplification is paid
in the loss of precision - we wil l not compute a " t rue"
volume of the cube anymore but some other value.
This new, approximate value wil l share certain
properties with the real answer. Indeed, let the
answer to our query be represented in the form of
atomic formula Volume(A, 124 m3). Although this
formula may not necessarly be true, the formula

Volume(A,x) will be true (Since
our error is equal to In other words <t> form a
property of the real answer, which is preserved by the
approximate answer. In fact all formulas of the form

and
b 125 wil l be preserved. On the other hand the
preservation is not guranteed if 123
For instance the formula
124.1)) Volume() wil l not necessarly be preserved
(i.e it is true for our approximate answer, but could
be false for the real answer). ■

Our notion of error is motivated by this example - it
wil l be the set of all formulas (notice that error is a
set) which are not preserved by the approximate
answer. In our case belongs to the error, while
does not.

This notion of an error wi l l be called local error
since it is related to a particular query. We define
also a global error resulting from the replacement of
our knowledge base by the "rounded up" one. The
global error wi l l be simply a set of all queries, which
are not quranteed to be answered correctly by the
"rounded up" knowledge base. In the Example 1 we
could imagine the whole variety of queries, asking for
a diameter, total area of faces, color of a cube etc
(assuming the proper data is in the knowledge base) .
Some of these queries wi l l be answered correctly,
because the "round up" does not affect them.
Therefore, while the global error wil l divide queries

Imlellnksi 997

into two categories (correctly answered, incorrectly
answered), the local error wil l indicate "how far" each
individual answer (for each individual query) is from
the real answer. Needless to say the local error wi l l be
empty for queries, which are answered correctly, that
is which are not in the global error set.

This paper is intended to serve as a "case study" for
the notions introduced above, for a very special type
of approximate reasoning method, called domain
abstraction. Under domain abstraction only certain
aspects of the domain wil l be of interest to the user.
Instead of domain constants, he will deal with
equivalence classes of them. In consequence he will
deal wi th "rounded up" knowledge base, similar to the
numerical one just described.

Important observations about the fundamental role of
abstraction in approximate reasoning were made by
Hobbs in [Hobbs 85]. The notion of abstraction is also
studied in [Imielinski 85]. Here we concentrate on the
domain abstraction (to be defined in the next section)
by discussing it's computational benefits and (global)
errors.

The paper is divided into two parts. In the first
part of the paper, in section three, four and five we
define formally the notion of abstraction and discuss
the issues of query processing and the error of domain
abstraction. Finally, we briefly discuss applications of
domain abstraction in the limited reasoning.

I I I B A S I C N O T I O N S
By the Knowledge base, denoted by KB (or DB) we

understand any finite collections of formulas of some
first order language L. We also use the term database
specially when the KB is a collection of atomic
formulas corresponding to the relational database.

By the query we mean any open formula of L. and
by the answer to a query the set of all substitutions
of domain constants for variables such that the
resulting closed formula is a logical consequence of
KB .

By the domain of the knowledge base we mean the
set of all objects occurring in the KB.

By the equivalence relation on the set D we mean a
binary relation on D which is reflexive, symmetric and
transitive. Equivalence relation is selective on the
subset D0 of D iff for any element the
equivalence class of

I V D O M A I N A B S T R A C T I O N
Let D be the domain of our Knowledge base and let

R be an equivalence relation on D. Let L be the first
order language of the knowledge base. We can extend
R in the natural way to models of L. Two models, m
and m' wi l l be R-equivalent iff for any atomic formula
Ra r . .aB which is true in m (m1) there is an atomic
formula Rb r . . b n which is true in m' (m), such that
ajRb, for

The equivalence relation R can be given one of the
following interpretations:

1. It may correspond to the relevant features
of the external world which are of interest
to the user

2. It may be used by the system to hide
certain features of the external world from
the user

3. It may correspond to the error with which
data is entered into the database. As a
consequence we do not entirely believe what
is stated in the database, but take it wi th
"the grain of salt", which is reflected by
equivalence relation R.

Al l these interpretations have similar consequences:
i.e the user's view of external world is even more
incomplete that the view of the knowledge base. The
"noise" is introduced on the interface between the user
and knowledge base. However, there is an important
difference between these two approaches: In the first
approach the choice of abstracted interpretation is
made by user, while in the second interpretation the
choice is made by administrator of a system. This
distinction wil l have further consequences later in the
paper.

Let KB be a knowledge base and let R be the
equivalence relation on the set of models of KB. The
equivalence relation R determines a new, weaker,
semantic consequence relation NR on L.

iff for any model m is true
not only in m but also in all models which are R-
equivalent to R.

This definition corresponds to the truth definition for
the necessity operator in the Kripke model with R as
its access relations. This is studied in more detail in
the paper [Imielinski 87]. Intuitively, the external user
whose information is filtered out by the relation R
cannot distinguish between two models which are
equivalent, therefore all models which are equivalent to
models of KB are, for this user "as good" as models
of KB . Obviously some of the formulas of KB will be
lost if they are not "filtered out" through R.

The above definition could be interpreted also in the
different way, as abstraction of KB. Indeed, our user
no longer sees the knowledge base KB but rather
some logically weaker set of formulas corresponding to
his, less precise now, set of possible worlds namely:

There is m' such that m'Rm and

Clearly any formula o is a semantic consequence of
KB in the new sense iff it is true in each model from
M(KB,R) .

The equivalence relation R which is defined on the
domain of knowledge base induces equivalence relation
on the name constants of the knowledge base language
L. The equivalence classes of this relation wil l be
denoted by [a] where "a " is a name constant.

The key question, which we are going to investigate,
is whether R is computationally more attractive than
standard We are also interested in estimating the
"error" if the reasoning is performed in the abstracted

998 REASONING

knowledge base instead of the original one.

Example 2

Let our knowledge base have a form of a very long
disjunction, say of the form:

Let us assume that the user's equivalence relation R
is defined in such a way on the domain of the
knowledge base that all elements a,...an belong to the
same equivalence class, say [a] and all elements b 1 . . b n

belong to the other equivalence class, say [b). In such
case the resulting knowledge base can be viewed
simply as the atomic formula: One can
visualize very long disjunctions reducing its size to
very short, if not atomic formulas, after applying this
kind of abstraction. There are therefore obvious
computational benefits of this technique here. ■

We use here two different languages: the abstracted
language Lft and the basic language L. The abstracted
language is the first order language with name
constants The formulas of are
interpreted either as second order formulas (if we
allow quantification on equivalence classes) or as first
order formulas of some extension of L.

Second Order Interpretat ion of L.

The second order interpretation of the formula o of
La wi l l be denoted by au (where " u " stands for
" unaware", which wil l be clear later on). The
satisfiability relation for this interpretation wil l be
defined on the basis of the quotient models which is
equal to the set of all equivalence classes (with respect
to R) of models of KB. Notice that quotient models
are simply built as relations defined on equivalence
classes [a] of domain constants aeD. We will say the
<TU is true in KB iff it is true in each quotient model
of KB.

This interpretation corresponds to the situation when
the external user is unaware of the fact that he is
using any abstracted language. In fact he treats or
equivalence constants as if they were names of singular
objects. He is simply unaware of the fact that they
are really unary predicates.

First order Interpretat ion of LA

In this interpretation denoted by 0a the user is
aware of " cheating" and he treats all the constants of
the language as unary predicates. Formally let L be
the language L extended by unary predicates u i v . . ,un

corresponding to the equivalence classes of R on the
name constants of L. Any formula of Lt can be
translated into the formula of L by replacing all
constants [a] by existential quantifiers range restricted
to the unary predicate corresponding to [a]. All
quantifiers in La are treated as ranging over the
objects of the domain D.

Example 3

The atomic formula wil l be translated to
the formula:

are
unary predicates corresponding to equivalence classes

the
equivalence class [a]).

Example 4

Let KB be a knowledge base storing all direct flight
connections in the United States. One natural
abstraction which can be considered is provided by the
equivalence relation putting all cities which are in the
same state into the same equivalence class. The
abstracted language La is going to use names of the
states instead of using the names of the cities. In the
second order interpretation the user wil l not be
"aware" that states are really predicates. Let us now
consider the query a: Give me all direct or indirect
connections wi th one stop over from New York to
Seattle. According to the second order interpretation
ou the user wi l l get some erroneous connections. For
example, if there is a flight from New York to LA
and the flight from San Francisco to Seattle then this
will be printed as connection because LA and San
Francisco are in the same state ! Therefore, instead of
the real answer to the query we wi l l get some
approximation of it which is complete but not sound
(i.e we get more tuples than necessary). In the same
time this approximation wil l give us a correct
information about which connections are not possible.
On the other hand take now the first order
interpretation oa. This wi l l be a very conservative
interpretation, which in fact wil l lead to a subset of
the real answer, i.e to the approximation which is
sound but not complete. Indeed, even if there is a
flight from NY to Seattle with one stopover in San
Francisco it wi l l not be printed out, since there are
other models in M(KB,R) in which the place of arrival
of the flight from NY is different from the place of
departure of the flight to Seattle. In other words,
even if the knowledge base contain formulas
Connected(NewYork State,California) and

Connected(California, Washington) no matching
between two occurrences of California wi l l occur (since
the user is aware that there may be many cities there.
These two approximations differ in their treatment of
equivalence classes, in the former approach equivalence
classes are always unifiable wi th themselves, in the
latter one they are never unifiable wi th themselves.

I
Let us now investigate the basic questions related to

the very notion of abstraction: How good this
approximation is? Does it lead to computational
benefits ? .

We wi l l approach these questions by investigating
first the following problems:

Actually it it a possibility operator in the Kripke model with access
relation R defined as domain equivalence relation defined on models

Imielinksi 999

1. Given a theory KB how to construct theory
[KBjR , called first order R-reconstruction in
L* such that

2. The same question but w i th regards to a
theory ' in , called second order
R-reconstruction on LA such that or that
the set of models of is equal to the
set of quotient models of KB.

3. What is the error between KB and [KB]R ,
i.e. for which formulas KB and KB R give
different answers?

The first two questions wi l l be investigated in the
next two subsections. The last question is a subject of
section 5.

I V . l . First order R-reconstructions of the knowledge
base KB

We wi l l assume here that our knowledge base is a
set of positive (no negation) formulas. Later we
discuss deductive (with implication) databases.

Here we are interested in representing the set of all
formulas of the language L* which are true in all
models of M(KB,R). For a formula ^ we would like to
establish a new formula or shortly if R is
clear from the context, such that:

It easy to check that [] behaves like a possibility
operator'*. Therefore:

Therefore we cannot generate [T]R on the formula by
formula basis. Instead we first transform T to the
disjunctive normal form and treat each disjunct
separately. For each individual disjunct U we form a
set of formulas [U]R by the following procedure:

1. First rename all variables in U in such a
way that no variable occur twice in U. We
add proper equality conditions to reflect the
fact that several different occurrences of the
same variable were renamed differently. As
the result we get the set of literals and the
set of equalities.

2. Replace each individual constant "a "
occurring in any of the literals by the
variable with range restricted existential
quantification over unary predicate [a](x),
corresponding to the equivalence class
generated by a. [U]R wil l be formed by
ignoring all equality conditions and making
a conjunction of all literals possibly with
such a range restricted existential
quantification.

Therefore, in general only single literal formulas of D

1000 REASONING

exactly two elements ,and there are three occurrences
of B in the database, therefore at least two of these
occurrences have to be equal.

In general these kind of "combinatorial" inferences
about equality are much harder to perform that even
the standard first order derivations (i.e derivations
when we assume that the equivalence relation is
selective). We can conclude the above considerations
in the following:

"Ignorance" Principle

Abstraction is computationally beneficial if we either
don't know anything about the cardinality of
equivalence classes or we know that there are singular
(i.e contain one element)

IV .2 . Second Order R-reconstruction
The second order reconstruction is much simpler

than the one described above. We simply take each
formula of the knowledge base KB and map all
constants into their equivalence classes. Some of the
terms wil l collapse into one (for example in the case
of disjunctions) and in the result we will always
obtain a simpler theory. These is in fact a pure
language abstraction.

Example 6

If we take the formula from the above example we
wil l get the following second order reconstruction

where are new name constants for
equivalence classes

I
It is easy to see that both transformations lead to

the proper R-reconstructions of the knowledge base
both in the first order and in the second order case.

V GLOBAL ERROR OF THE
APPROXIMATION

Here we will evaluate the error which arises from
assuming the R-reconstruction of the KB instead of
KB itself. We want to characterize the set of formulas
of L* which are preserved under domain abstraction.
Let be the set of constants of the language L* and
let UL be the set of unary predicates in L'
corresponding to equivalence classes. Without loss of
generality we assume that all our predicates are
untyped, i.e., all database constants can occur on all
positions of the predicates. We will construct a
sublanguage L0 as follows:

1. For any database predicate p and unary
predicates u,,...u where each u is either a
r »

predicate corresponding to equivalence class
or a universal domain predicate ,the
formulas of the form:

D(x) it t rue i f f x belongs to the domain D of the knowldgebasr

Given database KB and equivalence relation R by
extended database we will mean the database KB
extended by the unary predicates corresponding to the
equivalence classes.

Lemma 4

The set of all formulas preserved by domain
abstraction R is equal to the set of all formulas of
which are consequences of the extended database. In
other words the difference between the KB and its R-
reconstruction can only be detected by the formulas
out of

I
Notice that the language is in principle a

propositional language generated by quantificational
atomic formulas. Disallowing arbitrary existential
quantification is the consequence of the fact that there
are no free variables in the formulas of

In a similar way we can obtain the estimation of
error in terms of the abstracted language Le.

V . l . Domain Abstraction and Approximations
The above considerations provided an error for the

semantic consequence relation For the queries
belonging to the "error set" domain abstraction is not
expected to give correct values: What will be the
relation of the answers to queries computed according
to the first order and second order interpretation?
Let be a query, R be an equivalence relation and
let denote an answer to this query in the
knowledge base KB, while denote the R-answer
returned to treated as first order interpretation and

the R-answer returned due to the second order
interpretation. We have the following lemma:

Lemma 5

For any knowledge base KB, any abstraction R and
any query

That is is a sound but not always complete
approximation, while (The second order
interpretation) is complete but not always sound
approximation, i.e. in general it wil l return more
tuples then necessary. If, however belongs to L *
then both answers wi l l coincide with

I

The analysis of local error would tell us "how close"
are these approximations to the real a n s w e r W e
wil l do it in the full version of the paper.

In the next section we will discuss the influence of
domain abstraction on deduction process.

Imlellnksl 1001

V I R-resolut ion
Here we would like to consider simple deductive

database built from atomic facts and universally
quantified Horn formulas without function symbols.
Let DB denote the set of atomic facts of this database
and let denote the set of Horn rules. In database
theory, given a query Q we can either look at the
database as a single theory T or modify the query Q
to the form in such a way that can be
directly evaluated on DB forgetting about the formulas
from These two ways are equivalent, although the
first one treats rules as a part of the database while
the second one in treats them as a part of query. In
abstracted database these two ways are no longer
equivalent. The incorporation of rules into the query
leads to a much less costly evaluation which we wi l l
call R-rtBolution. In R-resolution (R, from the
equivalence relation R) all formulas before being
transformed to clausal forms have all variables
renamed, so no variable occurs twice, and proper
equality conditions are added. Then all formulas and
negation of the query are transformed to the clausal
form and standard resolution is performed with one
slight modification of great computational
consequences: all equality conditions imposed between
two variables fail. This condition can be weaken again,
if some additional conditions are imposed on
equivalence relation R (selectivness of R on some
subdomains, etc). In general, in this approach, the
query Q in the presence of deductive rules ~ is
treated as By the R-an$wer to Q we wi l l
understand the answer to computed from the R-
reconstruction of the DB (the set of atomic facts).

Example 7

WQxyz—Wxyz, where P, Q and W0 are predicates
whose extensions are stored in the database and W is
a derived predicate. Let our query have a form
{xyzrWxyz}. In order to answer this query we can
either treat the whole database (both facts and the
above rules) as one theory, or modify a query Q to
the form These two
ways are equivalent, unless domain abstraction is
applied. With domain abstraction and no knowledge
about selectivness of R, the second disjunct of Q^ wil l
fail (unification wil l fail). If we treat the database as
a single theory, including rules, then the R-
reconstruction of it wil l lead to the different result
and in fact wil l not be computationally attractive
(effectively, it wil l require computing a fixpoint of the
database before the R-reconstruction, which could be
very expensive) I

The general failure of unification, in case we know
nothing about R makes R-resolution very easy. Even,
if we have some partial knowledge about selectivity of
R, R-resolution wil l still be easier than the standard
resolution. A short analysis is provided in the next
section:

V I . 1. Complexity of Abstracted Reasoning
There are two major computational advantages of

abstraction: The R-reconstruction of the theory T is
simpler than T itself and the reasoning is much less
demanding because of the limited unification. In this
way we obtain substantial computational
improvements, which wil l be illustrated for two types
of theories: Horn theories without functions and Horn
Theories with function symbols.

Horn Theories wi thout function symbols

For a Knowledge base intensions in the form of sets
of Horn Clauses without function symbols any query
could be processed in time which is a polynomial
function of the size of the database [Vardi 82]. We
wil l demonstrate here that under domain abstraction a
very large class of queries can be processed in time
which is a linear function of the database size. Let us
first define the notions of a proper query and of a
proper rule.

Def ini t ion

By the proper query Q we mean a query such that
in any conjunct of Q with more then one database
literal involved (i.e when the predicate is the database
predicate) there is an equality literal , where x
occurs in l1 and y occurs in l2.s

By a proper rule we mean a universally quantified
Horn rule, which either has a single literal in it's
body or, if it has more than one literal, for any literal
I in the body there is some other literal Y such that 1
and i" share the same variable.

This definitions eliminates expensive and rather rare
IIcartesian product" like conjunctions of the form

It sti l l contains a very large family of
practical queries and rules.. We have now the
following easy fact:

Fact 1

be a knowledge base intension built from
proper Horn Clauses without function symbols and let
Q be a proper query then the R-answer to a query Q
can be generated in time which is linear wi th respect
to the database size.

Proof

As we have pointed out before "pure" equality
conditions of the form are always evaluated to
* False" under abstraction. Therefore, if such conditions
occur in conjuncts the whole such conjuncts wil l be
evaluated to false. Hence, the only parts of the query
which wil l "get through" wil l be single literals and
disjunctions or existential quantifications of them. Such
queries however can be clearly processed in the linear
time wi th respect to the size of the database. ■

More interesting situation occurs, when R is partially
selective. We wil l discuss it in more detail in the full
version of the paper.

We wi l l now discuss a situation when the function
symbols are present:

1002 REASONING

Function Symbols and Abstraction

It is well known that the problem of query
processing is undecidable in the general case when
function symbols are. present in the database. Can
domain abstraction help to make this problem more
tractable?

In the same way as before we wil l distinguish two
different interpretations, first and second order. Under
the first order interpretation, when nothing is known
about the equivalence relation, unification wil l still fail
uniformly, as in the function-free case. In the same
tr ivial way as before, we wil l always be able to
compute an answer to a query (in most cases in time
which is a linear function of the database size). A
more interesting case occurs when the equivalence
relation is partially selective. For instance, in case of
natural numbers, the equivalence relation can be
selective for all natural numbers up to n0 and map all
larger numbers into one equivalence class called
" L A R G E " . Such an abstraction wil l preserve all
formulas which were proved "using small numbers"
and wil l distort all formulas which "depend" on large
numbers. This could be viewed as another
interpretation of some "intuitionistic" principle that
proofs using large nonconstructive numbers are invalid.

Situation is different when one considers a second
order interpretation. Here, in order to have a well
defined Herbrand Universe, we want R to be a
congruence relation with respect to all functions,
namely we want the following formula to be true:

Indeed, otherwise f([a]) wil l even not be defined. If
(*) is the case and R has a finite number of
equivalence classes, then we can effectively compute
answers to queries under second order interpretation
(i.e. treating equivalence classes as constants). This is
the case because a new Herbrand universe (built from
equivalence classes) is finite.

V I I L I M I T E D I N F E R E N C E
Given a database KB in a predicate language L we

can treat L as abstraction of some unknown
"prelanguage" This will result in a very cautious
treatment of object identity in the database, namely
by treating all constants as equivalence classes of some
unknown equivalence relation R. In more intuitive
terms this treatment corresponds to somehow
impersonal interpretation of names of objects: Instead
of saying "Smi th" we will say "Some Smith" and
instead of saying "Smith brings an apple" we wil l say
"Some Smith brings Some apple". The resulting
reasoning wi l l have low complexity characteristic to
the, described before, abstracted reasoning. We could
gradually introduce more information about R
(selectivness etc) and get better and better
approximations of the "real" answers to queries
both in terms of already discussed upper - and
lower - approximations

V I I I OTHER TYPES OF ABSTRACTION
In [Imielinski 87] the different types of abstractions

were introduced. If we define abstraction equivalence
relation by fixing some formula and making two
models: ml and m2 equivalent iff the diagram of
(i.e. roughly speaking the set of all constants c such
that Q(c) is true in the model) is identical in ml and
m2 This formula is called a view. It turns out
that the R-reconstruction of any theory KB is equal
to the set of all consequences of KB which can be
constructed using formula Q(x) as the basic predicate
and all logical connectives and quantifiers. This is
discussed in detail in [Imielinski 87].

DC C O N C L U S I O N S
We introduced here new notions of errors in logic

and studied one particular approximation, called
domain abstraction, as an illustration of these formal
notions. We argued that the notion of abstraction
provides meaningful approximate method, which is
computationally attractive with a clear notion of error.
It can be used for a preliminary computation of the
answer to a query, which can then be followed, if
necessary, by some precise procedure. The notion of
abstraction is much more general than the specific
domain abstraction introduced in this paper. We
indicated this in the last section of the paper.
Investigating different types of abstractions AS
approximation mechanisms in logical reasoning is a
promising area for further research.

References

(Fapin 851 Fagin,R and Hal pern, J.
Belief, Awarness and Limited Reasoning.
In Proceedings of IJCAJ 85. 1985.

|Hob; 85 Jerry R.Hobbs.
Granularity.
In Proceedings of IJCAJ 85. 1985.

[Imielinski 85| Imielinski,T.
Abstraction in Query Processing.
December. 1985.

imiei nski 87 ImielinskLT.
Relative Knowledge in the Distributed

Database.
In Proceedings of the ACM Symposium on

Pr incn'ce of Database Systems. 1987.
[Konolidge 85] Kurt Konol i ige.

A Computational Theory of Belief
lntrospection

In Proceedings of IJCAJ 85. 1985.
Lakemeyer 86] Lakemeyer,G.

Steps Forwards a First Order Logic of
Explicit and Implicit Belief.

In Proceedings of the Conference on
Theoretical Aspects of Reasoning about
Knowledge. 1986.

[Patel-Schneider 85j
Peter F. Patel-Schneider.
A Decidable First Order Logic for

Knowledge Representation.
In Proceedings of IJCAJ 1985. 1985.

Imielinksi 1003

